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Abstract

We give faster algorithms and improved sam-
ple complexities for the fundamental problem of
estimating the top eigenvector. Given an ex-
plicit matrix A € R"*¢, we show how to com-
pute an e approximate top eigenvector of AT A

in time O ([nnz(A) + dgsgi)é‘)} -log 1/6). Here
nnz(A) is the number of nonzeros in A, sr(A) is

the stable rank, and gap is the relative eigengap.

We also consider an online setting in which,
given a stream of i.i.d. samples from a distribu-
tion D with covariance matrix 3 and a vector z
which is an O(gap) approximate top eigenvector
for 32, we show how to refine x( to an € approx-
v(D)
gap-e
v(D) is a natural notion of variance. Combin-
ing our algorithm with previous work to initialize
x(, we obtain improved sample complexities and
runtimes under a variety of assumptions on D.

imation using O ) samples from D. Here

We achieve our results via a robust analysis of the
classic shift-and-invert preconditioning method.
This technique lets us reduce eigenvector compu-
tation to approximately solving a series of linear
systems with fast stochastic gradient methods.
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1. Introduction

Given A € R™*?, computing the top eigenvector of AT A
is a fundamental problem in numerical linear algebra, ap-
plicable to principal component analysis (Jolliffe, 2002),
spectral clustering and learning (Ng et al., 2002; Vempala
& Wang, 2004), pagerank computation, and many other
graph computations (Page et al., 1999; Koren, 2003; Spiel-
man, 2007). For instance, a degree-k principal component
analysis is nothing more than performing k leading eigen-
vector computations. Given the ever-growing size of mod-
ern datasets, it is thus a key challenge to come up with more
efficient algorithms for this basic computational primitive.

In this work we provide improved algorithms for comput-
ing the top eigenvector, both in the offline case, when A is
given explicitly and in the online or statistical case where
we access samples from a distribution D over R? and wish
to estimate the top eigenvector of the covariance matrix
Eqp [aa’]. In the offline case, our algorithms are the
fastest to date in a wide and meaningful regime of parame-
ters. Notably, while the running time of most popular meth-
ods for eigenvector computations is a product of the size
of the dataset (i.e. number of non-zeros in A) and certain
spectral characteristics of A, which both can be quite large
in practice, we present running times that actually split the
dependency between these two quantities, and as a result
may yield significant speedups. In the online case, our re-
sults yield improved sample complexity bounds and allow
for very efficient streaming implementations with memory
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and processing-time requirements that are proportional to
the size of a single sample.

On a high-level, our algorithms are based on a robust anal-
ysis of the classic idea of shift-and-invert preconditioning
(Saad, 1992), which allows us to efficiently reduce eigen-
vector computation to approximately solving a short se-
quence of well-conditioned linear systems in \I— A T A for
some shift A &~ A1 (A). We apply state-of-the-art stochastic
gradient methods to approximately solve these linear sys-
tems. We believe our results suggest the general effective-
ness of shift-and-invert based approaches and imply that
further computational gains may be reaped in practice.

1.1. Our Approach

The well known power method for computing the top
eigenvector of AT A starts with an initial vector x and re-
peatedly multiplies by AT A, eventually causing z to con-
verge to the top eigenvector. For a random start vector,
convergence requires O(log(d/e€)/gap) iterations, where
gap = (A1 — A2)/A1, A; denotes the ¥ largest eigenvalue
of ATA, and we assume a high-accuracy regime where
€ < gap. The dependence on this gap ensures that the
largest eigenvalue is significantly amplified in comparison
to the remaining values.

If the eigenvalue gap is small, one approach is to replace
AT A with a preconditioned matrix —i.e. a matrix with the
same top eigenvector but a much larger gap. Specifically,
let B =\l — A" A for some shift parameter \. If A > Aq,
we can see that the smallest eigenvector of B (the largest
eigenvector of B™1) is equal to the largest eigenvector of
ATA. Additionally, if A is close to A1, there will be a con-
stant gap between the largest and second largest values of
B!, For example, if A = (1 + gap)\;, then we will have
AL (IB_l) = o = gapl-)\l and A (B7') = /\71>\2 =

2:gap-A1’

This constant factor gap ensures that the power method ap-
plied to B~! converges to the top eigenvector of AT A in
just O(log(d/¢)) iterations. Of course, there is a catch —
each iteration of this shifted-and-inverted power method
must solve a linear system in B, whose condition number
is proportional ﬁ. For small gap, solving this system via
iterative methods is more expensive.

