K-Means Clustering with Distributed Dimensions (Supplement)

Hu Ding Huding@msu.edu

Computer Science and Engineering, Michigan State University, East Lansing, MI, USA

Yu Liu, Lingxiao Huang, Jian Li

LIUYUJYYZ@126.COM,

HUANGLINGXIAO1990@126.COM,LAPORDGE@GMAIL.COM

Institute for Interdisciplinary Information Science, Tsinghua University, Beijing, China

1. Proof of Theorem 4

Proof. It is easy to verify the communication cost, and thus we focus on the proof for the approximation ratio below.

Similar to the proof of Theorem 1, the grid G is rewritten as $\{g_1, \cdots, g_m\}$ where $m = (k+z)^T$, and for each g_j , its corresponding intersection $\bigcap_{l=1}^T \mathcal{M}_{i_l}^l$ is rewritten as S_j . Meanwhile, we denote the index-set indicating the outliers obtained by our algorithm as Z. Furthermore, we denote the optimal k cluster centers as $\{c_1^\star, \cdots, c_k^\star\}$ and the index-set indicating the outliers in the optimal solution as Z_{opt} . We have the same definitions for $\mathcal{N}(p_i)$ and $\mathcal{N}^G(g_j)$ from the proof of Theorem 1 as well.

Also, we denote by $\Gamma(Z) = \sum_{j=1}^{(k+z)^T} \sum_{i \in S_j \setminus Z} \|p_i - \mathcal{N}^G(g_j)\|^2$ the cost of our solution, by $\Gamma_{opt}(Z) = \sum_{i \in [n] \setminus Z} \|p_i - \mathcal{N}(p_i)\|^2$ the cost of the optimal solution. Let $\sum_{j=1}^{(k+z)^T} \sum_{i \in S_j \setminus Z} \|p_i - g_j\|^2$ be $\Gamma_a(Z)$, and $\sum_{j=1}^{(k+z)^T} |S_j \setminus Z| \|g_j - \mathcal{N}^G(g_j)\|^2$ be $\Gamma_b(Z)$, respectively.

Using the similar manner of proving the inequality (2) in our paper, we have

$$\Gamma(Z) \le \Gamma_a(Z) + \Gamma_b(Z) + 2\sqrt{\Gamma_a(Z)\Gamma_b(Z)}.$$
 (1)

Similar to (3) and (4) in our paper, we have

$$\Gamma_{b}(Z) = \sum_{j=1}^{(k+z)^{T}} |S_{j} \setminus Z| \|g_{j} - \mathcal{N}^{G}(g_{j})\|^{2}$$

$$= \sum_{j=1}^{(k+z)^{T}} \sum_{i \in S_{j} \setminus Z} \|g_{j} - \mathcal{N}^{G}(g_{j})\|^{2}$$

$$\leq \lambda \sum_{i=1}^{(k+z)^{T}} \sum_{i \in S_{i} \setminus Z} \|g_{j} - \mathcal{N}(p_{i})\|^{2}, \quad (2)$$

and each

$$||g_j - \mathcal{N}(p_i)||^2 \le 2||g_j - p_i||^2 + 2||p_i - \mathcal{N}(p_i)||^2.$$
 (3)

Note that the outliers Z are obtained by running the algorithm on the multi-set $\{g_j \mid 1 \leq j \leq m\}$ while Z_{opt} is for the point-set P, and thus the inequality of (2) holds. Consequently,

$$\Gamma_b(Z) \le 2\lambda(\Gamma_a(Z_{opt}) + \Gamma_{opt}(Z_{opt})).$$
 (4)

Note $\Gamma_a(Z_{opt})$ and $\Gamma_{opt}(Z_{opt})$ are similar defined as $\Gamma_a(Z)$ and $\Gamma_{opt}(Z_{opt})$ but just replacing Z by Z_{opt} . Through (1) and (4), we know that the objective value obtained by our algorithm,

$$\Gamma(Z) = \sum_{j=1}^{(k+z)^T} \sum_{i \in S_j \setminus Z} \|p_i - \mathcal{N}^G(g_j)\|^2$$

$$\leq \Gamma_a(Z) + 2\lambda(\Gamma_a(Z_{opt}) + \Gamma_{opt}(Z_{opt}))$$

$$+2\sqrt{2\lambda\Gamma_a(Z)(\Gamma_a(Z_{opt}) + \Gamma_{opt}(Z_{opt}))}. (5)$$

It is easy to know that both

$$\Gamma_{a}(Z) = \sum_{j=1}^{(k+z)^{T}} \sum_{i \in S_{j} \setminus Z} \|p_{i} - g_{j}\|^{2}$$
and
$$\Gamma_{a}(Z_{opt}) = \sum_{j=1}^{(k+z)^{T}} \sum_{i \in S_{j} \setminus Z_{opt}} \|p_{i} - g_{j}\|^{2}$$

