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Abstract

This paper illustrates a novel approach to the es-
timation of generalization error of decision tree
classifiers. We set out the study of decision tree
errors in the context of consistency analysis the-
ory, which proved that the Bayes error can be
achieved only if when the number of data sam-
ples thrown into each leaf node goes to infin-
ity. For the more challenging and practical case
where the sample size is finite or small, a novel
sampling error term is introduced in this paper to
cope with the small sample problem effectively
and efficiently. Extensive experimental results
show that the proposed error estimate is superior
to the well-known K-fold cross validation meth-
ods in terms of robustness and accuracy. More-
over it is orders of magnitudes more efficient than
cross validation methods.

1. Introduction
The aim of decision tree classifier learning is to construct
a tree-based predictive model which maps unseen data ob-
servations to designated class labels. Often the learning
process is driven by fitting a given set of training data and
corresponding class labels with recursively partitioned leaf
nodes e.g. as in (Breiman et al., 1984). While in recent
years a number of learning approaches have demonstrated
more advanced features and superior performances than de-
cision tree approaches, the study of fundamental learning
mechanisms of decision trees still give deep insights into
the driving force of advanced learning algorithms e.g. ran-
dom forest (Breiman, 2001). In particular the estimation of
the probability of classification errors on unseen data i.e.
the generalization error of a learned decision tree is of the
utmost importance.

It is well known that the generalization error of any learning
rules is bounded below by the Bayes error or Bayes risk. It
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is also shown by Theorem 6.1 of (Devroye et al., 1996)
that the Bayes error is achieved for decision tree classifiers
if two conditions are satisfied: 1) the diameter of decision
tree leaf node cells decreases to infinitesimal, and 2) the
number of observations thrown into each leaf node goes
to infinity. While the asymptotic performance of a learned
decision tree is guaranteed by the Theorem, in this article
we address the open issue of how to estimate the general-
ization error when above two conditions are not fulfilled.
The goal to make estimation under such circumstances is
motivated by the unfortunate facts that a) the number of
data samples is often limited in practice, and b) even for
large datasets with millions of samples the small sample
problem may still persist in certain leaf nodes attached to
exceedingly long branches.

This paper shows that by applying the consistency analy-
sis theory, one is able to decompose the upper bound of
generalization error into the quantized Bayes error and the
sampling error. We prove that the quantized Bayes error is
the minimal error bound that one can reach for a given set
of partitioning leaf nodes, no matter how node-wise class
posteriors are actually estimated. The upper bound of the
sampling error, on the other hand, is related to variances
and biases of estimated node-wise class posteriors, and in-
versely depends on the number of data samples thrown into
each leaf nodes. The resultant generalization error esti-
mate, without resorting to explicit complexity analysis of
tree models, can be readily used to prevent overfitting of
deep decision trees.

It was shown on ten benchmark datasets that the proposed
generalization error estimate compared favourably with the
well-known K-fold cross validation methods in terms of
both robustness and accuracy (see Figure 1 for a sum-
marized comparison). Moreover the proposed method is
orders of magnitudes more efficient than cross validation
methods, since repeated training of decision trees on vali-
dation datasets is no longer needed.

The layout of this paper is as follows. Section 2 reviews
related K-fold cross validation methods, and model com-
plexity based error bounds. Section 3 lays down theoretic
foundation for the proposed generalization error estimate
from a consistency analysis point of view. Section 4 com-
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Figure 1. Summarized performance comparison of the proposed method (“jeff”) vs K-fold cross validation methods (“cv?”). X-axis
shows the varying ratio {0.1, 0.3, 0.5, 0.7, 0.9} of the number of training samples over the total number of dataset samples. Left: Y-axis
shows Mean Squared Error between the estimated errors with respect to the errors measured with ground truth labels. Lower MSEs
correspond to more accurate error estimation, and lower standard deviations of MSEs (denoted by error bars) manifest more robust
estimation. Center: Y-axis shows Pearson Correlation (PE) between the estimated errors with respect to the measured errors. Higher
PEs are more favourable for the sake of parameter selection. Right: Y-axis shows the logarithm of running time of different methods as
well as that of training and testing stages. Note that above plots are averaged over ten benchmark datasets (see Table 4.1).

pares the proposed error estimation with the well known
K-fold cross validation method, followed by conclusive re-
marks in Section 5 and proof of propositions in appendix.

