Metadata-Conscious Anonymous Messaging

Supplementary material:
Metadata-conscious anonymous
messaging

A. Warm-up Example: Line Graph

We begin by considering the special contact network of a
line graph. This example highlights how severely metadata
can hurt anonymity; nonetheless, Section 3 illustrates that
our seemingly-negative result on lines does not extend to
higher-degree trees.

Consider a line graph G(V,E) in which V =
{0,1,...,n,n + 1}, nodes s1 = 0 and s = n + 1 are
spies, and £ = {(¢,i+ 1) | ¢ € {0,...,n}}. One of the
n nodes between the spies is chosen uniformly at random
as a source, denoted by v* € {1,...,n}. When the mes-
sage reaches a spy s;, the spy collects at least two pieces of
metadata: the timestamp T, and the parent node p, that
relayed the message. We let ¢y denote the time the source
starts propagating the message according to some global
reference clock. Let T, = Th + tp and T, = 1o + 1o
denote the timestamps when the two spy nodes receive the
message, respectively. Knowing the spreading protocol and
the metadata, the adversary uses the maximum likelihood
estimator to optimally estimate the source.

In this section, we first show that under standard diffusion,
the probability of source detection scales as 1/y/n. We
also show that if spy nodes observed only timestamps and
parent nodes, adaptive diffusion would achieve the optimal
detection probability of 1/n. However, adaptive diffusion
passes extra metadata, which we call a control packet, to
coordinate the message spread (details below). Control
packets allow a spy to identify the source with probabil-
ity 1. To overcome this challenge, we propose a new im-
plementation of adaptive diffusion that provably achieves
1/4/n (Proposition A.1). It is an open question if a smaller
probability of detection can be achieved on a line.

Standard diffusion. Consider a standard discrete-time
random diffusion with a parameter ¢ € (0,1) where
each uninfected neighbor is infected with probability
q. The adversary observes 715, and T,,. Knowing
the value of ¢, it computes the ML estimate Uy =
arg maxyen] Pr, —7, v+ (Ts;, —Ts, |v), which is optimal as-
suming uniform prior on v*. Since ¢y is not known, the ad-
versary can only use the difference T, — T, = 11 — T
to estimate the source. We can exactly compute the cor-
responding probability of detection; Figure 5 (bottom) il-
lustrates that the posterior (and the likelihood) is concen-
trated around the ML estimate, and the source can only
hide among O(+/n) nodes. The detection probability cor-
respondingly scales as 1/+/n (top).

Adaptive diffusion on a line. Adaptive diffusion intro-
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Figure 5. Comparisons of probability of detection as a function of
n (top) and the posterior distribution of the source for an example
with n = 101 and 7> — 711 = 25 (bottom). The line with ‘control
packet revealed’ uses the Pdlya’s urn implementation.

duced in (Fanti et al., 2015) on a line is a random mes-
sage spreading model governed by the location of a virtual
source v; at any (even) time t. At time 0, the source de-
termines either the left or the right neighbor to be the next
virtual source with equal probability. The message is prop-
agated to the chosen node at time ¢t = 1. At¢ = 2, the new
virtual source v, propagates the message to its uninfected
neighbor. At this point, three nodes are infected, with the
virtual source vy at the center. At any given even time ¢,
the infected subgraph is a subset of ¢ + 1 nodes, centered
around the virtual source v;. At each even time ¢, the pro-
tocol has two options: keep the virtual source where it is,
or pass it to the only neighbor who has not yet been a vir-
tual source. The protocol keeps the current virtual source
with probability %3’”*), where dp (vt, v*) denotes the
hop distance between the source and the virtual source, and
passes it otherwise. The control packet therefore contains
two pieces of information: g (ve,v*) and ¢. In the next
two time steps, the message spreads in such a way that two
more nodes are infected, and the virtual source is again at
the center of the infected subgraph. This choice of virtual-
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source-spreading probability is optimal against a snapshot
adversary, guaranteeing perfect obfuscation of the source.

Suppose spy nodes only observed timestamps and par-
ent nodes but not control packets. The adversary could
then numerically compute the ML estimate oy =
arg maxyen] P, —1, v+ (Ts, — Ts,|v). Figure 5 shows the
posterior is close to uniform (bottom) and the probability
detection would scale as 1/n (top), which is the best one
can hope for. Of course, spies do observe control pack-
ets, including the information to generate the randomness.
This reveals the distance to the true source g (v, v*), and
the true source is exactly identified with probability 1. We
therefore introduce a new implementation (tailored for the
line graph) that is robust to control packet information.

