
The Sum-Product Theorem: A Foundation for Learning Tractable Models

Abram L. Friesen AFRIESEN@CS.WASHINGTON.EDU
Pedro Domingos PEDROD@CS.WASHINGTON.EDU

Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA

Abstract
Inference in expressive probabilistic models is
generally intractable, which makes them diffi-
cult to learn and limits their applicability. Sum-
product networks are a class of deep models
where, surprisingly, inference remains tractable
even when an arbitrary number of hidden layers
are present. In this paper, we generalize this re-
sult to a much broader set of learning problems:
all those where inference consists of summing a
function over a semiring. This includes satisfi-
ability, constraint satisfaction, optimization, in-
tegration, and others. In any semiring, for sum-
mation to be tractable it suffices that the factors
of every product have disjoint scopes. This uni-
fies and extends many previous results in the lit-
erature. Enforcing this condition at learning time
thus ensures that the learned models are tractable.
We illustrate the power and generality of this ap-
proach by applying it to a new type of structured
prediction problem: learning a nonconvex func-
tion that can be globally optimized in polynomial
time. We show empirically that this greatly out-
performs the standard approach of learning with-
out regard to the cost of optimization.

1. Introduction
Graphical models are a compact representation often used
as a target for learning probabilistic models. Unfortunately,
inference in them is exponential in their treewidth (Chan-
drasekaran et al., 2008), a common measure of complex-
ity. Further, since inference is a subroutine of learning,
graphical models are hard to learn unless restricted to those
with low treewidth (Bach & Jordan, 2001; Chechetka &
Guestrin, 2007), but few real-world problems exhibit this
property. Recent research, however, has shown that prob-
abilistic models can in fact be much more expressive than
this while remaining tractable (Domingos et al., 2014). In
particular, sum-product networks (SPNs) (Gens & Domin-
Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

gos, 2013; Poon & Domingos, 2011) are a class of deep
probabilistic models that consist of many layers of hid-
den variables and can have unbounded treewidth. Despite
this, inference in SPNs is guaranteed to be tractable, and
their structure and parameters can be effectively and accu-
rately learned from data (Gens & Domingos, 2012; 2013;
Rooshenas & Lowd, 2014).

In this paper, we generalize and extend the ideas behind
SPNs to enable learning tractable high-treewidth repre-
sentations for a much wider class of problems, including
satisfiability, MAX-SAT, model counting, constraint sat-
isfaction, marginal and MPE inference, integration, non-
convex optimization, database querying, and first-order
probabilistic inference. The class of problems we ad-
dress can be viewed as generalizing structured prediction
beyond combinatorial optimization (Taskar et al., 2005),
to include optimization for continuous models and oth-
ers. Instead of approaching each domain individually,
we build on a long line of work showing how, despite
apparent differences, these problems in fact have much
common structure (e.g., Bistarelli et al. (1997); Dechter
(1999); Aji & McEliece (2000); Wilson (2005); Green
et al. (2007); Dechter & Mateescu (2007); Bacchus et al.
(2009)); namely, that each consists of summing a function
over a semiring. For example, in the Boolean semiring the
sum and product operations are disjunction and conjunc-
tion, and deciding satisfiability is summing a Boolean for-
mula over all truth assignments. MPE inference is summa-
tion over all states in the max-product semiring, etc.

We begin by identifying and proving the sum-product the-
orem, a unifying principle for tractable inference that states
a simple sufficient condition for summation to be tractable
in any semiring: that the factors of every product have dis-
joint scopes. In “flat” representations like graphical models
and conjunctive normal form, consisting of a single prod-
uct of sums, this would allow only trivial models; but in
deep representations like SPNs and negation normal form it
provides remarkable flexibility. Based on the sum-product
theorem, we develop an algorithm for learning representa-
tions that satisfy this condition, thus guaranteeing that the
learned functions are tractable yet expressive. We demon-
strate the power and generality of our approach by applying
it to a new type of structured prediction problem: learning

The Sum-Product Theorem: A Foundation for Learning Tractable Models

a nonconvex function that can be optimized in polynomial
time. Empirically, we show that this greatly outperforms
the standard approach of learning a continuous function
without regard to the cost of optimizing it. We also show
that a number of existing and novel results are corollaries
of the sum-product theorem, propose a general algorithm
for inference in any semiring, define novel tractable classes
of constraint satisfaction problems, integrable and optimiz-
able functions, and database queries, and present a much
simpler proof of the tractability of tractable Markov logic.

2. The sum-product theorem
We begin by introducing our notation and defining several
important concepts. We denote a vector of variables by
X = (X1, . . . , Xn) and its value by x = (x1, . . . , xn)
for xi ∈ Xi for all i, where Xi is the domain of Xi. We
denote subsets (for simplicity, we treat tuples as sets) of
variables as XA,Xa ⊆ X, where the domains XA,Xa are
the Cartesian product of the domains of the variables in
XA,Xa, respectively. We denote (partial) assignments as
a ∈ XA and restrictions of these to XB ⊂ XA as aB . To
indicate compatibility between a ∈ XA and c ∈ XC (i.e.,
that aj = cj for all Xj ∈ XA ∩XC), we write a ∼ c. The
scope of a function is the set of variables it takes as input.
Definition 1. A commutative semiring (R,⊕,⊗, 0, 1) is a
nonempty set R on which the operations of sum (⊕) and
product (⊗) are defined and satisfy the following condi-
tions: (i) (R,⊕) and (R,⊗) are associative and commu-
tative, with identity elements 0, 1 ∈ R such that 0 6= 1,
a⊕ 0 = a, and a⊗ 1 = a for all a ∈ R; (ii) ⊗ distributes
over ⊕, such that a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) for
all a, b, c ∈ R; and (iii) 0 is absorbing for ⊗, such that
a⊗ 0 = 0 for all a ∈ R.
We are interested in computing summations

⊕
x∈X F (x),

for (R,⊕,⊗, 0, 1) a commutative semiring and F : X →
R a function on that semiring, with X a finite set (but see
Section 5.4 for extensions to continuous variables). We re-
fer to such a function as a sum-product function.
Definition 2. A sum-product function (SPF) over (R,X,Φ),
whereR is a semiring, X is a set of variables, and Φ is a set
of constant (φl ∈ R) and univariate functions (φl : Xj →
R for Xj ∈ X), is any of the following: (i) a function
φl ∈ Φ, (ii) a product of SPFs, or (iii) a sum of SPFs.