2. Related Work
A number of error bounds were used to prune decision
trees and these bounds often consist of two additive error
terms: 1) the empirical error on the training set samples
and 2) penalties on model complexities. A large variety
of model complexity penalty terms have been proposed in
the literature, such as structure complexities of subtrees in
(Kearns & Mansour, 1998), tighter bound depending on
the length of concept class encoding strings in (Mansour
& McAllester, 2000), data-dependent complexities of hy-
pothesis class in (Freund, 1998), tree structure based micro-
choice bounds in (Langford & Blum, 2000), Rademacher
complexity based bounds in (Bartlett & Mendelson, 2003;
Kääriäinen & Elomaa, 2003) and sample compression and
Occam’s Razor bounds in (Shah, 2007). The theoretic
foundation for integrating these complexity terms with em-
pirical training error is not fully understood though. In this
paper we provide a novel and theoretically sound justifica-
tion in light of reduced sampling errors.

In the context of consistency analysis theory, it was shown
in (Devroye et al., 1996) that a variety of decision tree clas-
sifiers are in general consistent for all possible distributions
of data points (see Chpt 6, 20 and 21). This consistency
analysis also lays down theoretic foundation for us to in-
vestigate generalization error when only finite number of
data samples are used in learning. Unfortunately it turns
out no general classification rules can reach the Bayes er-
ror under this circumstance (see Chap 7 in (Devroye et al.,
1996)). As shown in Section 3.2.2 of this paper, sampling
errors ascribed to the small sample problem can be taken

into account in a data-dependent manner.

The practical generalization error estimation techniques in-
clude the well-known bootstrap in (Efron & Tibshirani,
1993) and cross validation in (Stone, 1997). In particular
K-fold cross validation had demonstrated superior empir-
ical performances for various applications e.g. for linear
regression feature selection in (Breiman & Spector, 1992)
and for decision tree based model selection in (Kohavi,
1995). K-fold cross validation is often performed on a val-
idation dataset, which is randomly selected from the train-
ing dataset in multiple runs, thus obviating the need for a
separated test datasets. Nevertheless there are two main
issues concerning cross validation methods: a) the exceed-
ingly long estimation time involved in repeatedly training
of decision trees on validation datasets; b) the high vari-
ance in error estimation caused by inefficient use of data
samples. Other pitfalls concerning K-fold cross validation
are also discussed in Section 4.

Representative tree-pruning methods include the Pes-
simistic Error Pruning (PEP) proposed by Quinlan and
the Minimum Error Pruning (MEP) proposed by Niblett
and Bratko following Cestnik and Bratko’s m-probability
estimate (Esposito et al., 1997). While these methods
also share the same computational advantages over cross-
validation methods, nevertheless, these error estimates are
inconsistent and tend to either under-estimate or over-
estimate when applied to small-sized datasets as shown in
Section 4 of this paper.

3. Generalization error estimation
In this section we first briefly review Corollary 6.1 from
(Devroye et al., 1996) and apply it to estimate the general-
ization error for decision tree classifiers. Our initial focus is
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on the binary classification case, followed by the extension
to multiple classes in Section 3.2.2.

Figure 2. A toy example in which 1D sample points, denoted
by and , are randomly generated from gaussian distributions
N (−1.0, 1.0) andN (0.5, 0.5). X-axis denotes the sample space
and Y-axis the probability. Corresponding true posterior ηi(x),
piecewise quantized posterior ηqi(x) and piecewise estimated
posterior η̃i(x) are shown for classes i = {0, 1}. In this exam-
ple four leaf nodes are selected by an optimized CART algoirthm
(Pedregosa et al., 2011). Note that overfiiting is incurred for the
right-most cell to which only one blue sample point is assigned.