Adaptive diffusion via Polya’s urn. The random process
governing the virtual source’s propagation is identical to a
Pélya’s urn process (Johnson & Kotz, 1977). We propose
the following alternative implementation of adaptive diffu-
sion. Att = 0 the protocol decides whether to pass the
virtual source left (D = ¢) or right (D = r) with proba-
bility half. Let D denote this random choice. Then, a la-
tent variable ¢ is drawn from the uniform distribution over
[0, 1]. Thereafter, at each even time ¢, the virtual source is
passed with probability ¢ or kept with probability 1—g. The
Bayesian interpretation of Pdlya’s urn processes shows that
this process is equivalent to the adaptive diffusion process.

Further, in practice, the source could simulate the whole
process in advance. The control packet would simply re-
veal to each node how long it should wait before further
propagating the message. Under this implementation, spy
nodes only observe timestamps 7, and T,, parent nodes,
and control packets containing the infection delay for the
spy and all its descendants in the infection. Given this,
the adversary can exactly determine the timing of infection
with respect to the start of the infection 77 and 75, and also
the latent variables D and q. A proof of this statement and
the following proposition is provided in Section A.1 of the
Supplementary Material. Precisely, we provide an upper
bound on the detection probability for such an adversary.

Proposition A.1. When the source is uniformly chosen
from n nodes between two spy nodes, the ML estimator
achieves a detection probability upper bounded by

_mB 2
~VJnoon

Equipped with the ML estimator, we can also simulate
adaptive diffusion on a line. Figure 5 (top) illustrates that
even with access to control packets, the adversary achieves
probability of detection scaling as 1/+/n — similar to stan-
dard diffusion. For a given value of T3, the posterior and
the likelihood are concentrated around the ML estimate,
and the source can only hide among O(/n) nodes, as

P(V* = dmw )

shown in the bottom panel for 77 = 58. In the realistic ad-
versarial setting where control packets are revealed at spy
nodes, adaptive diffusion can only hide as well as standard
diffusion over a line.

A.1. Proof of Proposition A.1

The control packet at spy node s; includes the amount of
delay at s; = 0 and all descendants of s;, which is the set
of nodes {—1,—2,...}. The control packet at spy node so
includes the amount of delay at s = n + 1 and all descen-
dants of s9, which is the set of nodes {n + 2,n + 3,...}.
Given this, it is easy to figure out the whole trajectory of
the virtual source for time ¢t > T;. Since the virtual source
follows i.i.d. Bernoulli trials with probability ¢, one can
exactly figure out q from the infinite Bernoulli trials. Also
the direction D is trivially revealed.

To lighten the notation, suppose that 77 < T5 (or equiv-
alently 75, < T,). Now using the difference of the ob-
served time stamps T, — T, and the trajectory of the vir-
tual source between T, and T%,, the adversary can also
learn the time stamp 7% with respect to the start of the in-
fection. Further, once the adversary learns 7% and the lo-
cation of the virtual source vy, , the timestamp 75 does not
provide any more information. Hence, the adversary per-
forms ML estimate using 77, D and ¢. Let B(k,n,q) =
()d"(1 — q)"~* denote the pmf of the binomial distribu-
tion. Then, the likelihood can be computed for 7} as
P (1] a.0) =
{ R B 2%%; N Dorepz+ 4 )
B(v* — %’ 12 7q)H(v*€[#,t1]) if £1 odd

2

if t1 even

BL) (1] 0", q.r) =

0 1ifty even
(1-q)B(251t — o7, tlgd’q)ﬂ(v*e[ly%]) if £, odd.
3

This follows from the construction of the adaptive diffu-
sion. The protocol follows a binomial distribution with pa-
rameter ¢ until (77 — 1). At time 77, one of the following
can happen: the virtual source can only be passed (the first
equation in (2)), it can only stay (the second equation in
(3)), or both cases are possible (the second equation in (2)).