An SPF S(X) computes a mapping S : X → R and can
be represented by a rooted directed acyclic graph (DAG),
where each leaf node is labeled with a function φl ∈ Φ and
each non-leaf node is labeled with either ⊕ or ⊗ and re-
ferred to as a sum or product node, respectively. Two SPFs
are compatible iff they compute the same mapping; i.e.,
S1(x) = S2(x) for all x ∈ X , where S1(X) and S2(X)
are SPFs. The size of an SPF is the number of edges in the
graph. The DAG rooted at each node v ∈ S represents a

sub-SPF Sv : Xv → R for Xv ⊆ X. Notice that restricting
the leaf functions φl to be univariate incurs no loss of gener-
ality because any mapping ψ : X → R is compatible with
the trivial SPF F (X) =

⊕
x∈X (ψ(x)⊗

⊗n
i=1[Xi = xi]),

where the indicator function [.] has value 1 when its argu-
ment is true, and 0 otherwise (recall that 0 and 1 are the
semiring identity elements). SPFs are similar to arithmetic
circuits (Shpilka & Yehudayoff, 2010), but the leaves of an
SPF are functions instead of variables. Darwiche (2003)
used arithmetic circuits as a data structure to support infer-
ence in Bayesian networks over discrete variables. An im-
portant subclass of SPFs are those that are decomposable.
Definition 3. A product node is decomposable iff the scopes
of its children are disjoint. An SPF is decomposable iff all
of its product nodes are decomposable.

Decomposability is a simple condition that defines a class
of functions for which inference is tractable.
Theorem 1 (Sum-product theorem). Every decomposable
SPF can be summed in time linear in its size.

Proof. The proof is recursive, starting from the leaves of
the SPF. Let S(X) be a decomposable SPF on commutative
semiring (R,⊕,⊗, 0, 1). Every leaf node can be summed
in constant time, because each is labeled with either a con-
stant or univariate function. Now, let v ∈ S be a node, with
Sv(Xv) the sub-SPF rooted at v and Zv =

⊕
Xv
Sv(Xv)

its summation. Let {ci} be the children of v for ci ∈ S,
with sub-SPFs Si(Xi) for Xi ⊆ Xv and summations Zi.
Let Xv\i be the domain of variables Xv\Xi. If v is a sum
node, then Zv =

⊕
Xv

⊕
i Si(Xi) =

⊕
i

⊕
Xv
Si(Xi) =⊕

i

⊕
Xv\i

⊕
Xi
Si(Xi) =

⊕
i Zi ⊗

(⊕
Xv\i

1
)
.

If v is a product node, then any two children
ci, cj for i, j ∈ {1, . . . ,m} have disjoint scopes,
Xi ∩ Xj = ∅, and Zv =

⊕
Xv

⊗
i Si(Xi) =⊕

X1

⊕
Xv\1

⊗
i Si(Xi) =

⊕
X1
S1(X1) ⊗⊕

Xv\1

⊗m
i=2 Si(Xi) =

⊗
i

⊕
Xi
Si(Xi) =

⊗
i Zi. The

above equations only require associativity and commutativ-
ity of⊕ and associativity and distributivity of⊗, which are
properties of a semiring. Thus, any node can be summed
over its domain in time linear in the number of its children,
and S can be summed in time linear in its size.

We assume here that
⊕
Xv\i

1 can be computed in constant
time and that each leaf function can be evaluated in con-
stant time, which is true for all semirings considered. We
also assume that a⊕ b and a⊗ b take constant time for any
elements a, b of semiring R, which is true for most com-
mon semirings. See the supplement1 for details.

The complexity of summation in an SPF can be related to
other notions of complexity, such as treewidth, the most
common and relevant complexity measure across the do-
mains we consider. To define the treewidth of an SPF, we

1http://homes.cs.washington.edu/∼pedrod/papers/mlc16sp.pdf

http://homes.cs.washington.edu/~pedrod/papers/mlc16sp.pdf

The Sum-Product Theorem: A Foundation for Learning Tractable Models

first define junction trees (Lauritzen & Spiegelhalter, 1988;
Aji & McEliece, 2000) and a related class of SPFs.
Definition 4. A junction tree over variables X is a tuple
(T,Q), where T is a rooted tree, Q is a set of subsets of
variables, each vertex i ∈ T contains a subset of variables
Ci ∈ Q such that ∪iCi = X, and for every pair of vertices
i, j ∈ T and for all k ∈ T on the (unique) path from i to
j, Ci ∩Cj ⊆ Ck. The separator for an edge (i, j) ∈ T is
defined as Sij = Ci ∩Cj .

A junction tree provides a schematic for constructing a spe-
cific type of decomposable SPF called a tree-like SPF (a
semiring-generalized version of a construction from Dar-
wiche (2003)). Note that a tree-like SPF is not a tree, how-
ever, as many of its nodes have multiple parents.
Definition 5. A tree-like SPF over variables X is con-
structed from a junction tree T = (T,Q) and functions
{ψi(Ci)} where Ci ∈ Q and i ∈ T , and contains the
following nodes: (i) a node φvt with indicator φt(Xv) =
[Xv = t] for each value t ∈ Xv of each variable Xv ∈ X;
(ii) a (leaf) node ai with value ψi(ci) and a product node
ci for each value ci ∈ XCi

of each cluster Ci; (iii) a sum
node sij for each value sij ∈ XSij of each separator Sij ,
and (iv) a single root sum node s.

A product node cj and a sum node sij are compatible iff
their corresponding values are compatible; i.e., cj ∼ sij .
The nodes are connected as follows. The children of the
root s are all product nodes cr for r the root of T . The
children of product node cj are all compatible sum nodes
sij for each child i of j, the constant node aj with value
ψj(cj), and all indicator nodes φvt such that Xv ∈ Cj ,
t ∼ cj , and Xv /∈ Ck for k any node closer to the root of
T than j. The children of sum node sij are the compatible
product nodes ci of child i of j connected by separator Sij .