3.1. Generalization error for plug in decision function

Let (X,Y ) be a pair of random variables representing data
observations and corresponding labels which takes their re-
spective values from Rd and {0, 1}. And η(x) = P{Y =
1|X = x} = E{Y |X = x} is the class conditional poste-
rior probability that the class label Y = 1 given observation
X = x. Thus the Bayes error refers to the probability of er-
ror L∗ = P{g∗(X) 6= Y } for the Bayes decision function
as such:

g∗(x) =

{
1 if η(x) > 1/2
0 otherwise. (1)

The true posterior probability function η(x) is often un-
known in reality and one has to approximate it by some
function η̃(x,Dn) estimated from the i.i.d training samples
Dn = {(X1, Y1), (X2, Y2), ...(Xn, Yn)}.

According to Theorem 2.1 of (Devroye et al., 1996), the
corresponding plug-in function

gn(x) =

{
1 if η̃(x,Dn) > 1/2
0 otherwise, (2)

has the probability of error L(gn) = P{gn(X) 6= Y |Dn}
that is always no less than the Bayes error. In fact the extra
error incurred by this plug-in function (on top of the Bayes
error) is bounded by the expectation ofL1 distance between

the posterior probability η(x) and its estimate η̃(x,Dn) ac-
cording to Corollary 6.1 of (Devroye et al., 1996):

L∗ ≤ L(gn) ≤ L∗ + 2

∫
Rd

|η(x)− η̃(x,Dn)|µ(dx) (3)

where µ is the probability measure for X .

3.2. Generalization error for decision trees

Suppose a decision tree partitions observation space S ⊂
Rd into N disjointed cells A = {A1, ..., AN} correspond-
ing to N leaf nodes, the posterior probability over S is thus
approximated by a piecewise constant function

η̃(x,Dn) =

N∑
i=1

IAi η̃i (4)

where IAi denotes the indicator of the set {x ∈ Ai} and
the constant η̃i = ki/ni is the ratio of ki positive samples
observed out of ni samples thrown into Ai.

For each partitioning cellAi, i ∈ {1, 2, ..., N}, let η̄(Ai) =
1∫

Ai
µ(dx)

∫
Ai
η(x)µ(dx) denote the posterior probability

associated to Ai, and the piecewise constant function
ηq(A) denote the so called quantized posterior:

ηq(A) =

N∑
i=1

IAi η̄(Ai). (5)

Note that for any given cell Ai, η̄(Ai) is a fixed constant
independent of training samples Dn albeit the actual value
of η̄(Ai) still unknown. On the other hand, η̃i = ki/ni is an
estimation of η̄(Ai) depending on training samples thrown
into the cell Ai. This estimate might be seriously biased in
case that tree nodes are overfitted. See Figure 2 for a toy
example of η(x), η̃(x,Dn) and ηq(A) respectively.

The introduction of η̄(Ai) allows us to decompose the up-
per bound of generalization errors in (3) into two error
terms:

L
(
η̃(x,Dn)

)
≤ L∗ + 2

∫
Rd

|
(
η(x)− η̃(x,Dn)

)
|µ(dx)

= L∗ + 2

∫
Rd

|
(
η(x)− ηq(A)

)
+
(
ηq(A)− η̃(x,Dn)

)
|µ(dx)

≤ L
∗

+ 2
N∑

i=1

∫
Ai

|η(x)− η̄(Ai)|µ(dx)

︸ ︷︷ ︸
quantized errorL

(
ηq(A)

)
+
(
2

N∑
i=1

|η̄(Ai)− η̃i|f(Ai)
)

︸ ︷︷ ︸
sampling errorLs

(6)
in which f(Ai) =

∫
Ai
µ(dx) is the probability mass func-

tion of data distributed over Ai and
∑N
i=1 f(Ai) = 1. For

reasons to be clear shortly, these two error terms are de-
noted as “quantized error” and “sampling error” respec-
tively, and following subsections illustrate how to estimate
these two terms.
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3.2.1. QUANTIZED BAYES ERROR