are no more than $\sum_{j=1}^{(k+z)^T} \sum_{i \in S_j} \|g_j - p_i\|^2$. Based on the same argument for (7) in our paper, we have that

$$\sum_{j=1}^{(k+z)^{T}} \sum_{i \in S_{j}} \|g_{j} - p_{i}\|^{2} \leq \lambda \sum_{i \in [n] \setminus Z_{opt}} \|p_{i} - \mathcal{N}(p_{i})\|^{2}$$

$$= \lambda \Gamma_{opt}(Z_{opt}), \tag{6}$$

which implies both $\Gamma_a(Z)$ and $\Gamma_a(Z_{opt})$ are no more than $\lambda \Gamma_{opt}(Z_{opt})$. Overall, we have $\Gamma(Z) \leq (2\lambda^2 + 3\lambda + 2\lambda\sqrt{2(\lambda+1)})\Gamma_{opt}(Z_{opt})$ from (5) which completes the proof. \square

2. Lower Bound

In this section, we provide a lower bound of the communication cost for k-means problem with distributed dimensions. In fact, the lower bound even holds for the special case where the l-th party holds the l-th column. We denote by k- $Means_{n,T}$ the problem where there are T parties and n points in \mathbb{R}^T , and we want to compute k-means in the server. We prove a lower bound of $\Omega(n \cdot T)$ for k- $Means_{n,T}$ (for achieving any finite approximation ratio) by a reduction from the set disjointness problem (Chattopadhyay & Pitassi, 2010). We first need the following two definitions.

Definition 1. (see e.g., (Chattopadhyay & Pitassi, 2010)) The set disjointness problem (DISJ_{n,T}): There are T parties, each holding a set $P_l \subseteq [n]$, and their goal is to determine whether the intersection $\cap_{l=1}^T P_l$ is empty or not. An DISJ_{n,T} instance can be equivalently encoded as a matrix $P \in \{0,1\}^{n \times T}$, and the l-th party holds the l-th column (encoding its subset P_l). The objective is to determine whether there is a row 1^T .

Definition 2. Let Π be a protocol for solving a problem \mathcal{P} . The error of Π is given by $\max_X \Pr[$ the server outputs an incorrect answer following the input distribution X], where the max is over all problem instances the probability is taken over the private randomness of the server and the parties. We denote by $CC_{\delta}(\mathcal{P})$ the minimum communication complexity of any randomized protocol Π that solves \mathcal{P} with error at most δ .

We need the following lower bound for $DISJ_{n,T}$, established by (Braverman et al., 2013).

Lemma 1. (Braverman et al., 2013) For any $\delta > 0, n \ge 1$ and $T = \Omega(\log n)$, we have $CC_{\delta}(\mathsf{DISJ}_{n,T}) = \Omega(n \cdot T)$.

Theorem 1. For any $\delta > 0$ and $T = \Theta(\log n)$, $CC_{\delta}((2^T - 1) - \text{Means}_{n+2^T-1,T}) = \Omega(n \cdot T)$.

Proof. We prove the theorem by a reduction from DISJ $_{n,T}$. For any instance $P \in \mathsf{DISJ}_{n,T}$, we construct an instance $\hat{P} \in (2^T - 1)$ -Means $_{n+2^T-1,T}$ as follows. For the first n rows, let $\hat{p}_i^l = p_i^l$ for any $1 \le l \le T, 1 \le i \le n$. For the rest $2^T - 1$ rows, we let the (n+j)-th row be j-1 (in binary) for $1 \le j \le 2^T - 1$. See Figure 1 for the construction.

Note that the last 2^T-1 rows represent 2^T-1 distinct points. Hence, the value of (2^T-1) -Means $_{n+2^T-1,T}$ for \hat{P} is not 0, if and only if the point 1^T appears in P, which is equivalent to the fact that $\mathsf{DISJ}_{n,T}$ for P is not empty. Thus, any δ -error randomized protocol Π for (2^T-1) -Means $_{n+2^T-1,T}$ problem with finite approximation guarantee can be used as a δ -error randomized protocol for $\mathsf{DISJ}_{n,T}$ problem. We have $CC_\delta((2^T-1)$ -Means $_{n+2^T-1,T}) \geq CC_\delta(\mathsf{DISJ}_{n,T})$. Then by Lemma 1, we prove the theorem. \square

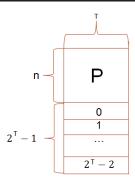


Figure 1. The construction of \hat{P}

References

Braverman, Mark, Ellen, Faith, Oshman, Rotem, Pitassi, Toniann, and Vaikuntanathan, Vinod. A tight bound for set disjointness in the message-passing model. In *Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on*, pp. 668–677. IEEE, 2013.

Chattopadhyay, Arkadev and Pitassi, Toniann. The story of set disjointness. *ACM SIGACT News*, 41(3):59–85, 2010.