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1. Proof of Theorem 4
Proof. It is easy to verify the communication cost, and thus
we focus on the proof for the approximation ratio below.

Similar to the proof of Theorem 1, the grid G is rewritten
as {g1, · · · , gm} where m = (k + z)T , and for each gj ,
its corresponding intersection

⋂T
l=1Ml

il
is rewritten as Sj .

Meanwhile, we denote the index-set indicating the outliers
obtained by our algorithm as Z. Furthermore, we denote
the optimal k cluster centers as {c?1, · · · , c?k} and the index-
set indicating the outliers in the optimal solution as Zopt.
We have the same definitions for N (pi) and NG(gj) from
the proof of Theorem 1 as well.

Also, we denote by Γ(Z) =
∑(k+z)T

j=1

∑
i∈Sj\Z ‖pi −

NG(gj)‖2 the cost of our solution, by Γopt(Z) =∑
i∈[n]\Z ‖pi − N (pi)‖2 the cost of the optimal solu-

tion. Let
∑(k+z)T

j=1

∑
i∈Sj\Z ‖pi − gj‖2 be Γa(Z), and∑(k+z)T

j=1 |Sj \Z|‖gj −NG(gj)‖2 be Γb(Z), respectively.

Using the similar manner of proving the inequality (2) in
our paper, we have

Γ(Z) ≤ Γa(Z) + Γb(Z) + 2
√

Γa(Z)Γb(Z). (1)

Similar to (3) and (4) in our paper, we have

Γb(Z) =

(k+z)T∑
j=1

|Sj \ Z|‖gj −NG(gj)‖2

=

(k+z)T∑
j=1

∑
i∈Sj\Z

‖gj −NG(gj)‖2

≤ λ

(k+z)T∑
j=1

∑
i∈Sj\Zopt

‖gj −N (pi)‖2, (2)

and each

‖gj −N (pi)‖2 ≤ 2‖gj − pi‖2 + 2‖pi −N (pi)‖2. (3)

Note that the outliers Z are obtained by running the algo-
rithm on the multi-set {gj | 1 ≤ j ≤ m} while Zopt is
for the point-set P , and thus the inequality of (2) holds.
Consequently,

Γb(Z) ≤ 2λ(Γa(Zopt) + Γopt(Zopt)). (4)

Note Γa(Zopt) and Γopt(Zopt) are similar defined as Γa(Z)
and Γopt(Zopt) but just replacing Z by Zopt. Through (1)
and (4), we know that the objective value obtained by our
algorithm,

Γ(Z) =

(k+z)T∑
j=1

∑
i∈Sj\Z

‖pi −NG(gj)‖2

≤ Γa(Z) + 2λ(Γa(Zopt) + Γopt(Zopt))

+2
√

2λΓa(Z)(Γa(Zopt) + Γopt(Zopt)). (5)

It is easy to know that both

Γa(Z) =

(k+z)T∑
j=1

∑
i∈Sj\Z

‖pi − gj‖2

and Γa(Zopt) =

(k+z)T∑
j=1

∑
i∈Sj\Zopt

‖pi − gj‖2

are no more than
∑(k+z)T

j=1

∑
i∈Sj
‖gj−pi‖2. Based on the

same argument for (7) in our paper, we have that

(k+z)T∑
j=1

∑
i∈Sj

‖gj − pi‖2 ≤ λ
∑

i∈[n]\Zopt

‖pi −N (pi)‖2

= λΓopt(Zopt), (6)

which implies both Γa(Z) and Γa(Zopt) are no more than
λΓopt(Zopt). Overall, we have Γ(Z) ≤ (2λ2 + 3λ +

2λ
√

2(λ+ 1))Γopt(Zopt) from (5) which completes the
proof.
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2. Lower Bound
In this section, we provide a lower bound of the commu-
nication cost for k-means problem with distributed dimen-
sions. In fact, the lower bound even holds for the special
case where the l-th party holds the l-th column. We de-
note by k-Meansn,T the problem where there are T par-
ties and n points in RT , and we want to compute k-means
in the server. We prove a lower bound of Ω(n · T ) for k-
Meansn,T (for achieving any finite approximation ratio)
by a reduction from the set disjointness problem (Chat-
topadhyay & Pitassi, 2010). We first need the following
two definitions.

Definition 1. (see e.g., (Chattopadhyay & Pitassi, 2010))
The set disjointness problem (DISJn,T ): There are T par-
ties, each holding a set Pl ⊆ [n], and their goal is to de-
termine whether the intersection ∩Tl=1Pl is empty or not.
An DISJn,T instance can be equivalently encoded as a ma-
trix P ∈ {0, 1}n×T , and the l-th party holds the l-th col-
umn (encoding its subset Pl). The objective is to determine
whether there is a row 1T .

Definition 2. Let Π be a protocol for solving a problem
P . The error of Π is given by maxX Pr[the server outputs
an incorrect answer following the input distribution X],
where the max is over all problem instances the probability
is taken over the private randomness of the server and the
parties. We denote by CCδ(P) the minimum communica-
tion complexity of any randomized protocol Π that solves
P with error at most δ.

We need the following lower bound for DISJn,T , estab-
lished by (Braverman et al., 2013).

Lemma 1. (Braverman et al., 2013) For any δ > 0, n ≥ 1
and T = Ω(log n), we have CCδ(DISJn,T ) = Ω(n · T ).
Theorem 1. For any δ > 0 and T = Θ(log n),CCδ((2T−
1)-Meansn+2T−1,T ) = Ω(n · T ).

Proof. We prove the theorem by a reduction from DISJn,T .
For any instance P ∈ DISJn,T , we construct an instance
P̂ ∈ (2T − 1)-Meansn+2T−1,T as follows. For the first n
rows, let p̂li = pli for any 1 ≤ l ≤ T, 1 ≤ i ≤ n. For the rest
2T − 1 rows, we let the (n+ j)-th row be j − 1 (in binary)
for 1 ≤ j ≤ 2T − 1. See Figure 1 for the construction.

Note that the last 2T − 1 rows represent 2T − 1 distinct
points. Hence, the value of (2T − 1)-Meansn+2T−1,T
for P̂ is not 0, if and only if the point 1T appears in
P , which is equivalent to the fact that DISJn,T for P is
not empty. Thus, any δ-error randomized protocol Π for
(2T − 1)-Meansn+2T−1,T problem with finite approxima-
tion guarantee can be used as a δ-error randomized pro-
tocol for DISJn,T problem. We have CCδ((2

T − 1)-
Meansn+2T−1,T ) ≥ CCδ(DISJn,T ). Then by Lemma 1,
we prove the theorem.

Figure 1. The construction of P̂
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