Fortunately, linear system solvers are incredibly well stud-
ied and there are many efficient iterative algorithms we can
adapt to apply B~ approximately. In particular, we show
how to accelerate the iterations of the shifted-and-inverted
power method using variants of Stochastic Variance Re-
duced Gradient (SVRG) (Johnson & Zhang, 2013). Due
to the condition number of B, we will not entirely avoid a
$ dependence, however, we can separate this dependence
from the input size nnz(A).

Typically, stochastic gradient methods are used to optimize
convex functions that are given as the sum of many convex
components. To solve a linear system (M M)z = b we
minimize the convex function f(z) = Jz' (M"M)z —
b"x with components 1;(z) = 3z (mym] )z — Lb'x
where m; is the i*" row of M. Such an approach can be
used to solve systems in AT A, however solving systems
in B = M — ATA requires more care. We require an
analysis of SVRG that guarantees convergence even when
some of our components are non-convex. We give a sim-
ple analysis for this setting, generalizing recent work in the
area (Shalev-Shwartz, 2015; Csiba & Richtarik, 2015).

Given fast approximate solvers for B, the second main
piece of our algorithmic framework is a new error bound
for the shifted-and-inverted power method, showing that
it is robust to approximate linear system solvers, such as
SVRG. We give a general analysis, showing exactly what
accuracy each system must be solved to, allowing for faster
implementations using linear solvers with weaker guar-
antees. Our proofs center around the potential function:
G(z) &
the projections onto the top eigenvector and its complement
respectively. This function resembles tangent based poten-
tial functions used in previous work (Hardt & Price, 2014)
except that we use the B norm rather than the {5 norm.
For the exact power method, this is irrelevant — progress
is identical in both norms (see Lemma 37 of our full ver-
sion). However, ||-||g is a natural norm for measuring the
progress of linear system solvers for B, so our potential
function makes it possible to extend analysis to the case
when B!z is computed up to error ¢ with bounded ||£||.

‘Pv%x ‘B /Py, z|lg, where P,, and P, are

1.2. Our Results

Our algorithmic framework described above offers several
advantages. We obtain improved running times for comput-
ing the top eigenvector in the offline model. In Theorem 16
we give an algorithm running in time

0 <[nnz(A) + dsr?} . |:10g1 + log? d])
gap € gap

where st(A) = ||A[|%/||Al|> < rank(A) is the stable
rank and nnz(A) is the number of non-zero entries. Up
to log factors, our runtime is in many settings proportional
to the input size nnz(A), and so is very efficient for large
matrices. In the case when nnz(A) < dg%g;}) we apply the
results of (Frostig et al., 2015b; Lin et al., 2015) to provide

an accelerated runtime of:

nnz(A)3 (dsr(A))3 d o 1 o 3 d
O([ V/gap HloggaplgeHg gapD'

Finally, in the case when ¢ > gap, our results easily ex-
tend to give gap-free bounds (Theorems 34 and 35 of our
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full paper), identical to those shown above but with gap
replaced by e. Note that our offline results hold for any
A and require no initial knowledge of the top eigenvec-
tor. In Section 6 we discuss how to estimate the param-
eters A1, gap, with modest additional runtime cost. Our
algorithms return an approximate top eigenvector x with
2T AT Az > (1 — €)\;. By choosing error € - gap, we can
ensure that x is actually close to v; — i.e. that |z vy >

1 — e. Further, we obtain the same asymptotic runtime
: 1 2 d ) _ 1 2 _d
since O (log czp T log ng) =0 (log < +log ng).

We compare our runtimes with previous work in Table 1.