Given 77, @ and D, which are revealed under the adver-
sarial model we consider, the above formula implies that
the posterior distribution of the source also follows a bino-
mial distribution. Hence, the ML estimate is the mode of
a binomial distribution with a shift, for example when ¢,
is even, ML estimate is the mode of 2 + (¢1/2) + Z where
Z ~ Binom((t1/2) — 2, q). The adversary can compute the
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ML estimate:
L824 1g(L72)| ifTyeven& D=1,

’lA)ML: 7T1;3+Lq 7T12_1 J lleodd&ng,
1+ |(1-q(552L)] ifTiodd& D =r.
4)

Together with the likelihoods in Egs. (2) and (3), this gives

(adaptive) N * .
HDTl Dp\v* (tl,r, UM v ,q) =
1 th—1 , t-3
5(1—@3( 12 -7, 12 7Q)H(f)ML:v*)H(t1 is odd)
&)
(adaptive) x __ o~ _
P Dp‘Q (t1,7,V* =dmL|q) =
1 ti1—1 t1 —3
ﬁ(l - Q)B( L — OML, 17761) Ity isoaay  (6)
1— 21t is odd and £
( ZnQ) (\f (t1isoddand t; > 3) n H(t1:3)> %
b872¢(1-q)
where Ovp, = Owmw(ti,gq,7) is provided in (4), and

the bound on B(-) follows from Gaussian approximation

(which gives an upper bound 1/+/27kq(1 — ¢)) and Berry-
Esseen theorem (which gives an approximation guarantee

of 2x0.4748//kq(1 — q)), for k = (t; —3)/2. Marginal-
izing out T3 € {3,5,...,2[(n — 1)/2] + 1} and ap-

plying an upper bound Ek_l Vi < 2Vk+1-2 <

2VEk —1++/1/(2(k — 1)) —2 < /4(k — 1), we get
P( =rV*=0uL,Th iSOdd|Q:q) <
(1-q)Vv2 n—1; 1—g¢q
8 . 8
2n\/m L 2 J+ 2n ®)

Similarly, we can show that

P(D =¢(,V* = by, Ty is 0dd|Q = q) <

V2 n—1; 1
+ —, 9
2n+/q(1 —q) { J ©
(V* = oML, 11 18 even’Q :q) <
a2 n 1+gq
8 et 10
e 5]+ (10)
Summing up,
BV = oil@=0) < 4| ——+ 2. (D)
I T

Recall () is uniformly drawn from [0, 1]. Taking expecta-
tion over () gives

POV =t) < mf242
non
where we used fol 1/\/z(1 —x)dz =

arcsin(—1) = 7.

arcsin(l) —

B. Regular Tree Analysis
B.1. Proof of Theorem 1

We begin by expanding some points regarding the ML esti-
mator in Algorithm 2 that were omitted in Section 3. First,
note that it is possible to derive an ML estimate without re-
quiring the presence of a spine spy; the estimator described
here uses a spine spy purely for ease of exposition. The
omitted details are: (1) given a spy node s, how does the es-
timator find that spy node’s pivot £,? (2) Why does timing
information enable the estimator to disregard any subtree
neighboring ¢,,;, that contains at least one spy?

To answer the first question, consider the first spine spy sg
and all spies in the feasible subtree. For each spy s in the
feasible subtree (none of which lies on the spine), there ex-
ists a unique path between s and sg. There exists a unique
node on this path that is both part on the spine and closer
to the true source than any other node in the path—this is
precisely the pivot node. The estimator uses the observed
metadata to infer the pivot, as well as its level in the in-
fected subtree, for each spy in the feasible subtree. This
inference proceeds by solving a system of equations:

hse, + he,,so = [P(s,50)]
hés,so - hs,fs =T, — Ts

S0

where P(s, s,) denotes the path between s and s,, hs ¢, =
0 (s, Ls) denotes the distance from spy s; to the pivot node
s, and hy, 5, is equal to dg (£, s,) by construction. This
system of equations always has a unique solution; hence the
uniqueness of /; given s and sg. The first equation holds
by construction. The second equation holds because condi-
tioned on the time at which the pivot receives the message
Ty, , so receives the message at time Ty, + hy, 5., and s
receives itat Ty, + hg g, .

