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Table 1. Recall of Notations.
K Number of arms
ν(k) Distribution of arm k
µ(k) Expectation of arm k

µ∗ = µ(1) Expectation of the best arm
X

(k)
r Reward of arm k when observed

for the rth time

X
(k)

r Empirical mean of arm k after r

observations. X
(k)

r = 1
r

∑r
u=1X

(k)
u

∆k gap between the means of arm k
and of the best arm. ∆k = µ∗ − µ(k)

∆min/∆max smallest/largest of the positive gaps
T (k)(t) Number of pulls of arm k during

the t first stages
ERt Expected regret after t stages

log(x) max(1, log(x))

l̂og(x) max(0, log(x))

1. Single-pull UCB2
UCB2 (Auer et al., 2002), reproduced here as Algorithm 1,
was introduced with the unusual particularity for UCB-like
algorithms that it requires a chosen arm to be pulled not
once but an exponentially increasing number of times. The
advantage of this algorithm over UCB1 is that it enjoys a
bound for the expected regret at time t with a leading fac-
tor
∑
k,∆k>0

log(t∆2
k)

∆k
, which leads to a distribution inde-

pendent bound proportional to
√
Kt logK. This is an im-

provement over the
√
Kt log t bound of UCB sinceK � t.

Lemma 1 (Theorem 2 of (Auer et al., 2002)). An upper
bound for the expected regret of UCB2 is

ERt ≤
∑

k,∆k>0

(
(1 + α)(1 + 4α)log(2et∆2

k)

2∆k
+
cα
∆k

)
,

where cα varies only with α and goes to infinity when α
goes to 0.

Algorithm 1 UCB2.
1: Input α > 0.
2: For all k ∈ {1, . . . ,K}, initialize rk = 0, sk = 1.
3: Pull each arm once.
4: for t ≥ 1 do

5: Select k that maximizes X
(k)

sk
+

√
(1+α) log( etsk

)

2sk
.

6: Pull the arm k for τ(rk + 1) − τ(rk) stages, with
τ(x) = d(1 + α)xe.

7: sk ← τ(rk + 1).
8: rk ← rk + 1.
9: end for

We show that the block structure of UCB2 is only a conve-
nience for the proof. We introduce a single-pull variant of
UCB2 (Algorithm 2) that removes the block structure and
we prove a similar upper bound.

Algorithm 2 single-pull UCB2.
1: Input α > 0.
2: For all k ∈ {1, . . . ,K}, initialize sk = 1.
3: Pull each arm once.
4: for t ≥ 1 do

5: Pull arm k that maximizes X
(k)

sk
+

√
(1+α)log( etsk

)

2sk
.

6: sk ← sk + 1.
7: end for

Theorem 1. The expected regret of single-pull UCB2 sat-
isfies

ERt ≤
∑

k,∆k>0

(
(1 + 80α)log(2et∆2

k)

2∆k
+
Cα
∆k

)
,

where Cα is a function of α.

Proof. This proof follows broadly the one of UCB2 (Auer
et al., 2002).
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Let r̂k be the largest integer such that r̂k ≤
(1+80α)log(2et∆2

k)

2∆2
k

+ 1.

T (k)(t) ≤ 1 +
∑
r≥1

I{k pulled more than r times}

≤ r̂k +
∑
r≥r̂k

I{k pulled more than r times} .

We define δ > 0 and εu,s =

√
(1+α)log( eus )

2s . Now consider
the following implications, where we use again that when a
suboptimal arm is played the optimal arm is underestimated
or a suboptimal arm is overestimated:

k has been pulled more than r times
⇒ k was pulled once when it was pulled r times,

at a time tk, when * was pulled s times ,

⇒ ∃s ≥ 1,∃tk ≥ r + s,X
(k)

r + εtk,r ≥ X
∗
s + εtk,s ,

⇒ ∃s ≥ 1,∃t′ ≥ r + s,X
∗
s + εt′,s ≤ µ∗ − δ

∆k

2

or ∃tk ≥ r,X
(k)

r + εtk,r ≥ µ∗ − δ
∆k

2
,

⇒ ∃s ≥ 1, X
∗
s + εr+s,s ≤ µ∗ − δ

∆k

2

or X
(k)

r + εt,r ≥ µ∗ − δ
∆k

2
,

where we used in the last inequality that for a given s the

function f : u 7→ εu+s,s =

√
(1+α)log( eus +e)

2s is increasing.