In the online case, in Theorem 25, we show how to improve
an O(gap) approximation to the top eigenvector to an e

approximation with constant probability using O (g;f)e)

samples where v(D) is a natural variance measure. Our
algorithm is based on the streaming SVRG algorithm of
(Frostig et al., 2015a). It requires just O(d) amortized time
per sample, uses just O(d) space, and is easily parallelized.
We can apply our result in a variety of regimes, using exist-
ing algorithms to obtain the initial O(gap) approximation
and our algorithm to refine this solution. As shown in Ta-
ble 2, this gives improved runtimes and sample complex-
ities over existing work. Notably, we give better asymp-
totic sample complexity than known matrix concentration
results for general distributions, and give the first stream-
ing algorithm that is asymptotically optimal in the popular
Gaussian spike model.

Our robust shifted-and-inverted power method analysis
provides new understanding of this widely implemented
technique. It gives a means of obtaining provably ac-
curate results when each iteration is implemented using
solvers with weak accuracy guarantees. In practice, this
reduction between approximate linear system solving and
eigenvector computation shows that optimized regression
libraries can be leveraged for faster eigenvector compu-
tation in many cases. Furthermore, in theory we believe
that the reduction suggests computational limits inherent
in eigenvector computation as seen by the often easier-to-
analyze problem of linear system solving. Indeed, in Sec-
tion 7 of our full paper we provide evidence that in certain
regimes our statistical results are optimal.

1.3. Previous Work
OFFLINE EIGENVECTOR COMPUTATION

Due to its universal applicability, eigenvector computation
in the offline case is extremely well studied. Classical
methods, such as the QR algorithm, take roughly O(nd?)
time to compute a full eigendecomposition. They can
be accelerated using fast matrix multiplication (Williams,
2012; Le Gall, 2014), however remain prohibitively expen-
sive for large matrices. Hence, faster iterative methods are

often employed, especially when only the top eigenvector
(or a few of the top eigenvectors) is desired.

As discussed, the popular power method requires
O (log(d/€)/gap) iterations to converge to an € approx-
imate top eigenvector. Using Chebyshev iteration or
the Lanczos method, this bound can be improved to
O (log(d/¢/\/gap) (Saad, 1992), giving total runtime of
O (nnz(A) -log(d/e)/\/gap). When ¢ > gap, the gap
terms in these runtimes can be replaced by e. We focus
on the high-precision regime when ¢ < gap, but also give
gap-free bounds in Section 8 of our full paper.

Unfortunately, if nnz(A) is very large and gap is small,
the above runtimes can still be quite expensive, and there is
a natural desire to separate the 1/,/gap dependence from
the nnz(A) term. One approach is to use random sub-
space embedding matrices (Ailon & Chazelle, 2009; Clark-
son & Woodruff, 2013) or fast row sampling algorithms
(Cohen et al., 2015), which can be applied in O(nnz(A))
time and yield a matrix A which is a good spectral ap-
proximation to the original. The number of rows in A de-
pends only on the stable rank of A and the error of the em-
bedding. Applying such a subspace embedding and then
computing the top eigenvector of ATA requires runtime
O (nnz(A) + poly(sr(A), €, gap)), achieving the goal of
reducing runtime dependence on the input size nnz(A).
Unfortunately, the dependence on € is significantly subopti-
mal — such an approach cannot be used to obtain a linearly
convergent algorithm. Further, the technique does not ex-
tend naturally to the online setting.

Another approach, which we follow more closely, is to
apply stochastic optimization techniques, which iteratively
update an estimate to the top eigenvector, consider-
ing a random row of A with each update step. Such
algorithms naturally extend to the online setting and
have led to improved dependence on the input size for
a variety of problems (Bottou, 2010). Using variance-
reduced stochastic gradient techniques, (Shamir, 2015c)
achieves a runtime bound assuming an upper bound on
the squared row norms of A. In the best case, when
row norms are uniform, this runtime can be simplified to
O ((nnz(A) + dsr(A)?/gap?) - log(1/e€) loglog(1/e)).
This result makes an important contribution in separating
input size and gap dependencies using stochastic optimiza-
tion techniques. Unfortunately, the algorithm requires an
approximation to the eigenvalue gap and a starting vector
that has a constant dot product with the top eigenvector.
Initializing with a random vector loses polynomial factors
in d (Shamir, 2015b), on top of the already suboptimal
dependencies on sr(A) and e.
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Algorithm Runtime
Power Method 0] (nnz( A) %)
log(d/e)
Lanczos Method 0] (nnz(A) — )
Fast Subspace Embeddings (Clarkson & Woodruff, 2013) dsr(A)
+ Lanczos O (nnz(A) + max{gap? Se,2 5}

SVRG (Shamir, 2015¢)
(assuming bounded row norms and warm-start)

o ((nnz(A) + dsg;(:f) -log(1/¢) loglog(l/e))

Theorem 16

0 ([oma(d) + 23] et + o 7))

gap?