If S is a tree-like SPF with junction tree (T,Q), then it
is not difficult to see both that S is decomposable, since
the indicators for each variable all appear at the same
level, and that each sum node sjk computes Ssjk(Sjk) =⊕

(c∈XCj
)∼sjk ψj(c)⊗[Cj = c]⊗

(⊗
i∈Ch(j) Ssij (cSij

)
)
,

where the indicator children of cj have been combined into
[Cj = c], Ch(j) are the children of j, and i, j, k ∈ T with j
the child of k. Further, S(x) =

⊗
i∈T ψi(xCi

) for any x ∈
X . Thus, tree-like SPFs provide a method for decomposing
an SPF. For a tree-like SPF to be compatible with an SPF
F , it cannot assert independencies that do not hold in F .
Definition 6. Let F (U) be an SPF over variables U
with pairwise-disjoint subsets X,Y,W ⊆ U. Then X
and Y are conditionally independent in F given W iff
F (X,Y,w) = F (X,w)⊗F (Y,w) for all w ∈ W , where
F (X) =

⊕
Y F (X,Y) for {X,Y} a partition of U.

Similarly, a junction tree T = (T,Q) is incompatible with
F if it asserts independencies that are not in F , where vari-

ables X and Y are conditionally independent in T given
W if W separates X from Y . A set of variables W sepa-
rates X and Y in T iff after removing all vertices {i ∈ T :
Ci ⊆W} from T there is no pair of vertices i, j ∈ T such
that X ∈ Ci, Y ∈ Cj , and i, j are connected.

Inference complexity is commonly parameterized by
treewidth, defined for a junction tree T = (T,Q) as
the size of the largest cluster minus one; i.e., tw(T) =
maxi∈T |Ci| − 1. The treewidth of an SPF S is the min-
imum treewidth over all junction trees compatible with S.
Notice that these definitions of junction tree and treewidth
reduce to the standard ones (Kask et al., 2005). If the
treewidth of S is bounded then inference in S is efficient
because there must exist a compatible tree-like SPF that
has bounded treewidth. Note that the trivial junction tree
with only a single cluster is compatible with every SPF.
Corollary 1. Every SPF with bounded treewidth can be
summed in time linear in the cardinality of its scope.

Due to space limitations, all other proofs are provided in the
supplement. For any SPF, tree-like SPFs are just one type
of compatible SPF, one with size exponential in treewidth;
however, there are many other compatible SPFs. In fact,
there can be compatible (decomposable) SPFs that are ex-
ponentially smaller than any compatible tree-like SPF.
Corollary 2. Not every SPF that can be summed in time
linear in the cardinality of its scope has bounded treewidth.

Given existing work on tractable high-treewidth inference,
it is perhaps surprising that the above results do not exist
in the literature at this level of generality. Most relevant
is the preliminary work of Kimmig et al. (2012), which
proposes a semiring generalization of arithmetic circuits
for knowledge compilation and does not address learning.
Their main results show that summation of circuits that are
both decomposable and either deterministic or based on
an idempotent sum takes time linear in their size, whereas
we show that decomposability alone is sufficient, a much
weaker condition. In fact, over the same set of variables,
deterministic circuits may be exponentially larger and are
never smaller than non-deterministic circuits (Darwiche &
Marquis, 2002; Kimmig et al., 2012). We note that while
decomposable circuits can be made deterministic by in-
troducing hidden variables, this does not imply that these
properties are equivalent.

Even when restricted to specific semirings, such as those
for logical and probabilistic inference (e.g., Darwiche
(2001; 2003); Poon & Domingos (2011)), some of our re-
sults have not previously been shown formally, although
some have been foreshadowed informally. Further, exist-
ing semiring-specific results (discussed further below) do
not make it clear that the semiring properties are all that
is required for tractable high-treewidth inference. Our re-
sults are thus simpler and more general. Further, the sum-

The Sum-Product Theorem: A Foundation for Learning Tractable Models

product theorem provides the basis for general algorithms
for inference in arbitrary SPFs (Section 3) and for learn-
ing tractable high-treewidth representations (i.e., decom-
posable SPFs) in any semiring (Section 4).

3. Inference in non-decomposable SPFs
Inference in arbitrary SPFs can be performed in a variety
of ways, some more efficient than others. We present an
algorithm for summing an SPF that adapts to the structure
of the SPF and can thus take exponentially less time
than constructing and summing a compatible tree-like
SPF (Bacchus et al., 2009), which imposes a uniform de-
composition structure. SPF S with root node r is summed
by calling SUMSPF(r), for which pseudocode is shown in
Algorithm 1. SUMSPF is a simple recursive algorithm for
summing an SPF (note the similarity between its structure
and the proof of the sum-product theorem). If S is decom-
posable, then SUMSPF simply recurses to the bottom of
S, sums the leaf functions, and evaluates S in an upward
pass. If S is not decomposable, SUMSPF decomposes
each product node it encounters while summing S.

Algorithm 1 Sum an SPF.
Input: node v, the root of the sub-SPF Sv(Xv)
Output: sum, which is equal to

⊕
v∈Xv

Sv(v)

1: function SUMSPF(v)
2: if 〈v, sum〉 in cache then return sum
3: if v is a sum node then // Xv\c = Xv\Xc

4: sum←
⊕

c∈Ch(v) SUMSPF(c)⊗
⊕
Xv\c

1
5: else if v is a product node then
6: if v is decomposable then
7: sum←

⊗
c∈Ch(v) SUMSPF(c)

8: else
9: sum← SUMSPF(DECOMPOSE(v))

10: else // v is a leaf with constant a or function φv

11: if v is a constant then sum← a
12: else sum←

⊕
xj∈Xj

φv(xj)

13: cache 〈v, sum〉
14: return sum

Decomposition can be achieved in many different ways,
but we base our method on a common algorithmic pattern
that already occurs in many of the inference problems we
consider, resulting in a general, semiring-independent algo-
rithm for summing any SPF. DECOMPOSE, shown in Algo-
rithm 2, chooses a variable Xt that appears in the scope of
multiple of v’s children; creates |Xt| partially assigned and
simplified copies Svi of the sub-SPF Sv for Xt assigned
to each value xi ∈ Xt; multiplies each Svi by an indicator
to ensure that only one is ever non-zero when S is evalu-
ated; and then replaces v with a sum over {Svi}. Any node
u ∈ Sv that does not have Xt in its scope is re-used across
each Svi , which can drastically limit the amount of dupli-
cation that occurs. Furthermore, each Svi is simplified by

