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1. Proof of Theorem 4

Proof. 1tis easy to verify the communication cost, and thus
we focus on the proof for the approximation ratio below.

Similar to the proof of Theorem 1, the grid G is rewritten
as {g1, -+ ,gm} where m = (k + 2)T, and for each g;,
its corresponding intersection ﬂszl Mél is rewritten as S;.
Meanwhile, we denote the index-set indicating the outliers
obtained by our algorithm as Z. Furthermore, we denote
the optimal % cluster centers as {c7, - - - , ¢} } and the index-
set indicating the outliers in the optimal solution as Z,;.
We have the same definitions for A'(p;) and N'¢(g;) from
the proof of Theorem 1 as well.

Also, we denote by I'(Z) = 7= Hz) Piesz llpi —

N (g;)||* the cost of our solutlon by Top(Z2) =
Yicpz Ilpi — N(p ;)||? the cost of the optimal solu-

tion. Let Z Hz) Dies\z |lpi — g4l be Tu(Z), and
Z(k+z 1S;\ Z||lg; — N€(g;)||? be T'y(Z), respectively.

Using the similar manner of proving the inequality (2) in
our paper, we have

T(Z) <T.(2)+Tuw(Z

)+ 2T (D)TW(Z (1)

Similar to (3) and (4) in our paper, we have

(k+2)"
TW(2) = > 15\ Zllg; =N (gl
=1
(k+2)T
= > > g =Nl
Jj=1 ieS;\z
(k+2)T
< AY Y g NP @
J=1 i€S;\Zopt
and each
lg; = N)lI? < 2llg; — pill® + 2llpi = N (@) |I>. 3)

Note that the outliers Z are obtained by running the algo-
rithm on the multi-set {g; | 1 < j < m} while Z,,, is
for the point-set P, and thus the inequality of (2) holds.
Consequently,

Fb(Z) S 2)\(Fa(Zopt) + Fopt(Zopt))~ (4)

Note I (Zopt) and I'ypt (Zope ) are similar defined as ', (2)
and Tt (Z,pt ) but just replacing Z by Z,,,. Through (1)
and (4), we know that the objective value obtained by our
algorithm,

(k+2)T

SN e = NCg)I?

Jj=1 ieS;\Z
S FG(Z) + 2)‘(Fa(Zopt) + Fopt(Zopt))

+2\/2)‘Fa(Z)(Fa(ZOPt) +F0pt( om)) (5)

It is easy to know that both

I(Z) =

k+z)T

= > > lpi—gl?

j=1 4ieS;\Z

(k+z)T

= > > Ipi-gl?

J=1 i€8;\Zopt

and Zopt)

are no more than Z(]HZ) > ies, 19 —pil|*. Based on the
same argument for (7) in our paper, we have that

(k+2)"
S g el < X DD e =N
Jj=1 4€S; i€[n]\Zopt

= AFOpt(ZOpt)v (6)

which implies both I',(Z) and I',(Z,:) are no more than
AL opt(Zopt). Overall, we have I'(Z) < (2A\% + 3)\ +

22/ 2(A + 1))Topi(Zopt) from (5) which completes the
proof. []
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2. Lower Bound

In this section, we provide a lower bound of the commu-
nication cost for k-means problem with distributed dimen-
sions. In fact, the lower bound even holds for the special
case where the [-th party holds the [-th column. We de-
note by k-Means,, T the problem where there are 1" par-
ties and n points in R”, and we want to compute k-means
in the server. We prove a lower bound of Q(n - T') for k-
Means,, 7 (for achieving any finite approximation ratio)
by a reduction from the set disjointness problem (Chat-
topadhyay & Pitassi, 2010). We first need the following
two definitions.

Definition 1. (see e.g., (Chattopadhyay & Pitassi, 2010))
The set disjointness problem (DIS),, 7): There are T par-
ties, each holding a set P, C [n], and their goal is to de-
termine whether the intersection N}_, P, is empty or not.
An DISJ,, 1 instance can be equivalently encoded as a ma-
trix P € {0,1}"*T, and the I-th party holds the l-th col-
umn (encoding its subset P;). The objective is to determine
whether there is a row 17

Definition 2. Let I be a protocol for solving a problem
‘P. The error of 11 is given by maxx Pr[the server outputs
an incorrect answer following the input distribution X ],
where the max is over all problem instances the probability
is taken over the private randomness of the server and the
parties. We denote by CCs('P) the minimum communica-
tion complexity of any randomized protocol 11 that solves
‘P with error at most 6.

We need the following lower bound for DISJ,, 7, estab-
lished by (Braverman et al., 2013).

Lemma 1. (Braverman et al., 2013) For any § > 0,n > 1
and T = Q(log n), we have CC5(DISJ,, 1) = Q(n-T).
Theorem 1. Forany§ > 0and T = ©(logn), CCs((2T —
1)-Means,, i or_1 1) = Q(n-T).

Proof. We prove the theorem by a reduction from DISJ,, 7.
For any instance P € DISJ,, r, we construct an instance
Pe (2T — 1)-Means,, o7 _1 7 as follows. For the first n
TOwWS, letﬁé = pli forany 1 <1 < T,1 < i < n. For the rest
2T — 1 rows, we let the (n + j)-th row be j — 1 (in binary)
forl1 <j < 2T _ 1. See Figure 1 for the construction.

Note that the last 27 — 1 rows represent 27 — 1 distinct
points. Hence, the value of (2T — 1)-Meansn+2T_17T
for P is not 0, if and only if the point 17" appears in
P, which is equivalent to the fact that DISJ,, r for P is
not empty. Thus, any J-error randomized protocol II for
(27 — 1)-Means,, 7 7 problem with finite approxima-
tion guarantee can be used as a d-error randomized pro-
tocol for DISJ,, 7 problem. We have CCs((27 — 1)-
Means,,or_1 1) > CCs(DISJ;, 7). Then by Lemma 1,
we prove the theorem. []
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Figure 1. The construction of P
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