Theorem 17 (full paper)

nnz(A)3/*(dsr(A)1/4 d 1 3 d
O([ N ]-[lognglog;Jrlog ng])

Table 1. Comparision to previous work on Offline Eigenvector Estimation. We give runtimes for computing a unit vector = such that

z"ATAz > (1 — )\ in the regime € = O(gap).
ONLINE EIGENVECTOR COMPUTATION

In the online, or statistical setting, research often looks be-
yond runtime. One focus is on minimizing the sample size
required to achieve a given accuracy. Another common fo-
cus is on obtaining streaming algorithms, which use just
O(d) space - proportional to the size of a single sample.

In this section, in order to more easily compare to previous
work, we normalize A\; = 1 and assume we have the row
norm bound ||a||§ < O(d) which then gives us the variance
bound ||Eq~p [(aa")?] ||2 = O(d). Additionally, we com-
pare runtimes for computing some z such that |z Tvy| >
1 — €, as this is the most popular guarantee studied in the
literature. Theorem 25 is easily extended to this setting
as obtaining x with 27 AA "z > (1 — € - gap)\; ensures
|zTvi| > 1 — €. Our algorithm requires O(d/(gap?e))
samples to find such a vector under the above assumptions.

The simplest algorithm in this setting is to take n samples
from D and compute the leading eigenvector of the empir-
ical estimate E[aa"] = = > | a;a; . By a matrix Bern-

stein bound (Tropp, 2015), O (%) samples is enough

to insure HIE[aaT] — E[aaT]H < /€ - gap. By Lemma 36
2

in our full Version, this ensures that, if x is set to the top

eigenvector of E[aa ] it will satisfy |z Tvy| > 1 —e.

A large body of work focuses on improving this simple
algorithm. In Table 2 we give a sampling of results, all
which rely on distributional assumptions at least as strong
as those given above. Note that, in each setting, we can
use the cited algorithm to first compute an O(gap) approx-
imate eigenvector, and then refine this approximation with

our streaming from Theorem 25 using O (%
gap-e

) samples.
This gives us improved runtime and sample complexity re-
sults. Notably, by the lower bound in Section 7 of our full
paper, in all settings considered in Table 2, we achieve op-
timal asymptotic sample complexity - as our sample size
grows large, € decreases at an optimal rate. To save space,
we do not show our improved runtime bounds, but they are

easy to derive by adding the runtime required by the given

algorithm to achieve O(gap) accuracy to O ( d ) — the

gapZe
runtime of our streaming algorithm.

The bounds given for the simple matrix Bernstein based al-
gorithm described above, Krasulina/Oja’s Algorithm (Bal-
subramani et al., 2013), and SGD (Shamir, 2015a) require
no additional assumptions, aside from those given at the
beginning of this section. The streaming results cited for
(Mitliagkas et al., 2013) and (Hardt & Price, 2014) as-
sume a is generated from a Gaussian spike model, where
a; = VA1yiv1 + Z; and y; ~ N(0,1), Z; ~ N(0, I;). We
note that under this model, the matrix Bernstein results im-
prove by a log d factor and so match our results in achiev-
ing asymptotically optimal convergence rate. The results of
(Mitliagkas et al., 2013) and (Hardt & Price, 2014) sacri-
fice this optimality in order to operate under the streaming
model. Our work gives the best of both works — a streaming
algorithm giving asymptotically optimal results.

(Sa et al., 2015) assumes E |laa"WaaT || < O(1)tr((W)
for any symmetric W that commutes with Eaa'.
This is much stronger than the assumption above that
|Eq~p [(aaT)?]||, = O(d) and there are easy examples
where the above assumption holds while theirs does not.