A quantized Bayes decision function is based on the quan-
tized posterior ηq(A)

gn
(
ηq(A)

)
=

{
1 if η̄(Ai) > 1/2
0 otherwise. i ∈ 1, ..., N. (7)

Clearly its error probability L
(
ηq(A)

)
satisfies the follow-

ing inequality which is a special case of (3)

L
(
ηq(A)

)
≤ L∗+2

N∑
i=1

∫
Ai

|η(x)−η̄(Ai)|µ(dx)
def
== L

(
ηq(A)

)
(8)

The upper bound L
(
ηq(A)

)
is referred to as the quantized

Bayes error throughout this paper since it plays a crucial
role similar to the Bayes error in the analysis of the gen-
eralization error. Firstly, the quantized Bayes error is only
determined by the posterior η(x) and partitioning set A,
and as shown by Proposition 5.1 in appendix, it monotoni-
cally decreases and eventually approaches the Bayes error
L∗ when the learning algorithms recursively partitions leaf
nodes into smaller children nodes.

Secondly, as shown by Proposition 5.2 the quantized Bayes
error itself is the minimal error bound that one can reach
given a fixed set of partitioning nodes, no matter how node-
wise posterior probabilities are estimated.

Thirdly, one can approximate the unknown quan-
tized Bayes error L

(
ηq(A)

)
by the empirical loss of

gn
(
η̃
(
x,Dn)

)
L
(
ηq(A)

)
≈ E

{
gn
(
η̃
(
X,Dn)

)
6= Y |Dn

}
. (9)

As shown by Proposition 5.3, the approximation error in-
curred by (9) approaches zero when the number of training
samples thrown into each cell goes to infinity. However the
sampling errors ascribed to small sample size is often non-
negligible in practice, and has to be taken into account in a
data-dependent manner as follows.

3.2.2. INFLUENCE OF SMALL SAMPLES

Theorem 3.1 The expectation of sampling error of decision trees

E[Ls] = E
[ M∑
y=1

N∑
i=1

|η̄y(Ai)− η̃yi |f(Ai)
]

is upper bounded by

E[Ls] ≤
M∑
y=1

N∑
i=1

√(
Var(η̃yi ) +

(
Bias(η̃yi )

)2)
f(Ai) (10)

where Var(η̃yi ) and Bias(η̃yi ) are the variance and bias of the
estimator η̃yi of the unknown η̄y(Ai) for classes y = {1, ...,M}.

Proof

E[Ls] =

M∑
y=1

N∑
i=1

E
[
|η̄y(Ai)− η̃yi |

]
f(Ai)

=

M∑
y=1

N∑
i=1

E
[√(
|η̄y(Ai)− η̃yi |

)2]
f(Ai)

≤
M∑
y=1

N∑
i=1

√
E
[(
|η̄y(Ai)− η̃yi |

)2]
f(Ai) (11)

=

M∑
y=1

N∑
i=1

√(
Var(η̃yi ) +

(
Bias(η̃yi )

)2)
f(Ai) (12)

where (11) follows Jensen’s inequality E
[√
x
]
≤
√

E
[
x
]
,

and (12) by the decomposition of Mean Squared Error
E
[(
η̄y(Ai)− η̃yi

)2].
For multiclass data with y ∈ {1, 2, ...M} classes, the
probability of observing kyi samples out of ni samples in
node Ai follows multinomial distribution with parameters(
ni,
[
η̄1(Ai), ..., η̄

M (Ai)
])

. For large ni the ratio kyi /ni
converges to η̄y(Ai) following the law of large numbers,
thus the sampling error term |η̄y(Ai) − η̃yi | essentially ap-
proaches zero.