We get an upper bound for ET (k)(t),

ET (k)(t) ≤ r̂k +
∑
r≥r̂k

P{X(k)

r + εt,r ≥ µ∗ − δ
∆k

2
}

+
∑
r≥r̂k

P{∃s ≥ 1, X
∗
s + εr+s,s ≤ µ∗ − δ

∆k

2
} .

Since r̂k ≤ (1+80α)log(2et∆2
k)

2∆2
k

+ 1, with lemmas 2 and 3

with δ = α and η =
√

1+α
2 − 1, we get

ET (k)(t) ≤ (1 + 80α)log(2et∆2
k)

2∆2
k

+ 1 +
32

α2∆2
k

+
2(1 + α)3/2

α2∆2
k log( 1+α

2 )
.

Hence the result.

1.1. Experiments

The reward variables used are all Gaussian with variance
σ2 = 1/2. While the unique best arm will always have

mean 0, the gaps between this arm and the 9 suboptimal
amrs are the main parameters influencing the behaviour of
the algorithms and depend on the experiment.

Figure 1. Regrets of the algorithms in the equal gaps case, aver-
aged over 100 runs.

In the first case, reported in Figure 1, all 9 suboptimal arms
have the same gap ∆ = σ.

Figure 2. Regrets of the algorithms in the increasing gaps case,
averaged over 800 runs.

Figure 2 shows the results of an experiment with increasing
gaps: the 9 suboptimal arms have gaps increasing linearly
between σ and 3σ.
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2. FULL INFORMATION
Theorem 2. The expected regret of FTL in the full infor-
mation setting with K arms with equal gaps verifies for
t ≥ 1,

ERt ≤
2

∆
(2 + log(K − 1)) .

Proof. Let δ ∈ (0,∆). The value of δ will be chosen later.
The expected regret can be bounded as

ERt = ∆E[

t∑
s=1

I{Is 6=1}]

≤ ∆E[

∞∑
s=1

I{Is 6=1}]

= ∆

∞∑
s=1

P{∃k ∈ [2,K], X
(k)

s > X
(1)

s } .

The next inequality uses the following argument: if the
algorithm pulls a suboptimal arm then either the optimal
arm was underestimated or one of the suboptimal arms was
overestimated.

ERt ≤ ∆

∞∑
s=1

(
P{X(1)

s ≤ µ(1) − δ}+

P{∃k ∈ [2,K], X
(k)

s > µ(1) − δ}
)
.

By Hoeffding’s inequality,

∆

∞∑
s=1

P{X(1)

s ≤ µ(1) − δ} ≤ ∆

∞∑
s=1

exp(−2sδ2)

≤ ∆

2δ2
,

and

P{∃k ∈ [2,K], X
(k)

s > µ(1) − δ}

= 1− P{∀k ∈ [2,K], X
(k)

s ≤ µ(1) − δ}

= 1−
K∏
k=2

P{X(k)

s ≤ µ(1) − δ}

= 1−
K∏
k=2

(1− P{X(k)

s > µ(1) − δ})

= 1−
K∏
k=2

(1− P{X(k)

s − µ(1) + ∆ > ∆− δ})

≤ 1− (1− exp(−2s(∆− δ)2))K−1 .

For n ∈ N, let fn(s) = 1−(1−exp(−2s(∆−δ)2))n. The
bound on the regret can be written

ERt ≤
∆

2δ2
+ ∆

∞∑
s=1

fK−1(s) .

For n ≥ 1, f ′n(s) = 2n(∆− δ)2(−fn(s) + fn−1(s)). We
use it to compute the integral of fn,∫ +∞

0

fn(s)ds = − 1

2n(∆− δ)2

∫ +∞

0

f ′n(s)ds

+

∫ +∞

0

fn−1(s)ds

=
1

2n(∆− δ)2
+

∫ +∞

0

fn−1(s)ds

=

n∑
k=1

1

2k(∆− δ)2
.

Finally we can bound the regret as

ERt ≤
∆

2δ2
+ ∆

∞∑
s=1

fK−1(s)

≤ ∆

2δ2
+ ∆

∫ ∞
0

fK−1(s)ds

=
∆

2δ2
+

∆

2(∆− δ)2

K−1∑
k=1

1

k
.

