
Pliable rejection sampling

A. Proofs of the main results
A.1. Proof of Theorem 1

Using Assumptions 1 and 2 and the fact that k · k
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Therefore, by Bernstein’s inequality, for any x 2 [0, A]d, we know that with probability larger than 1� �
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for n large enough with respect to �.
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By Equations 4 and 5, we have for any x 2 [0, A]d, with probability larger than 1� �, that
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Let ⇠ be the event of probability larger than 1 � � where this is satisfied. Let y 2 [0, A]d. Then, there exists x 2 X such
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B. Extension to densities with unbounded support
In this part of the appendix, we extend our method to densities that do not have a compact support. For the sake of clarity,
we assume that f is normalized here. In fact, we have already shown how to deal with the unnormalized case in the
Section 3, where the normalization constant is estimated by a Monte-Carlo sum over the same samples used to estimate f .

Assumption 3 (Assumption on the density). The density f , defined on Rd, is sub-Gaussian, i.e., there exist constants
c, c0 > 0 such that the density f satisfies for any x 2 Rd
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Moreover, f can be uniformly expanded by a Taylor expansion in any point up to degree s for some 0 < s  2, i.e., there
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The above assumption means that the tails of f are sub-Gaussian, and also that f is in a Hölder ball of smoothness s. Note
that a bounded function f with a compact support in Rd is sub-Gaussian. The fact that f is in a Hölder ball of smoothnes s
is also not very restrictive, in particular for a small s.

B.1. Uniform bounds for kernel density estimation
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Theorem 3. Assume that Assumptions 2 and 3 hold with 0 < s  2, C,C 0, C 00, c, c0, c00 > 0, and " > 0. The estimate ˜f is
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Theorem 3 provides a uniform bound on the error of ˜f on a large centered ball of radius log n denoted by B
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B.2. Proof of Theorem 3

By Assumptions 2 and 3, similarly to the starting point of proof of Theorem 1 (see Appendix A), we have that for any
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for n large enough with respect to �.

By Equations 9 and 10, we thus know that for any x 2 Rd, with probability larger than 1� �,
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and for v > 3/" log(1 + 1/(C 00c)), we get ��� bf(x)� bf(y)
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B.3. Extended pliable rejection sampling

Our modified algorithm, extended pliable rejection sampling (EPRS), aims at sampling as many i.i.d. points distributed
according to f as possible with a fixed budget of evaluations of f . It consists of three main steps: (i) a first rejection
sampling step where it generates bN initial samples from f by rejection sampling using an initial proposal. Then, (ii)
EPRS uses these samples to estimate f by a kernel density estimation method. Finally, (iii) EPRS uses the newly obtained
estimate, plus a uniform bound on it, as a new extended pliable proposal for rejection sampling. Since this pliable proposal
is closer to the target density than the initial proposal, the rejection sampling will reject significantly fewer points by using
it. Our EPRS method is described as Algorithm 2.

As mentioned, our method makes use of an initial proposal density g that must satisfy the following properties with respect
to the target density.

Assumption 4 (Assumption on the initial proposal). Let M > 0. We have

f  Mg.

Furthermore, the density g is sub-Gaussian, i.e., there exist constants a, a0 > 0 such that the density g defined on Rd
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¯N is actually a high probability lower bound of bN given by our algorithm (it is the number of samples obtained by the
initial rejection sampling step). T

s

is the number of calls needed for the first estimation step that will optimize the number
of accepted samples in the second step.
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is the uniform distribution on B
d

(log(n)), and ˜f the estimate of f defined in (8).

Algorithm 2 Extended pliable rejection sampling (EPRS)
Parameters: s, n, �, H g, and M .
Initial sampling

Draw T
s

samples at random according to g, and evaluate f on them
Estimation of f

Perform rejection sampling on the samples using M as the constant
Obtain this way bN samples from f
Estimate f by ˜f on these bN samples (Section B.1)

Generating the sample
Sample n� T

s

samples from the pliable proposal ĝ?
Perform rejection sampling on these samples using 1 + r

¯

N

/V
n

+Mḡ
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as a constant
Obtain this way bn samples from f

Output: Return the bn samples.

Theorem 4. Assume that Assumptions 2, 3, and 4 hold with 0 < s  2, g, M > 0, and that H
E

> 0 is an upper bound on
the constant H
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defined in Theorem 3 (applied to f and ˜f ). The number bn of samples generated in an i.i.d. way according
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B.4. Proof of Theorem 4
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for n (and thus ¯N ) large enough.

By definition of rejection sampling, the probability of accepting a sample is exactly 1/M , where M is the upper bound
used in the rejection sampling (provided that f  Mg). Therefore, and since the first rejection sampling step uses T
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independent Bernoulli random variables of parameter 1/M . Thus, we have with probability
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Let us write ⇠0 for the event where this happens. On ⇠0, we have by Theorem 3 (end of the proof) that with probability
larger than 1� �, for any x 2 Rd
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. We thus have that on ⇠, with probability larger than 1� �,

bn � (n� T
s

)

1

1 + r
¯

N

+Mḡ
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