When ni is relatively small, following theorem 3.1, one can
estimate the upper bound of the expectation of sampling er-
ror by working out the variance and bias of estimator η̃yi .
For multiclass datasets we can take Dirichlet distribution
as the conjugate prior probability for multinomial distri-
bution of posterior probabilities η̄y(Ai) and estimate the
mean, variance and squared bias of estimator η̃yi as follows
(Murphy, 2006):

η̂yi = E(η̃yi ) =
kyi + ns

ni +M · ns
, Var(η̃yi ) =

η̂yi (1− η̂yi )

1 + ni
,(

Bias(η̃yi )
)2

=
(
η̂yi −

kyi
ni

)2

(13)
where ns ∈ {0, 1/2, 1} is the prior number of pseudo sam-
ples following Haldone, Jeffreys and Bayes prior probabil-
ities respectively. In our work, it turns out Jeffreys prior
leads to the best performance for all experiment tests.

3.2.3. ESTIMATION OF GENERALIZATION ERROR

Putting together (6), (9) and (10) we have the generalization
error estimation as follows:

L̃
(
η̃(x,Dn)

)
≈ E

{
gn
(
η̃
(
X,Dn)

)
6= Y |Dn

}
+

M∑
y=1

N∑
i=1

√(
Var(η̃yi ) +

(
Bias(η̃yi )

)2)
f(Ai)

(14)

in which the empirical loss is directly measured using train-
ing samples Dn, while the variance Var(η̃yi ) and squared
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bias
(
Bias(η̃yi )

)2
terms are estimated using (13) for both

binary class and multi-class datasets.

Remark 1: from (13) it is clear that the upper bound
of sampling error Ls increases as the number samples ni
thrown in Ai decreases. When the generalization error es-
timate (14) is minimized in decision tree learning, the sam-
pling error term therefore effectively penalizes complex de-
cision tree models and prevents leaf node cells from be-
coming exceedingly small. Thus the overfitting is automat-
ically avoided.

Remark 2: the sampling error term Ls is derived within an
unified consistency analysis framework and its integration
with empirical error is theoretically justified. Sampling er-
rors can be directly estimated without resorting to model
complexity analysis. We would argue that penalizing com-
plex models in data-independent manners is merely a dis-
guise of reducing sampling errors, although a close inspec-
tion of existing methods from this point of view remains to
be done.

Remark 3: since the quantized Bayes error L
(
ηq(A)

)
is

approximated by the training error and the sampling error
Ls by its expectation E[Ls], so the generalization error es-
timate in (14) is not strictly bounded above. Nevertheless,
as observed in our extensive experimental results this esti-
mation appears to be consistently more robust and accurate
than K-fold cross validation estimate.

4. Experimental results
4.1. Datasets and evaluation protocols

Table 4.1 below summarizes ten benchmark datasets from
UCI Machine Learning Repository1. Each dataset is used
to train a decision tree classifier using an optimised version
of the CART algorithm (Pedregosa et al., 2011). Corre-
sponding generalization errors are measured/estimated us-
ing four benchmarked approaches, namely, 1) the empirical
measurement based on ground truth labels; 2) K-fold cross
validation method; 3) the proposed generalization error es-
timation (denoted as “jeff”); 4) two pessimistic error esti-
mation methods i.e. the Pessimistic Error Pruning (denoted
as “quinlan”) and the Minimum Error Pruning (denoted as
“cestnik”) that are reviewed in (Esposito et al., 1997). Er-
rors by method 1) is then used as a “ground truth” to eval-
uate error estimates by methods 2), 3) and 4).

Note that a subset of data samples are used for the direct
measurement of generalization errors. Therefore the whole
set of data samples is randomly separated into training and
testing subsets and the separation repeats multiple times
to average out generalization errors. More specifically let
separation ratio r equal #training samples

#dataset samples and for each fixed

1http://archive.ics.uci.edu/ml/

Datasets #data samples #attributes #classes
diabet 768 8 2

german 1000 24 2
wine 6497 11 2
ecoli 336 7 8

imgseg 2310 19 7
letter 20000 16 26

satimg 6436 36 6
usps 9298 256 10

vehicle 964 18 4
vowel 990 10 11

Table 1. Summary of benchmark datasets

ratio r = {0.1, 0.3, 0.5, 0.7, 0.9}, a dataset is randomly
separated 50 times and thus all together there are 250 ran-
domly separations. Then for each separation a decision tree
is constructed using training samples (see below explana-
tion concerning cross validation methods). Finally for each
constructed tree, generalization errors are measured (or es-
timated) at tree nodes with different depths ranging from 0
to maximal depth where depth 0 corresponds to root node.