Let SK =
∑K−1
k=1

1
k . The last expression is minimal for

δ = ∆

1+S
1/3
K

and gives the inequality

ERt ≤
1

2∆
(1 + S

1/3
K )3 .

With δ = ∆
2 , we get

ERt ≤
2

∆
(1 +

K−1∑
k=1

1

k
)

≤ 2

∆
(2 + log(K − 1)) .

This upper bound in logK
∆ naturally poses the question of a

possible matching lower bound, with the same dependency
in K. The question remains open.
Theorem 3. FTL in the full information setting with equal
gaps verifies verifies for t ≥ 1,

sup
∆

ERt ≤
√

2t(2 + log(K − 1)) .

Proof. First remark that the regret of any algorithm up to
time t with gaps ∆ is bounded by ∆t. Then for FTL, for
any ∆ > 0,

ERt ≤ min{ 2

∆
(2 + log(K − 1)),∆t}

≤
√

2t(2 + log(K − 1)) .
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3. MOSS-anytime

Algorithm 3 MOSS-anytime.
1: Input α > 0.
2: Pull each arm once.
3: For 1 ≤ k ≤ K, set sk = 1.
4: for t ≥ 1 do
5: Pull arm k that maximizes

6: X
(k)

sk
+

√
(1+α)

2

max(0,log( t
Ksk

))

sk
.

7: sk ← sk + 1.
8: end for

Theorem 4 (Upper bounds for MOSS-anytime). In the K
arms bandit setting, for α = 1.35, the expected regret of
MOSS-anytime verifies

ERt ≤ 75
K

∆min

(
log(

2t∆2
min

K
) + 1

)
+ ∆max

and

ERt ≤ 113
√
Kt+ ∆max .

Proof of Theorem 4. The beginning of this proof uses a de-
coupling of the arms inspired from the proof of the upper
bounds of MOSS (Audibert & Bubeck, 2010) but then de-
parts from it to control the probabilities of the suboptimal
pulls in an anytime fashion. In this second part, the critical
arguments are well chosen relative weights for the different
sources of regret, the use of Hoeffding’s maximal inequal-
ity and a peeling technique.

Let k0 be an integer in [1,K] that will be chosen later. Let

εt,s =

√
(1+α)

2

max(0,log( t
Ks ))

s be the exploration term of
the algorithm and δ > 0 a constant to be chosen later. For
k ∈ {k0 + 1, . . . ,K}, we define zk = µ∗ − δ∆k

2 , zk0 =
+∞ and zK+1 = 0. We will consider the smallest value
possibly taken by the index of the optimal arm after a time
t,

A∗t = min
s≥1

min
u≥t

X
∗
s + εu,s ,

and after r pulls of suboptimal arms,

B∗r = min
s≥1

min
u≥r+s

X
∗
s + εu,s .

Step 1: separating the events that the optimal arm is un-
derestimated or that a suboptimal arm is overestimated.
We allow a regret of ∆k0

at each stage,

ERt ≤ t∆k0
+ E[

K∑
k=k0+1

(∆k −∆k0
)T (k)(t)] .

We will bound the regret incurred for k > k0. We note πs
the arm pulled at time s.

ERt − t∆k0

≤ E[

K∑
k=k0+1

(∆k −∆k0)
∑
s≥0

I{k pulled at time s}]

≤ E[

K∑
k=k0+1

K∑
j=k0

(∆k −∆k0)
∑
s≥0

I{πs=k,A∗s∈[zj+1,zj)}]

≤
∑
s≥0

E[

K∑
j=k0

j∑
k=k0+1

(∆k −∆k0)I{πs=k,A∗s∈[zj+1,zj)}]

+
∑
s≥0

E[

K∑
j=k0

K∑
k=j+1

(∆k −∆k0
)I{πs=k,A∗s∈[zj+1,zj)}]

Here we get two sums: one quantifying the event that the
optimal arm is underestimated (against values depending
on the arms) and a second one quantifying the event that
one of the suboptimal arms is pulled even if the optimal
arm is not underestimated.

Step 2: bounding the probability that the optimal arm
is underestimated.