Algorithm 2 Decompose a product node.
Input: product node v, with children {c}
Output: node s, such that its children are decomposable

with respect to Xt and Ss, Sv are compatible
1: function DECOMPOSE(v)
2: Xt← choose var. that appears in multiple Xc

3: Xv\t←Xv\{Xt}
4: s← create new sum node
5: for all xi ∈ Xt do
6: create simplified Svi(Xv\t)← Sv(Xv\t, xi)
7: set vi as child of s // vi is the root of Svi

8: set f(Xt) = [Xt = xi] as child of vi
9: set s as a child of each of v’s parents

10: remove v and all edges containing v
11: return s

removing any nodes that became 0 when setting Xt = xi.
Variables are chosen heuristically; a good heuristic min-
imizes the amount of duplication that occurs. Similarly,
SUMSPF heuristically orders the children in lines 4 and 7.
A good ordering will first evaluate children that may return
an absorbing value (e.g., 0 for ⊗) because SUMSPF can
break out of these lines if this occurs. In general, decom-
posing an SPF is hard, and the resulting decomposed SPF
may be exponentially larger than the input SPF, although
good heuristics can often avoid this. Many extensions to
SUMSPF are also possible, some of which we detail in later
sections. Understanding inference in non-decomposable
SPFs is important for future work on extending SPF learn-
ing to even more challenging classes of functions, particu-
larly those without obvious decomposability structure.

4. Learning tractable representations
Instead of performing inference in an intractable model,
it can often be simpler to learn a tractable representation
directly from data (e.g., Bach & Jordan (2001); Gens &
Domingos (2013)). The general problem we consider is
that of learning a decomposable SPF S : X → R on
a semiring (R,⊕,⊗, 0, 1) from a set of i.i.d. instances
T = {(x(i), y(i))} drawn from a fixed distribution DX×R,
where y(i) =

⊕
Z F (x(i),Z), F is some (unknown) SPF,

and Z is a (possibly empty) set of unobserved variables
or parameters, such that S(x(i)) ≈ y(i), for all i. After
learning,

⊕
X S(X) can be computed efficiently. In the

sum-product semiring, this corresponds to summation (or
integration), for which estimation of a joint probability dis-
tribution over X is a special case.

For certain problems, such as constraint satisfaction or
MPE inference, the desired quantity is the argument of the
sum. This can be recovered (if meaningful in the current
semiring) from an SPF by a single downward pass that re-
cursively selects all children of a product node and the (or
a) active child of a sum node (e.g., the child with the small-

The Sum-Product Theorem: A Foundation for Learning Tractable Models

Algorithm 3 Learn a decomposable SPF from data.

Input: a dataset T = {(x(i), y(i))} over variables X
Input: integer thresholds t, v > 0
Output: S(X), an SPF over the input variables X

1: function LEARNSPF(T,X)
2: if |T | ≤ t or |X| ≤ v then
3: estimate S(X) such that S(x(i)) ≈ y(i) for all i
4: else
5: decompose X into disjoint subsets {Xi}
6: if |{Xi}| > 1 then
7: S(X)←

⊗
i LEARNSPF(T,Xi)

8: else
9: cluster T into subsets of similar instances {Tj}

10: S(X)←
⊕

j LEARNSPF(Tj ,X)
11: return S(X)

est value if minimizing). Learning for this domain corre-
sponds to a generalization of learning for structured predic-
tion (Taskar et al., 2005). Formally, the problem is to learn
an SPF S from instances T = {(x(i),y(i))}, where y(i) =
arg⊕y∈Y F (x(i),y), such that arg⊕y∈Y S(x(i),y) ≈
y(i), for all i. Here, x(i) can be an arbitrarily structured in-
put and inference is over the variables Y. Both of the above
learning problems can be solved by the algorithm schema
we present, with minor differences in the subroutines.
We focus here on the former but discuss the latter below,
alongside experiments on learning nonconvex functions
that, by construction, can be efficiently optimized.

As shown by the sum-product theorem, the key to tractable
inference is to identify the decomposability structure of an
SPF. The difficulty, however, is that in general this structure
varies throughout the space. For example, as a protein folds
there exist conformations of the protein in which two par-
ticular amino acids are energetically independent (decom-
posable), and other conformations in which these amino
acids directly interact, but in which other amino acids may
no longer interact. This suggests a simple algorithm, which
we call LEARNSPF (shown in Algorithm 3), that first tries
to identify a decomposable partition of the variables and,
if successful, recurses on each subset of variables in order
to find finer-grained decomposability. Otherwise, LEARN-
SPF clusters the training instances, grouping those with
analogous decomposition structure, and recurses on each
cluster. Once either the set of variables is small enough to
be summed over (in practice, unary leaf nodes are rarely
necessary) or the number of instances is too small to con-
tain meaningful statistical information, LEARNSPF simply
estimates an SPF S(X) such that S(x(i)) ≈ y(i) for all i
in the current set of instances. LEARNSPF is a generaliza-
tion of LearnSPN (Gens & Domingos, 2013), a simple but
effective SPN structure learning algorithm.

LEARNSPF is actually an algorithm schema that can be
instantiated with different variable partitioning, cluster-

ing, and leaf creation subroutines for different semir-
ings and problems. To successfully decompose the vari-
ables, LEARNSPF must find a partition {X1,X2} of the
variables X such that

⊕
X S(X) ≈ (

⊕
X1
S1(X1)) ⊗

(
⊕
X2
S2(X2)). We refer to this as approximate decom-

posability. In probabilistic inference, mutual information
or pairwise independence tests can be used to determine
decomposability (Gens & Domingos, 2013). For our ex-
periments, decomposable partitions correspond to the con-
nected components of a graph over the variables in which
correlated variables are connected. Instances can be clus-
tered by virtually any clustering algorithm, such as a naive
Bayes mixture model or k-means, which we use in our ex-
periments. Instances can also be split by conditioning on
specific values of the variables, as in SUMSPF or in a deci-
sion tree. Similarly, leaf functions can be estimated using
any appropriate learning algorithm, such as linear regres-
sion or kernel density estimation.