Let L denote the set of pivots corresponding to each spy in
the feasible subtree; in the example in Figure 2, L = {1, 2}.
Define ¢, = argmin,c;my. That is, £, denotes
the pivot closest to the true source in hop distance, i.e.,
whose level is lowest. Now consider the subtrees of depth
my,,,. — 1 rooted at the neighbors of ¢,,;,,. The subtree in-
cluding s( cannot contain the true source because we know
the message traveled from /,,;, to sg. The source must
therefore lie in one of the remaining d — 1 neighbor sub-
trees, which we refer to as candidate subtrees.

We now argue that the estimator can rule out any candidate
subtree of /,,;,, that contains at least one spy node. Suppose
otherwise: there is a candidate subtree containing a spy s,
and the source v* is contained in that subtree. Then the path
P(v*, s) cannot pass through £,,;, because £,,;, does not
belong to any of its own neighboring subtrees by construc-
tion. Then there must exist some node £’ on the spine such
that |P(¢',s)| < |P(€min,s)|. But this is a contradiction
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because ¢,,;,, is chosen as the minimum-level pivot across
all spies, and each spy has a unique pivot on the spine.

Since we can now rule out candidate subtrees with at least
one spy, let X + 1, X € N be the number of candidate
subtrees containing no spies. We use this notation because
there will always be at least one candidate subtree with no
spies (the one containing the true source). In Figure 2, X =
0. Thus, the ML estimator chooses one of the leaves in the
remaining X + 1 candidate subtrees uniformly at random.
All remaining nodes in V\U have likelihood 0.

Probability of Detection: We condition on the lowest-
level pivot node, (i, giving P(oympr, = 0*) =
Z&m P(omr, = v*[€min)P(Lmin). Since £,y lies on the
spine, this is equivalent to conditioning on the distance of
£ 1in from the true source.

P(f)ML = U*) =

i (1 7p)(|Td,k‘*1)p
— |8Td’k|

k=1
Lomin (k”” spine node) is a spy
(X #d—2)
+ 1 — p)|Tarlg [—:|
=) B | 1) 0Tl
Lonin (k”‘ spine node) not a spy
(13)
where X ~ Binom(d—2, (1—p)Taxl), 1T, | = %

is the number of nodes in each candidate subtree for a pivot
at level k, and |07y x| = (d — 1)*~1 is the number of leaf
nodes in each candidate subtree. Let w = (1 —p). We have
that

7& _
Ex (gﬁ 1)(|i(’9T2|} B |a:r1d’k| (EX{%H}*
me,md—?))
d—1

1 ( 1
N ‘8Td’k| (d— 1)w|Td,k"

me,k\-(dm)

d—1

where the last line results from the expression for the ex-
pectation of 1/(1 + X)) when X is binomially-distributed.
Namely if X ~ Binom(n,p), then E[1/(X + 1)] =

(1= (L= wlTerlyt=t)

m(l — (1 —p)™*1). Simplifying gives
= 1 _ d—
Pp = Z @) [(d _ 1)pw|Td,k| 11 — qlTarl(d=1)
k=1

—(1— w|Td.k|)d—1:|

1 > 1
— |Ta,k1]—1 _
Pt +; d—1)F pu

w!Tarl@=1) (1 _ wm,k\)dfl}

o0

1 1
_ |Ta,k+1l
d—2 ; d—1)F v +

(1 — ity

where the last line holds because [Ty 41| — 1 = [Tyl -
(d—1).

Expected hop distance: In the main paper, we lower
bounded the expected hop distance by assuming that the
estimator guesses the source exactly whenever (a) the pivot
Lmin 18 a spy node or (b) the estimator chooses the correct
candidate subtree. Therefore, if the pivot ¢,,;,, is at level k,
we only consider estimates that are exactly 2k hops away.
The estimator chooses an incorrect candidate subtree with
probability X/(X + 1).

E[d g (0m, v™)] >

i 2k(1 _p)‘TdiI]EXk |:Xk . H(Xk ;ﬁ d— 2)
=1

(Xx+1)

. (14)

If X ~ Binom(7,p), where 72 and p depend on d and k,
we have

Xy - I( X # ﬁ)]
(Xp+1)

[(A-p)"+p1—-(1—p)" +7)—1

Exk[

1

~~n-+1
@+ s ‘"p’]

Simplifying and substituting $ = (1—p)!T¢#l and 7 = d—2
gives the expression in the theorem.