K∑
j=k0

j∑
k=k0+1

(∆k −∆k0
)I{πs=k,A∗s∈[zj+1,zj)}

≤
K∑

j=k0

j∑
k=k0+1

(∆j −∆k0
)I{πs=k,A∗s∈[zj+1,zj)}

=

K∑
j=k0

(∆j −∆k0
)I{A∗s∈[zj+1,zj)}

j∑
k=k0+1

I{πs=k}

≤
K∑

j=k0

(∆j −∆k0
)I{A∗s∈[zj+1,zj),πs∈[k0+1,K]} .

We now use I{A∗s∈[zj+1,zj)} = I{A∗s<zj} − I{A∗s<zj+1} and
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reorder the sum,

K∑
j=k0

(∆j −∆k0)I{A∗s∈[zj+1,zj),πs∈[k0+1,K]}

=

K∑
j=k0

(∆j −∆k0
)(I{A∗s<zj} − I{A∗s<zj+1})I{πs∈[k0+1,K]}

=

 K∑
j=k0

(∆j −∆k0)I{A∗s<zj}

−
K+1∑

j=k0+1

(∆j−1 −∆k0)I{A∗s<zj}

 I{πs∈[k0+1,K]}

= I{πs∈[k0+1,K]}

K∑
j=k0+1

(∆j −∆j−1)I{A∗s<zj}

We will rewrite the sum over s of such terms as a sum over
r, number of times that an arm in [k0 + 1,K] has been
pulled. Note that if we know that suboptimal arms were
pulled at least r times before a time s, we get A∗s ≥ B∗r .

∑
s≥0

I{πs∈[k0+1,K]}

K∑
k=k0+1

(∆k −∆k−1)I{A∗s<zk}

≤
∑
r≥0

K∑
k=k0+1

(∆k −∆k−1)I{B∗r<zk} .

Intuitively, for each r, this is of the form (∆kr −∆k0
) for

some kr ≥ k0 and is thus of the order of one ∆kr .

The sum describing the optimal arm is thus bounded as

E[
∑
r≥0

K∑
k=k0+1

(∆k −∆k−1)I{B∗r<zk}]

=
∑
r≥0

K∑
k=k0+1

(∆k −∆k−1)P{B∗r < zk}

≤
∑
r≥0

K∑
k=k0+1

(∆k−∆k−1)P{∃s≥1,∃t′≥r+s,X∗s+εt′,s<zk} .

We use the monotonicity of u 7→ εu,s to simplify the event,

∑
r≥0

K∑
k=k0+1

(∆k−∆k−1)P{∃s≥1,∃t′≥r+s,X∗s+εt′,s<zk}

≤
K∑

k=k0+1

(∆k −∆k−1)
∑
r≥0

P{∃s ≥ 1, X
∗
s + ε∗r+s,s < zk} .

Step 3: bounding the probability that a suboptimal arm
is overestimated.

K∑
j=k0

K∑
k=j+1

(∆k −∆k0
)I{πs=k,A∗s∈[zj+1,zj)}

=

K∑
k=k0+1

k−1∑
j=k0

(∆k −∆k0
)I{πs=k,A∗s∈[zj+1,zj)}

=

K∑
k=k0+1

(∆k −∆k0
)I{πs=k}

k−1∑
j=k0

I{A∗s∈[zj+1,zj)}

=

K∑
k=k0+1

(∆k −∆k0
)I{πs=k,A∗s≥zk}

As we did for the other sum, we replace the sum over the
time of such terms by sums over the number of pulls of the
arms. We denote by P (k)

r the event ”arm k was pulled for
the rth time”.

∑
s≥0

K∑
k=k0+1

(∆k−∆k0
)I{πs=k,A∗s≥zk}

≤
K∑

k=k0+1

(∆k−∆k0
)
∑
r≥0

I{P (k)
r , at time tr , andA∗tr≥zk}

≤
∑
r≥0

K∑
k=k0+1

(∆k−∆k0
)I{P (k)

r , at time tr , andX
(k)
r +εtr,r≥zk}

≤
∑
r≥0

K∑
k=k0+1

(∆k−∆k0
)I{P (k)

r and ∃t′≥r,X(k)
r +εt′,r≥zk}

≤
∑
r≥0

K∑
k=k0+1

(∆k−∆k0
)I{∃t′≥r,X(k)

r +εt′,r≥zk}
.

For this sum, for each r we get a sum that intuitively can
be of order

∑K
k=k0+1(∆k −∆k0

), that is roughly K times
larger than the sum depending on the optimal arm.