Indeed for K-fold cross validation the subset of train-
ing samples is randomly separated into CV training and
CV validation subsets. Decision trees are constructed us-
ing CV training samples and generalization errors are es-
timated using CV validation samples. The process re-
peatsK times to average out the generalization error where
K = {2, 5, 10} in our experiments.

4.2. Qualitative study of generalization error

Figures 3,4, 5 and 6 plot generalization errors against the
depths of constructed trees for four example datasets ve-
hicle, diabet, wine, ecoli. First of all, the empirical mea-
surement of generalization error decreases when the tree
depth increases from 0. However when tree depths are get-
ting exceedingly large, the generalization error often flat-
tens out or even increases due to large overfitting errors
(e.g. see upper-left plot in Figure 3). On the one hand,
this trend is well reflected in empirically measured gener-
alization error as well as cross validation and the proposed
method. Differences between the empirically measured
and estimated generalization errors are relatively small in
these Figures, and thus are scrutinized quantitatively in fol-
lowing subsection. On the other hand, two pessimistic error
estimates tend to either under-estimate (for “quinlan”) or
over-estimate (for “cestnik”) generalization errors. More-
over, the mean errors and standard deviations from the test
errors become more pronounced for small-sized datasets
e.g. ecoli and diabet.

Secondly, when more data samples are used for train-
ing, e.g. with larger ratio r >= 0.5, both empirically
measured and estimated generalization errors are getting
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smaller since leaf nodes are in general partitioned into
smaller cells and deeper trees are constructed. This ob-
servation is in accordance with the consistency analysis of
quantized Bayes error in Proposition 5.1, i.e. L

(
ηq(A)

)
approaches L∗ when diameters of leaf nodes become in-
finitesimally small.

Thirdly, one pitfall of the cross validation method is that it
often does not explore the whole range of depth parameter,
since the number of samples in CV training is smaller than
those in the whole training subset thus more shallow trees
have to be constructed for cross validation methods. See
Figure 6 for an example of discussed observations.

4.3. Quantitative study of generalization error

We use Mean Squared Error (MSE) to quantify the dif-
ferences between the measured error and those estimated
ones. Figure 1 (left) shows that the proposed method ac-
curately estimates the errors with averaged MSEs at 0.03,
about 35% to 50% lower than that of cross validation meth-
ods. For the sake of parameter selection, Pearson Corre-
lation turns out to be more informative than MSE since
only the shape of error curve matters and adding an ar-
bitrary constant to the error curve is irrelevant. Figure 1
(middle) shows that the proposed method also compares
favourably with averaged PEs at about 0.93 while cross val-
idation methods merely obtain Pearson Correlation at about
0.83.

Error bars in Figure 1 represent standard deviations of
MSE and Pearson Correlation measured over 50 random
separations of datasets. Standard deviations for the pro-
posed method are about 40% and 30% lower in MSEs and
PEs respectively. We view this statistically meaningful
margin as a clear indication of the robustness of the pro-
posed method in general. Figures 3, 4, 5, 6 illustrate de-
tailed results measured on individual datasets.

4.4. Comparison of estimation time

Since evaluating equation (14) is the only computational
cost incurred for the proposed error estimation, a substan-
tial speed up is obtained as compared to cross validation
methods which involve the costly construction of decision
trees for each fold of training data. The comparison of es-
timation time in Figure 1 (right) showcases that the pro-
posed method is at least 2 orders of magnitudes more
efficient than K-fold cross validation methods. The esti-
mation time for the proposed method is actually negligible
as compared to the training time for constructing decision
trees. In contrast, the exceedingly long estimation time of
K-fold cross validation methods makes it cumbersome to
be used in practice for large datasets such as letter and usps.