In Section 6, we present preliminary experiments on learn-
ing nonconvex functions that can be globally optimized
in polynomial time. However, this is just one particular
application of LEARNSPF, which can be used to learn a
tractable representation for any problem that consists of
summation over a semiring. In the following section, we
briefly discuss common inference problems that corre-
spond to summing an SPF on a specific semiring. For each,
we demonstrate the benefit of the sum-product theorem,
relate its core algorithms to SUMSPF, and specify the
problem solved by LEARNSPF. Additional details and
semirings can be found in the supplement. Table 1 provides
a summary of some of the relevant inference problems.

5. Applications to specific semirings
5.1. Logical inference
Consider the Boolean semiring B = (B,∨,∧, 0, 1), where
B = {0, 1}, ∨ is logical disjunction (OR), and ∧ is log-
ical conjunction (AND). If each variable is Boolean and
leaf functions are literals (i.e., each φl(Xj) is Xj or ¬Xj ,
where ¬ is logical negation), then SPFs on B correspond
exactly to negation normal form (NNF), a DAG-based rep-
resentation of a propositional formula (sentence) (Barwise,
1982). An NNF can be exponentially smaller than the same
sentence in a standard (flat) representation such as con-
junctive or disjunctive normal form (CNF or DNF), and
is never larger (Darwiche & Marquis, 2002). Summation
of an NNF F (X) on B is

∨
X F (X), which corresponds

to propositional satisfiability (SAT): the problem of deter-
mining if there exists a satisfying assignment for F . Thus,
the tractability of SAT for decomposable NNFs follows di-
rectly from the sum-product theorem.
Corollary 3 (Darwiche, 2001). The satisfiability of a de-
composable NNF is decidable in time linear in its size.
Satisfiability of an arbitrary NNF can be determined either

The Sum-Product Theorem: A Foundation for Learning Tractable Models

Table 1. Some of the inference problems that correspond to summing an SPF on a specific semiring, with details on the variables and leaf
functions and a core algorithm that is an instance of SUMSPF. B = {0, 1}. N and R denote the natural and real numbers. Subscript +
denotes the restriction to non-negative numbers and subscript (−)∞ denotes the inclusion of (negative)∞. Um denotes the universe of
relations of arity up tom (see Section E of the supplement). N[X] denotes the polynomials with coefficients from N. See the supplement
for information on MPE-SAT (Sang et al., 2007) and Generic-Join (Ngo et al., 2014).

Domain Inference task Semiring Variables Leaf functions SUMSPF
Logical
inference

SAT (B,∨,∧, 0, 1) Boolean Literals DPLL
#SAT (N,+,×, 0, 1) Boolean Literals #DPLL
MAX-SAT (N−∞,max,+,−∞, 0) Boolean Literals MPE-SAT

Constraint
satisfaction

CSPs (B,∨,∧, 0, 1) Discrete Univariate constraints Backtracking
Fuzzy CSPs ([0, 1],max,min, 0, 1) Discrete Univariate constraints -
Weighted CSPs (R+,∞,min,+,∞, 0) Discrete Univariate constraints -

Probabilistic
inference

Marginal (R+,+,×, 0, 1) Discrete Potentials Recursive
conditioningMPE (R+,max,×, 0, 1) Discrete Potentials

Continuous
functions

Integration (R+,+,×, 0, 1) Continuous Univariate functions -
Optimization (R∞,min,+,∞, 0) Continuous Univariate functions RDIS

Relational
databases

Unions of CQs (Um,∪, ./,∅,1R) Sets of tuples Unary tuples Generic-Join
Provenance (N[X],+,×, 0, 1) Discrete K-relation tuples -

by decomposing the NNF or by expanding it to a CNF and
using a SAT solver. DPLL (Davis et al., 1962), the stan-
dard algorithm for solving SAT, is an instance of SUMSPF
(see also Huang & Darwiche (2007)). Specifically, DPLL
is a recursive algorithm that at each level chooses a variable
X ∈ X for CNF F (X) and computes F = F |X=0∨F |X=1

by recursing on each disjunct, where F |X=x is F with X
assigned value x. Thus, each level of recursion of DPLL
corresponds to a call to DECOMPOSE.

Learning in the Boolean semiring is a well-studied area,
which includes problems from learning Boolean cir-
cuits (Jukna, 2012) (of which decomposable SPFs are a
restricted subclass, known as syntactically multilinear cir-
cuits) to learning sets of rules (Rivest, 1987). However,
learned rule sets are typically encoded in large CNF knowl-
edge bases, making reasoning over them intractable. In
contrast, decomposable NNF is a tractable but expressive
formalism for knowledge representation that supports a
rich class of polynomial-time logical operations, including
SAT (Darwiche, 2001). Thus, LEARNSPF in this semiring
provides a method for learning large, complex knowledge
bases that are encoded in decomposable NNF and there-
fore support efficient querying, which could greatly benefit
existing rule learning systems.

5.2. Constraint satisfaction.
A constraint satisfaction problem (CSP) consists of a
set of constraints {Ci} on variables X, where each
constraint Ci(Xi) specifies the satisfying assign-
ments to its variables. Solving a CSP consists of
finding an assignment to X that satisfies each con-
straint. When constraints are functions Ci : Xi → B
that are 1 when Ci is satisfied and 0 otherwise, then

F (X) =
∧

i Ci(Xi) =
∧

i

∨
xi∈Xi

(
Ci(xi) ∧ [Xi =

xi]
)

=
∧

i

∨
xi∈Xi

(
Ci(xi) ∧

∧
Xt∈Xi

[Xt = xit]
)

is a
CSP and F is an SPF on the Boolean semiring B, i.e., an
OR-AND network (OAN), a generalization of NNF, and
a decomposable CSP is one with a decomposable OAN.
Solving F corresponds to computing

∨
X F (X), which is

summation on B (see also Bistarelli et al. (1997); Chang &
Mackworth (2005); Rollon et al. (2013)). The solution for
F can be recovered with a downward pass that recursively
selects the (or a) non-zero child of an OR node, and all chil-
dren of an AND node. Corollary 4 follows immediately.
Corollary 4. Every decomposable CSP can be solved in
time linear in its size.
Thus, for inference to be efficient it suffices that the CSP
be expressible by a tractably-sized decomposable OAN;
a much weaker condition than that of low treewidth.
Like DPLL, backtracking-based search algorithms (Kumar,
1992) for CSPs are also instances of SUMSPF (see also
Mateescu & Dechter (2005)). Further, SPFs on a number of
other semirings correspond to various extensions of CSPs,
including fuzzy, probabilistic, and weighted CSPs (see Ta-
ble 1 and Bistarelli et al. (1997)).