The sum describing the suboptimal arms is thus bounded
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as

E[
∑
r≥0

K∑
k=k0+1

(∆k −∆k0)I{∃t′≥r,X(k)
r +εt′,r≥zk}

]

=
∑
r≥0

K∑
k=k0+1

(∆k −∆k0
)P{∃t′ ≥ r,X(k)

r + εt′,r ≥ zk}

≤
∑
r≥0

K∑
k=k0+1

∆kP{∃t′ ≥ r,X
(k)

r + εt′,r ≥ zk}

≤
K∑

k=k0+1

∆k

∑
r≥0

P{X(k)

r + εt,r ≥ zk} ,

where we used the monotonicity of u 7→ εu,s in the last
inequality.

Step 4: Controlling the probabilities. Putting the two
previous steps together we get for the expected regret the
inequality

ERt ≤ t∆k0

+

K∑
k=k0+1

(∆k−∆k−1)
∑
r≥0

P{∃s≥1, X
∗
s+ε

∗
r+s,s<zk}

+

K∑
k=k0+1

∆k

∑
r≥0

P{X(k)

r + εt,r ≥ zk} .

The next step is to control the sums of probabilities, which
are small for r big enough. To this effect we cut the sums in
two, a first part for small r for which the probability is up-
per bounded by 1 and a second part for big r. As noted pre-
viously, intuitively the first sum tend to be K times smaller
than the second one. Thus we cut the sums at indices that
differ by a factor K.

Let r̃k be the largest integer such that r̃k ≤ K
2∆2

k
+ 1 and r̃′k

the largest integer such that r̃′k ≤
(1+80α)log(

2t∆2
k

K )

2∆2
k

.

ERt ≤ t∆k0
+

K∑
k=k0+1

(∆k−∆k−1)r̃k

+

K∑
k=k0+1

(∆k−∆k−1)
∑
r>r̃k

P{∃s≥1, X
∗
s+ε

∗
r+s,s<zk}

+

K∑
k=k0+1

∆kr̃
′
k +

K∑
k=k0+1

∆k

∑
r>r̃′k

P{X(k)

r +εt,r≥zk}

= t∆k0
+A+B + C +D ,

where A,B,C,D are the four sums of the previous lines.

Bounding term A. r̃k ≤ K
2∆2

k
+ 1 and thus

A ≤
K∑

k=k0+1

(∆k −∆k−1)(
K

2∆2
k

+ 1)

≤ ∆K +

K∑
k=k0+1

(∆k −∆k−1)
K

2∆2
k

≤ ∆K +
K

∆k0+1
.

Bounding term B. With lemma 4,

B ≤
K∑

k=k0+1

(∆k −∆k−1)
K

∆2
k

log(
2et∆2

k

K
)

4(1 + α)3/2

α2 log(1 + α)

We compute the sum,

K∑
k=k0+1

(∆k −∆k−1) log(
2et∆2

k

K
)

1

∆2
k

=

K∑
k=k0+2

(∆k −∆k−1) log(
2et∆2

k

K
)

1

∆2
k

+ log(
2et∆2

k0+1

K
)

1

∆2
k0+1

≤
∫ 1

∆k0+1

log(
2et

K
x2)

1

x2
dx+ log(

2et∆2
k0+1

K
)

1

∆2
k0+1

=

[
log(

2et

K
x2)

1

x
+

2

x

]∆k0+1

1

+ log(
2et∆2

k0+1

K
)

1

∆2
k0+1

≤ 2 log(
2et∆2

k0+1

K
)

1

∆k0+1
+

2

∆k0+1

= 2 log(
2t∆2

k0+1

K
)

1

∆k0+1
+

4

∆k0+1
.

Then we have

B ≤ 8(1 + α)

α2 log(1 + α)

(
log(

2t∆2
k0+1

K
)

K

∆k0+1
+

2K

∆k0+1

)

≤ 8(1 + α)

α2 log(1 + α)

(
log(

2t∆2
k0+1

K
)

K

∆k0+1
+

2K

∆k0+1

)

Bounding term C. r̃′k ≤
(1+80α)log(

2t∆2
k

K )

2∆2
k

and then

C ≤
K∑

k=k0+1

∆k

(1 + 80α)log(
2t∆2

k

K )

2∆2
k

≤ (1/2 + 40α)
K

∆k0+1
log(

2t∆2
k0+1

K
) .
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Bounding term D. Since for r > r̃′k, r >

(1+80α)log(
2t∆2

k
K )

2∆2
k

≥ 1
2∆2

k
, it is not difficult to see that

εt,r ≤ ∆k

√
1+α

1+80α and thus that lemma 2 applies.