5. Conclusion
We proposed a novel estimation of generalization error for
decision tree learning methods. The estimation is based on
the consistency analysis of two error terms i.e. the quan-
tized Bayes error and sampling error, which essentially de-
pends on the number of data samples thrown into each leaf
node. As compared with the popular cross validation meth-
ods, the proposed generalization error estimation is statis-
tically more accurate, robust and substantially more effi-
cient.

While the proposed error estimation method is dedicated
to decision tree type of classifiers, extensions to other his-
togram based classifiers such as random forest will be ex-
plored in future work.

Appendix
Proposition 5.1 Let diam(Au) = supx,y∈Au

|x−y| the diame-
ter of an arbitrary setAu ⊂ Rd and assume there is a sequence of
sets Aj := {A1j , . . . , ANj} recursively constructed by a learn-
ing algorithm such that diam(Aij)→ 0 as the number of sets in
the sequence Nj →∞,

then the quantized Bayes error L
(
ηq(A)

)
of the decision function

in (7) approaches the Bayes error L∗.

Proof Since η(x) is absolute continuous, then for x ∈
⋂Nj

i=1 Aij ,
η̄(Aij) → η(x) as diam(Aij → 0), followed by |η(x) −
ηq(Aj)| → 0 for every x and corresponding Aij .

Proposition 5.2 Given a fixed set of partitioning cells A =
{A1, ..., AN}, the quantized Bayes error L

(
ηq(A)

)
defined in

(8) is minimal in the sense that L
(
ηq(A)

)
≤ L

(
η̂(A)

)
for

any piecewise constant functions η̂(A) =
∑N
i=1 IAici where

ci ∈ R are arbitrary constants and L(η̂(A)) the upper bound
of generalization error of the decision function gn(η̂(A)) ={

1 if ci > 1/2,
0 otherwise.

Proof It suffices to show that for every cell Ai, P{gn
(
η̂(Ai)

)
6=

Y } ≥ P{gn
(
η̄(Ai)

)
6= Y }. By definition of gn

(
η̄(Ai)

)
its

error probability is min
(
η̄(Ai), 1 − η̄(Ai)

)
, and in case that

gn
(
η̂(Ai)

)
6= gn

(
η̄(Ai)

)
, the error probability for gn

(
η̂(Ai)

)
is 1 − min

(
η̄(Ai), 1 − η̄(Ai)

)
= max

(
η̄(Ai), 1 − η̄(Ai)

)
≥

min
(
η̄(Ai), 1− η̄(Ai)

)
.

Proposition 5.3 Given a fixed set of partitioning cells A =
{A1, ..., AN}, considering the error probability L

(
η̃(x,Dn)

)
=

P{gn
(
η̃(x,Dn)

)
6= Y } of the plug-in function gn

(
η̃(x,Dn)

)
as defined in (6). If ni → ∞ for i ∈ {1, 2, ...N} then the er-
ror bound L

(
η̃(x,Dn)

)
→ L

(
ηq(A)

)
i.e. approaches the upper

bound of L
(
η̃(x,Dn)

)
.

Proof It suffices to show that the “sampling error” term in (6) i.e.
|η̄(Ai) − η̃i| approaches zero as ni → ∞ for i ∈ {1, 2, ..., N}.
Clearly this condition is fulfilled since ki/ni → η̄(Ai) due to the
law of large numbers.
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Figure 3. Columns 1 and 2: generalization errors for vehicle dataset.Column 3: Mean Squared Error (mse) and Pearson Correlation of
error curves w.r.t. error curves measured with ground truth labels. Err bars represent standard deviations over 50 random runs.

Figure 4. Generalization error of different methods for diabet dataset (see Figure 3 for elaborated explanations).
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Figure 5. Generalization error of different methods for wine dataset (see Figure 3 for elaborated explanations).

Figure 6. Generalization error of different methods for ecoli dataset (see Figure 3 for elaborated explanations).
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