LEARNSPF for CSPs addresses a variant of structured
prediction (Taskar et al., 2005); specifically, learning a
function F : X → B such that arg

∨
y F (x(i),y) ≈ y(i)

for training data {(x(i),y(i))}, where x(i) is a structured
object representing a CSP and y(i) is its solution. LEARN-
SPF solves this problem while guaranteeing that the
learned CSP remains tractable. This is a much simpler and
more attractive approach than existing constraint learning
methods such as Lallouet et al. (2010), which uses induc-
tive logic programming and has no tractability guarantees.

The Sum-Product Theorem: A Foundation for Learning Tractable Models

5.3. Probabilistic inference
Many probability distributions can be compactly repre-
sented as graphical models: P (X) = 1

Z

∏
i ψi(Xi), where

ψi is a potential over variables Xi ⊆ X and Z is known
as the partition function (Pearl, 1988). One of the main
inference problems in graphical models is to compute the
probability of evidence e ∈ XE for variables XE ⊆ X,
P (e) =

∑
XE

P (e,XE), where XE = X\XE . The par-
tition function Z is the unnormalized probability of empty
evidence (XE = ∅). Unfortunately, computing Z or P (e)
is generally intractable. Building on a number of earlier
works (Darwiche, 2003; Dechter & Mateescu, 2007; Bac-
chus et al., 2009), Poon & Domingos (2011) introduced
sum-product networks (SPNs), a class of distributions in
which inference is guaranteed to be tractable. An SPN
is an SPF on the non-negative real sum-product semiring
(R+,+,×, 0, 1). A graphical model is a flat SPN, in the
same way that a CNF is a flat NNF (Darwiche & Marquis,
2002). For an SPN S, the unnormalized probability of evi-
dence e ∈ XE for variables XE is computed by replacing
each leaf function φl ∈ {φl(Xj) ∈ S|Xj ∈ XE} with
the constant φl(ej) and summing the SPN. The corollary
below follows immediately from the sum-product theorem.
Corollary 5. The probability of evidence in a decompos-
able SPN can be computed in time linear in its size.

A similar result (shown in the supplement) for finding the
most probable state of the non-evidence variables also fol-
lows from the sum-product theorem. One important conse-
quence of the sum-product theorem is that decomposability
is the sole condition required for an SPN to be tractable;
previously, completeness was also required (Poon &
Domingos, 2011; Gens & Domingos, 2013). This expands
the range of tractable SPNs and simplifies the design of
tractable representations based on them, such as tractable
probabilistic knowledge bases (Domingos & Webb, 2012).

Most existing algorithms for inference in graphical mod-
els correspond to different methods of decomposing a flat
SPN, and can be loosely clustered into tree-based, condi-
tioning, and compilation methods, all of which SUMSPF
generalizes. Details are provided in the supplement.
LEARNSPF for SPNs corresponds to learning a probabil-
ity distribution from a set of samples {(x(i), y(i))}. Note
that y(i) in this case is defined implicitly by the empiri-
cal frequency of x(i) in the dataset. Learning the param-
eters and structure of SPNs is a fast-growing area of re-
search (e.g., Gens & Domingos (2013); Rooshenas & Lowd
(2014); Peharz et al. (2014); Adel et al. (2015)), and we re-
fer readers to these references for more details.

5.4. Integration and optimization
SPFs can be generalized to continuous (real) domains,
where each variable Xi has domain Xi ⊆ R and the semir-
ing set is a subset of R∞. For the sum-product theo-

rem to hold, the only additional conditions are that (C1)⊕
Xj
φl(Xj) is computable in constant time for all leaf

functions, and (C2)
⊕
Xv\c

1 6=∞ for all sum nodes v ∈ S
and all children c ∈ Ch(v), where Xv\c is the domain of
Xv\c = Xv\Xc.
Integration. In the non-negative real sum-product semir-
ing (R+,+,×, 0, 1), summation of an SPF with contin-
uous variables corresponds to integration over X . Ac-
cordingly, we generalize SPFs as follows. Let µ1, . . . , µn

be measures over X1, . . . ,Xn, respectively, where each
leaf function φl : Xj → R+ is integrable with re-
spect to µj , which satisfies (C1). Summation (integra-
tion) of an SPF S(X) then corresponds to computing∫
X S(X)dµ =

∫
X1
· · ·
∫
Xn
S(X)dµ1 · · · dµn. For (C2),⊕

Xv\c
1 =

∫
Xv\c

1 dµv\c must be integrable for all sum
nodes v ∈ S and all children c ∈ Ch(v), where dµv\c =∏
{j:Xj∈Xv\c} dµj . We thus assume that either µv\c has

finite support over Xv\c or that Xv\c = ∅. Corollary 6
follows immediately.
Corollary 6. Every decomposable SPF of real variables
can be integrated in time linear in its size.
Thus, decomposable SPFs define a class of functions for
which exact integration is tractable. SUMSPF defines a
novel algorithm for (approximate) integration that is based
on recursive problem decomposition, and can be exponen-
tially more efficient than standard integration algorithms
such as trapezoidal or Monte Carlo methods (Press et al.,
2007) because it dynamically decomposes the problem at
each recursion level and caches intermediate computations.
More detail is provided in the supplement.

In this semiring, LEARNSPF learns a decomposable con-
tinuous SPF S : X → R+ on samples {(x(i), y(i) =
F (x(i)))} from an SPF F : X → R+, where S can be
integrated efficiently over the domain X . Thus, LEARN-
SPF provides a novel method for learning and integrating
complex functions, such as the partition function of contin-
uous probability distributions.

Nonconvex optimization. Summing a continuous SPF
in one of the min-sum, min-product, max-sum, or max-
product semirings corresponds to optimizing a (potentially
nonconvex) continuous objective function. Our results
hold for all of these, but we focus here on the real min-
sum semiring (R∞,min,+,∞, 0), where summation of a
min-sum function (MSF) F (X) corresponds to computing
minX F (X). A flat MSF is simply a sum of terms. To sat-
isfy (C1), we assume that minxj∈Xj

φl(xj) is computable
in constant time for all φl ∈ F . (C2) is trivially satisfied
for min. The corollary below follows immediately.
Corollary 7. The global minimum of a decomposable MSF
can be found in time linear in its size.