D ≤
K∑

k=k0+1

32

α2∆k

≤ 32K

α2∆k0+1
.

Step 5: Putting things together. We get the following
bound for the regret, for any k0,

ERt ≤ t∆k0

+

(
8(1 + α)3/2

α2 log(1 + α)
+1/2+40α

)
K

∆k0+1
log(

2t∆2
k0+1

K
)

+

(
16(1 + α)3/2

α2 log(1 + α)
+1+

32

α2

)
K

∆k0+1
+ ∆K .

We can then get two particular upper-bounds. The first one
is obtained with k0 the number of the last optimal arm,

ERt ≤ Cα
K

∆min
log(

2t∆2
min

K
) + C ′α

K

∆min
+ ∆K ,

then one upper-bound independent of the distributions, by

taking k0 such that ∆k0 ≤
√

K
t < ∆k0+1 ,

ERt ≤
√
Kt(1 + Cα log(2) + C ′α) + ∆K .

The values of Cα and C ′α are

Cα =
8(1 + α)3/2

α2 log(1 + α)
+ 40α+ 1/2

C ′α =
16(1 + α)3/2

α2 log(1 + α)
+ 1 +

32

α2
.

For α = 1.35, the maximum value allowed by lemma 2,
Cα ≤ 75, C ′α ≤ 60 and (1 + Cα log(2) + C ′α) ≤ 113.
Hence the result.

4. Technical Lemmas
This section is dedicated to three bounds of quantities used
in the proofs for MOSS-anytime and single-pull UCB2.

Lemma 2 (Suboptimal arms). For k ∈ {1, . . . ,K},

+∞∑
r=0

P

{
X

(k)

r + ∆k

√
1 + α

1 + 80α
≥ µ∗ − α∆k

2

}
≤ 32

α2∆2
k

.

Proof.

P

{
X

(k)

r + ∆k

√
1 + α

1 + 80α
≥ µ∗ − α∆k

2

}

= P

{
X

(k)

r − µ(k) ≥ ∆k

(
1− α

2
−
√

1 + α

1 + 80α

)}

To be able to apply Hoeffding’s inequality, we need 1 −
α
2 −

√
1+α

1+80α ≥ 0. This is in particular true for α ≤ 1.35.

In this case (1− α
2 −

√
1+α

1+80α ) ≥ α
8 and

P{X(k)

r + ∆k

√
1 + α

1 + 80α
≥ µ∗ − δ∆k

2
}

≤ P{X(k)

r − µ(k) ≥ ∆k
α

8
} ≤ exp(−rα

2∆2
k

32
) .

Moreover,

∑
r≥1

P{X(k)

r + ∆k

√
1 + α

1 + 80α
≥ µ∗ − δ∆k

2
}

≤
∑
r≥1

exp(−rα
2∆2

k

32
) ≤

∑
r≥1

∫ r+1

r

exp(−xα
2∆2

k

32
) dx

≤
∫ +∞

0

exp(−xα
2∆2

k

32
) dx ≤ 32

α2∆2
k

.

Lemma 3 (Optimal arm bound for single-pull UCB2). For
δ > 0 and η ∈ (0,

√
1 + α− 1),

∑
r≥r̃′k

P
{
∃s ≥ 1, X

∗
s + εr+s,s ≤ µ∗ − δ

∆k

2

}

≤ 2(1 + η)3

δ2∆2
k log(1 + η)( 1+α

(1+η)2 − 1)

Proof. We start by working on
P
{
∃s ≥ 1, X

∗
s + εr+s,s ≤ µ∗ − δ∆k

2

}
and introduce

a time grid for the pulls of the optimal arm similar to the
τ(i) of the proof of UCB2 in (Auer et al., 2002). Let
η > 0.
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P
{
∃s ≥ 1, X

∗
s + εr+s,s ≤ µ∗ − δ

∆k

2

}
= P

{
∃s ≥ 1,

s∑
u=1

(X∗u − µ∗) ≤ −s(εr+s,s + δ
∆k

2
)