Note that this bound is trivially O for d = 3, since we ignore
all nodes in the correct candidate subtree; when d = 3, the
source’s candidate subtree is the only valid option if ¢,,;,
is not a spy. However, for a fixed p with d — oo, this lower
bound approaches the upper bound of 2(1 — p).

Obtaining a tighter bound is straightforward, but increases
the complexity of the expression. These tighter bounds
were used for the plots in the main paper. A tighter bound
results from considering the cases when (a) the pivot £,,,;,
is a spy node or (b) the estimator chooses the correct can-
didate subtree. In both cases, we ignore all but the most
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distant estimates. For instance, if £,,;, is on the spine at
level k, then the estimate will be at most 2(k — 1) hops
away. Using this rule for both cases (a), we compute the
probability of selecting one of the most distant options:

d—2
=221 — p)Takl(d=1)
e = 7 1( p)
and for case (b)
d—2
b= (1= p) el

Overall, we get a lower bound of

[5H UML, Z 2 kT‘k + 1)(ak + bk))
k=1

C. Irregular Tree Analysis
C.1. Proof of Proposition 4.1

All nodes in V\U have likelihood zero, as discussed in the
proof of Theorem 1 (recall that V' denotes the set of all
nodes, and U denotes the set of candidate nodes). The only
randomness in adaptive diffusion spreading occurs when
a spine node with uninfected neighbors decides which of
its neighbors will be added to the spine next. Thus, the
(log) likelihood of a candidate source is the sum of the
(log) likelihoods of all candidate spine nodes starting at the
candidate source. Regardless of which node v € U is the
true source, the spine must pass through ¢,,,;,,; since there
is a unique path between u and ¢,,;, over trees, the only
feasible sequence of candidate spine nodes starting at can-
didate w must traverse P (u, ¢pmin). By the Markov prop-
erty of the adaptive diffusion spreading mechanism, we
only need to consider the likelihood of a candidate spine
prior to reaching ¢,,,;,,. The propagation of the spine there-
after is conditionally independent of the true source, and
therefore equally-likely for all candidates. The maximum
likelihood estimator must therefore compute the likelihood
of each such candidate sub-spine P(u, £;n). Since each
spine node v chooses one of its uninfected neighbors uni-
formly at random to be the next spine node, the choice of
next spine node is simply 1/(deg(v) — 1). Similarly, the
likelihood of candidate source u sending the spine in a par-
ticular direction is 1/ deg(u). The overall likelihood of a
candidate is therefore proportional to the product of these
degree terms.

C.2. Analysis of spy+snapshot adversarial model

We follow closely the proof of Theorem 1 in Appendix B.1.
Given a snapshot at a certain even time 7', if there are at
least two spy nodes infected at time 7', then the adversary
can perform the exact same estimation as he did with only

spy nodes with 7' — co. We only need to carefully analyze
what happens when there are only one spy infected or no
spies are infected.

We condition on the lowest-level pivot node, £,,;y, giv-
ing P(@ML = 'U*) = mem IED('&ML =v* |€min)P(€min)-
Since 4, lies on the spine, this is equivalent to condition-
ing on the distance of ¢,,;, from the true source. We first
define | Sy 7| = 1+d((d—1)7/2—~1)/(d—2) as the number
of nodes infected at time 7', and |0Sy,7| = d(d—1)*/?)~1
as the number of leaves in the infected subtree. Then,

R y 1— |Sd,T‘—1
P(omr, = v*) = —< |6p;’dT +
no spy
T/2 _
1 — (‘Td,ktl 1)
Z{ ( j2) p i
k=1 ’

Lonin (km spine node) is a spy

_ (X #£d-2)
1 — ) Tarl(1 — (1 = p)ISarl=1Tarmgp, | X272 %)
(1=p)H (1= (1= p) x| X T
Lomin (K" spine node) not a spy
_ _ (X #d-2)
1 — p)Sarl=(Takt1l=1Tax N
(1=p) X[|8Sd7T|—(d—2—X)|6Td,kd b

all spy descendants of k-th spine node

15)

where X ~ Binom(d—2, (1—p)/Tarl), |Ty 5| = ==
is the number of nodes in each candidate subtree for a pivot
at level k, and |07y x| = (d — 1)*~1 is the number of leaf

nodes in each candidate subtree.
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Figure 6. Probability of detection under the spies+snapshot adversarial model. As estimation time and tree degree increase, the effect of
the snapshot on detection probability vanishes.