SUMSPF provides an outline for a general nonconvex
optimization algorithm for sum-of-terms (or product-of-

The Sum-Product Theorem: A Foundation for Learning Tractable Models

factors) functions. The recent RDIS algorithm for non-
convex optimization (Friesen & Domingos, 2015), which
achieves exponential speedups compared to other algo-
rithms, is an instance of SUMSPF where values are chosen
via multi-start gradient descent and variables in DECOM-
POSE are chosen by graph partitioning. Friesen & Domin-
gos (2015), however, do not specify tractability conditions
for the optimization; thus, Corollary 7 defines a novel class
of functions that can be efficiently globally optimized.

For nonconvex optimization, LEARNSPF solves a variant
of structured prediction (Taskar et al., 2005), in which the
variables to predict are continuous instead of discrete (e.g.,
protein folding, structure from motion (Friesen & Domin-
gos, 2015)). The training data is a set {(x(i),y(i))}, where
x(i) is a structured object representing a nonconvex func-
tion and y(i) is a vector of values specifying the global
minimum of that function. LEARNSPF learns a function
S : X ×Y → R∞ such that arg miny∈Y S(x(i),y) ≈ y(i),
where the arg min can be computed efficiently because S
is decomposable. More detail is provided in Section 6.

6. Experiments
We evaluated LEARNSPF on the task of learning a noncon-
vex decomposable min-sum function (MSF) from a train-
ing set of solutions of instances of a highly-multimodal
test function consisting of a sum of terms. By learning an
MSF, instead of just a sum of terms, we learn the general
mathematical form of the optimization problem in such a
way that the resulting learned problem is tractable, whereas
the original sum of terms is not. The test function we
learn from is a variant of the Rastrigin function (Torn &
Zilinskas, 1989), a standard highly-multimodal test func-
tion for global optimization consisting of a sum of multi-
dimensional sinusoids in quadratic basins. The function,
FX(Y) = F (Y;X), has parameters X, which determine
the dependencies between the variables Y and the location
of the minima. To test LEARNSPF, we sampled a dataset
of function instances T = {(x(i),y(i))}mi=1 from a distri-
bution over X × Y , where y(i) = arg miny∈Y Fx(i)(y).

LEARNSPF partitioned variables Y based on the con-
nected components of a graph containing a node for each
Yi ∈ Y and an edge between two nodes only if Yi and
Yj were correlated, as measured by Spearman rank corre-
lation. Instances were clustered by running k-means on the
values y(i). For this preliminary test, LEARNSPF did not
learn the leaf functions of the learned min-sum function
(MSF) M(Y); instead, when evaluating or minimizing a
leaf node in M , we evaluated or minimized the test func-
tion with all variables not in the scope of the leaf node fixed
to 0 (none of the optima were positioned at 0). This corre-
sponds to having perfectly learned leaf nodes if the scopes
of the leaf nodes accurately reflect the decomposability of
F , otherwise a large error is incurred. We did this to study

Number of variables

0 50 100 150 200A
v

g
.

m
in

im
u

m
 f

o
u

n
d

0

200

400
Learned MSF with multistart L-BFGS

Multistart L-BFGS

Figure 1. The average minimum found over 20 samples of the
test function versus the number of variables, with standard error
bars. Each function was optimized for the same amount of time.

the effect of learning the decomposability structure in isola-
tion from the error due to learning leaf nodes. The function
used for comparison is also perfectly learned. Thresholds t
and v were set to 30 and 2, respectively.

The dataset was split into 300 training samples and 50 test
samples, where minY Fx(i)(Y) = 0 for all i for com-
parison purposes. After training, we computed yM =
arg minYM(Y) for each function in the test set by first
minimizing each leaf function (with respect to only those
variables in the scope of the leaf function) with multi-start
L-BFGS (Liu & Nocedal, 1989) and then performing an
upward and a downward pass in M . Figure 1 shows the re-
sult of minimizing the learned MSF M and evaluating the
test function at yM (blue line) compared to running multi-
start L-BFGS directly on the test function and reporting the
minimum found (red line), where both optimizations are
run for the same fixed amount of time (one minute per test
sample). LEARNSPF accurately learned the decomposition
structure of the test function, allowing it to find much bet-
ter minima when optimized, since optimizing many small
functions at the leaves requires exploring exponentially
fewer modes than optimizing the full function. Additional
experimental details are provided in the supplement.

7. Conclusion
This paper developed a novel foundation for learning
tractable representations in any semiring based on the sum-
product theorem, a simple tractability condition for all in-
ference problems that reduce to summation on a semiring.
With it, we developed a general inference algorithm and
an algorithm for learning tractable representations in any
semiring. We demonstrated the power and generality of
our approach by applying it to learning a nonconvex func-
tion that can be optimized in polynomial time, a new type
of structured prediction problem. We showed empirically
that our learned function greatly outperforms a continuous
function learned without regard to the cost of optimizing
it. We also showed that the sum-product theorem specifies
an exponentially weaker condition for tractability than low
treewidth and that its corollaries include many previous re-
sults in the literature, as well as a number of novel results.

The Sum-Product Theorem: A Foundation for Learning Tractable Models

Acknowledgments
This research was partly funded by ONR grants N00014-
13-1-0720 and N00014-12-1-0312, and AFRL contract
FA8750-13-2-0019. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of ONR, AFRL, or the United
States Government.

References
Adel, T., Balduzzi, D., and Ghodsi, A. Learning the struc-

ture of sum-product networks via an SVD-based algo-
rithm. In Proceedings of the 31st Conference on Uncer-
tainty in Artificial Intelligence, pp. 32–41, 2015.

Aji, S. M. and McEliece, R. J. The generalized distributive
law. IEEE Transactions on Information Theory, 46:325–
343, 2000.

Bacchus, F., Dalmao, S., and Pitassi, T. Solving #SAT and
Bayesian inference with backtracking search. Journal of
Artificial Intelligence Research, 34:391–442, 2009.

Bach, F. and Jordan, M. I. Thin junction trees. In Advances
in Neural Information Processing Systems, pp. 569–576,
2001.