}

≤
∑
i≥1

P

{
∃s ∈ [(1 + η)i−1, (1 + η)i),

s∑
u=1

(X∗u − µ∗)

≤ −(1 + η)i−1(εr+(1+η)i,(1+η)i + δ
∆k

2
)

}
(where we used that for a given u the function

h : s 7→ εu+s,s =

√
(1+α)log( eus +e)

2s is decreasing)

≤
∑
i≥1

P

{
∃s ≤ (1 + η)i,

s∑
u=1

(X∗u − µ∗)

≤ −(1 + η)i−1(εr+(1+η)i,(1+η)i + δ
∆k

2
)

}
≤
∑
i≥1

exp

(
−2

(1 + η)2(i−1)

b(1 + η)ic
(
δ2∆2

k

4
+ ε2r+(1+η)i,(1+η)i)

)
(maximal Hoeffding’s inequality)

≤
∑
i≥1

exp

(
−(1 + η)i

1

(1 + η)2

δ2∆2
k

2

− 1 + α

(1 + η)2
log(e+

er

(1 + η)i
)

)

With η such that 1 + α > (1 + η)2, the sum of the proba-
bilities is then bounded as

∑
r≥r̃k

P
{
∃s ≥ 1, X

∗
s + εr+s,s ≤ µ∗ − δ

∆k

2

}

≤
∑
r≥r̃k

∑
i≥1

exp

(
−(1 + η)i

1

(1 + η)2

δ2∆2
k

2
−

1 + α

(1 + η)2
log(e+

er

(1 + η)i
)

)
=
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + η)2
)

×
∑
r≥r̃k

exp

(
− 1 + α

(1 + η)2
log(e+

er

(1 + η)i
)

)

≤
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + η)2
)

×
∑
r≥r̃k

(
1 +

r

(1 + η)i

)− 1+α

(1+η)2

≤
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + η)2
)

×
∫ +∞

0

(
1 +

x

(1 + η)i

)− 1+α

(1+η)2

dx

≤
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + η)2
)(1 + η)i

1
1+α

(1+η)2 − 1

≤ 1
1+α

(1+η)2 − 1

∑
i≥1

(1 + η)i exp(−(1 + η)i
δ2∆2

k

2(1 + η)2
) .

Let B =
δ2∆2

k

2(1+η)2 , then

∑
i≥1

(1 + η)i exp(−(1 + η)i
δ2∆2

k

2(1 + η)2
)

≤ (1 + η)

∫ +∞

0

(1 + η)x exp(−B(1 + η)x) dx

=
(1 + η)

log(1 + η)

∫ +∞

1

exp(−Bz) dz

=
e−B(1 + η)

B log(1 + η)

=
2(1 + η)3

δ2∆2
k log(1 + η)

exp

(
− δ2∆2

k

2(1 + η)2

)
≤ 2(1 + η)3

δ2∆2
k log(1 + η)

.

Hence the result.

Lemma 4 (Optimal arm bound for MOSS-anytime). For
any suboptimal arm k, for δ > 0,

∑
r>r̃k

P
{
∃s ≥ 1, X

∗
s + εr+s,s ≤ µ∗ − δ

∆k

2

}

≤ K

∆2
k

log(
2et∆2

k

K
)

4(1 + α)3/2

δ2 log(1 + α)

Proof. We want to bound a sum starting at r̃k + 1.
Here we use r̃k the largest integer such that r̃k ≤
K

2∆2
k

+ 1. Thus r̃k ≥ K
2∆2

k
. We start by working on

P
{
∃s ≥ 1, X

∗
s + εr+s,s ≤ µ∗ − δ∆k

2

}
for a fixed r. We

use a peeling argument and Hoeffding’s maximal inequal-
ity to control this probability. Let η =

√
1 + α − 1, such

that (1 + η)2 = (1 + α).

We recall the notation l̂og(x) = max(0, log(x)).
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P
{
∃s ≥ 1, X

∗
s + εr+s,s ≤ µ∗ − δ

∆k

2

}
= P

{
∃s ≥ 1,

s∑
u=1

(X∗u − µ∗) ≤ −s(εr+s,s + δ
∆k

2
)

}

≤
∑
i≥1

P

{
∃s ∈ [(1 + η)i−1, (1 + η)i),

s∑
u=1

(X∗u − µ∗)

≤ −(1 + η)i−1(εr+(1+η)i,(1+η)i + δ
∆k

2
)

}
(where we used that for a given u the function

h : s 7→ εu+s,s =

√
(1+α)l̂og( u

Ks+ 1
K )

2s is decreasing)

≤
∑
i≥1

P

{
∃s ≤ (1 + η)i,

s∑
u=1

(X∗u − µ∗)

≤ −(1 + η)i−1(εr+(1+η)i,(1+η)i + δ
∆k

2
)

}
≤
∑
i≥1

exp

(
−2

(1 + η)2(i−1)

b(1 + η)ic
(
δ2∆2

k

4
+ ε2r+(1+η)i,(1+η)i)

)
(maximal Hoeffding’s inequality)

≤
∑
i≥1

exp

(
−(1 + η)i

1

(1 + η)2

δ2∆2
k

2

− 1 + α

(1 + η)2
l̂og(

1

K
+

r

K(1 + η)i
)

)
.

Thus we can bound the sum of the probabilities,

∑
r >r̃k

P
{
∃s ≥ 1, X

∗
s + εr+s,s ≤ µ∗ − δ

∆k

2

}

≤
∑
r>r̃k

∑
i≥1

exp

(
−(1 + η)i

1

(1 + α)

δ2∆2
k

2

−l̂og(
1

K
+

r

K(1 + η)i
)

)
=
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

×
∑
r>r̃k

exp

(
−l̂og(

1

K
+

r

K(1 + η)i
)

)
.

Let ri be the smallest integer r such that 1
K + r

K(1+η)i ≥
1. ri is the smallest integer such that l̂og( 1

K +
r

K(1+η)i ) = log( 1
K + r

K(1+η)i ). For r < ri,

exp
(
−l̂og( 1

K + r
K(1+η)i )

)
= 1. We have ri ≤ (K −

1)(1 + η)i + 1 ≤ K(1 + η)i.

∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

×
∑
r>r̃k

exp

(
−l̂og(

1

K
+

r

K(1 + η)i
)

)

≤
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

×

ri +
∑

r≥max(ri,r̃k+1)

(
1

K
+

r

K(1 + η)i

)−1


≤
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

×

(
ri +

∫ t

r̃k

(
1

K
+

x

K(1 + η)i

)−1

dx

)
,

We use r̃k ≥ K
2∆2

k
and compute an upper bound for the

integral,

∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

×

(
ri +

∫ t

r̃k

(
1

K
+

x

K(1 + η)i

)−1

dx

)

≤
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

×

ri +

∫ t

K

2∆2
k

(
1

K
+

x

K(1 + η)i

)−1

dx


=
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

×

ri +K(1 + η)i
∫ t

K

2∆2
k

1

x+ (1 + η)i
dx


≤
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

×

ri +K(1 + η)i
∫ t

K

2∆2
k

1

x
dx


≤
∑
i≥1

exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

×
(
K(1 + η)i +K(1 + η)i log

2t∆2
k

K

)
= K log(

2et∆2
k

K
)
∑
i≥1

(1 + η)i exp(−(1 + η)i
δ2∆2

k

2(1 + α)
) .
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Let B =
δ2∆2

k

2(1+α) .

∑
i≥1

(1 + η)i exp(−(1 + η)i
δ2∆2

k

2(1 + α)
)

≤
∫ +∞

1

(1 + η)x exp(−B(1 + η)x−1) dx

≤ (1 + η)

∫ +∞

0

(1 + η)x exp(−B(1 + η)x) dx

=
1 + η

log(1 + η)

∫ +∞

1

exp(−Bz) dz, with z = (1 + η)x

=
e−B(1 + η)

B log(1 + η)

=
2(1 + α)3/2

δ2∆2
k log(1 + η)

exp

(
− δ2∆2

k

2(1 + α)3/2

)
≤ 4(1 + α)3/2

δ2∆2
k log(1 + α)

Thus we proved∑
r>r̃k

P
{
∃s ≥ 1, X

∗
s + εr+s,s ≤ µ∗ − δ

∆k

2

}

≤ K

∆2
k

log(
2et∆2

k

K
)

4(1 + α)3/2

δ2 log(1 + α)
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