Barwise, J. Handbook of mathematical logic. Elsevier,
1982.

Bistarelli, S., Montanari, U., and Rossi, F. Semiring-based
constraint satisfaction and optimization. Journal of the
ACM, 44:201–236, 1997.

Chandrasekaran, V., Srebro, N., and Harsha, P. Complex-
ity of inference in graphical models. In Proceedings of
the 24th Conference on Uncertainty in Artificial Intelli-
gence, pp. 70–78, 2008.

Chang, L. and Mackworth, A. K. A generalization of gen-
eralized arc consistency: From constraint satisfaction to
constraint-based inference. In Proceedings of the IJCAI-
05 Workshop on Modeling and Solving Problems with
Constraints, 2005.

Chechetka, A. and Guestrin, C. Efficient principled learn-
ing of thin junction trees. In Advances in Neural Infor-
mation Processing Systems, pp. 273–280, 2007.

Darwiche, A. and Marquis, P. A knowledge compilation
map. Journal of Artificial Intelligence Research, 17:
229–264, 2002.

Darwiche, A. Decomposable negation normal form. Jour-
nal of the ACM, 48:608–647, 2001.

Darwiche, A. A differential approach to inference in
Bayesian networks. Journal of the ACM, 50:280–305,
2003.

Davis, M., Logemann, G., and Loveland, D. A machine
program for theorem-proving. Communications of the
ACM, 5:394–397, 1962.

Dechter, R. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence, 113:41–85, 1999.

Dechter, R. and Mateescu, R. AND/OR search spaces for
graphical models. Artificial intelligence, 171:73–106,
2007.

Domingos, P. and Webb, W. A. A tractable first-order prob-
abilistic logic. In Proceedings of the 26th Conference on
Artificial Intelligence, pp. 1902–1909, 2012.

Domingos, P., Niepert, M., and Lowd, D. (eds.). Proceed-
ings of the ICML-14 Workshop on Learning Tractable
Probabilistic Models. ACM, 2014.

Friesen, A. L. and Domingos, P. Recursive Decomposition
for Nonconvex Optimization. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence,
pp. 253–259, 2015.

Gens, R. and Domingos, P. Discriminative learning of sum-
product networks. In Advances in Neural Information
Processing Systems, pp. 3239–3247, 2012.

Gens, R. and Domingos, P. Learning the structure of sum-
product networks. In Proceedings of the 30th Interna-
tional Conference on Machine Learning, pp. 873–880,
2013.

Green, T., Karvounarakis, G., and Tannen, V. Provenance
semirings. In Proceedings of the 26th ACM SIGMOD-
SIGACT-SIGART symposium on Principles of Database
Systems, pp. 31–40. ACM Press, 2007.

Huang, J. and Darwiche, A. The language of search.
Journal of Artificial Intelligence Research, 29:191–219,
2007.

Jukna, S. Boolean Function Complexity. Springer Berlin
Heidelberg, 2012.

Kask, K., Dechter, R., Larrosa, J., and Dechter, A. Unify-
ing tree decompositions for reasoning in graphical mod-
els. Artificial Intelligence, 166:165–193, 2005.

Kimmig, A., Van Den Broeck, G., and De Raedt, L. Alge-
braic model counting. arXiv preprint arXiv:1211.4475,
2012.

Kumar, V. Algorithms for constraint-satisfaction problems:
A survey. AI Magazine, 13:32–44, 1992.

The Sum-Product Theorem: A Foundation for Learning Tractable Models

Lallouet, A., Lopez, M., Martin, L., and Vrain, C. On
learning constraint problems. Proceedings of the Inter-
national Conference on Tools with Artificial Intelligence,
1:45–52, 2010.

Lauritzen, S. L. and Spiegelhalter, D. J. Local computa-
tions with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Sta-
tistical Society, 50(2):157–224, 1988.

Liu, D. C. and Nocedal, J. On the limited memory BFGS
method for large scale optimization. Mathematical Pro-
gramming, 45:503–528, 1989.

Mateescu, R. and Dechter, R. The relationship between
AND/OR search spaces and variable elimination. In Pro-
ceedings of the 21st Conference on Uncertainty in Arti-
ficial Intelligence, pp. 380–387, 2005.

Ngo, H. Q., Ré, C., and Rudra, A. Skew strikes back. ACM
SIGMOD Record, 42(4):5–16, 2014.

Pearl, J. Probabilistic Reasoning in Intelligent Systems.
Morgan Kauffmann, San Mateo, CA, 1988.

Peharz, R., Gens, R., and Domingos, P. Learning selective
sum-product networks. In Proceedings of the ICML-14
Workshop on Learning Tractable Probabilistic Models,
2014.

Poon, H. and Domingos, P. Sum-product networks: A new
deep architecture. In Proceedings of the 27th Conference
on Uncertainty in Artificial Intelligence, pp. 337–346.
AUAI Press, 2011.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flan-
nery, B. P. Numerical Recipes: The Art of Scientific
Computing (3rd ed.). Cambridge University Press, 2007.

Rivest, R. L. Learning decision lists. Machine Learning, 2:
229–246, 1987.

Rollon, E., Larrosa, J., and Dechter, R. Semiring-based
mini-bucket partitioning schemes. In Proceedings of the
23rd International Joint Conference on Artificial Intelli-
gence, pp. 644–650, 2013.

Rooshenas, A. and Lowd, D. Learning sum-product net-
works with direct and indirect variable interactions. In
Proceedings of the 31st International Conference on Ma-
chine Learning, pp. 710–718, 2014.

Sang, T., Beame, P., and Kautz, H. A dynamic approach
to MPE and weighted MAX-SAT. In Proceedings of the
20th International Joint Conference on Artificial Intelli-
gence, pp. 173–179, 2007.

Shpilka, A. and Yehudayoff, A. Arithmetic circuits: A
survey of recent results and open questions. Founda-
tions and Trends in Theoretical Computer Science, 5:
207–388, 2010.

Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C.
Learning structured prediction models: A large margin
approach. In Proceedings of the 22nd International Con-
ference on Machine Learning, pp. 896–903, 2005.

Torn, A. and Zilinskas, A. Global Optimization. Springer-
Verlag, 1989.

Wilson, N. Decision diagrams for the computation of
semiring valuations. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence, pp.
331–336, 2005.