1.4. Organization

While our general approach is simple, our proofs are quite
involved, and hence, most are omitted from the main pa-
per. They can be found in our full paper. In Section 2
we review problem definitions and parameters. In Section
3 we describe the shifted-and-inverted power method and
show how it can be implemented using approximate system
solvers. In Section 4 we instantiate this framework, show-
ing how to apply SVRG to solve systems in our shifted
matrix and giving our main offline results. In Section 5 we
discuss extending these techniques to the online setting. Fi-
nally, in Section 6 we discuss how to efficiently estimate
the shift parameters required by our algorithms.
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Algorithm SaSIiI;l;le Runtime Streaming? %l(:;li?:;ﬂl;
Matrix Bernstein + Lanczos dlog d d3logd dlogd
(explicitly forming matrix) 0 (gapZe) 0 ( gapZe ) x 0 ( gap3 + gap? e)
Matrix Bernstein + Lanczos (d log d) o (d2 log d- log(d/e ) % 1) (d log d d )
(iteratively applying matrix) gap?e gap? gap3 gap2e
Memory-efficient PCA )
(Mitliagkas et al., 2013), o) (%) o(? IOg(d/ )) v 0 (dlog(d/gap) S )
. gapTe 9(110 € gap gap“e
(Hardt & Price, 2014)
Alecton (Saetal, 2015) | O(£22fd) | o (el v O(Loeldgme) | _d
Krasulina / Oja’s -
: d°1 d°1 dc1 d
Algor}thm 0] (W) O (W) 4 0] (m + W)
(Balsubramani et al., 2013)
SGD (Shamir, 2015a) 18 (ti*logi;d”) 0 (#sz/)) Y, 0 (d Oy )

Table 2. Summary of existing Online Eigenvector Estimation results. Bounds are for computing a unit vector & with |z v1| > 1 — €.
For each result, we obtain improved bounds by running the algorithm to compute an O(gap) approximate eigenvector, and then using

our algorithm to obtain an e approximation using an additional O (ﬁ) samples, O(d) space, and O(d) work per sample.

2. Preliminaries

In the Offline Setting we are given A € R™*? with rows
a®,...,a™ and wish to compute an approximation to the
top elgenvector of X = AT A. Specifically, for error e we
want a unit vector 2 with z " Tz > (1 — €) A, (Z).

In the Online Setting we access an oracle returning inde-
pendent samples from distribution D on R%. We wish to
approximate the top eigenvector of ¥ = E,.p [aa'],

specifically, to find unit z with T Xz > (1 — €)\;(X).

2.1. Problem Parameters

Let Ay, ..., Aq denote the eigenvalues of ¥ and vy, ..., vg de-
note their corresponding eigenvectors. We define the eigen-
value gap by gap = (A1 — A2)/A1. Our bounds also em-
ploy the following parameters:

In the Offline Setting: Let sr(A) ef ||A||F/||AH2 de-

note the stable rank of A. Note that we always have
sr(A) < rank(A). Let nnz(A) denote the number of non-
zero entries in A.

Bao (0], _

[Eanp(aaT)l3

def ‘

In the Online Setting: Let v(D) =

Zovo ()|

| 2 denote a natural upper bound on the vari-

ance of D in various settings. Note that v(D) > 1.

3. Algorithmic Framework

Here we overview our robust shift-and-invert framework,
focusing on intuition, with proofs relegated to our full pa-
per. We let B DY g 3, and assume that we have
a crude estimate of A\; and gap so can set A to satisfy
(14 82B) Ap < A < (1+ 538) Ay (See Section 6 for how
we can compute such a A). Note that \; (B™!) = /\i(lB)

1 M(BTY) L a-a . -~ .
A=Xi (BT S 2 gaijﬁ’oo = 100. This

large gap ensures that, assuming the ability to apply B!,
the power method will converge very quickly.

and so

3.1. Potential Function

Our eigenvector algorithms aim to maximize the Rayleigh
quotient, z T X2 for unit z. However, to track the progress
of our algorithm we use a different potential function. We
define for = # 0:

‘PU%JCHB

\/2122 ai/Ni(B1)
aF /(B

where P, and P,.. denote the projections onto v; and the

subspace orthogonal to v; and o; = v, .

Glz) = ey

HszHB B

When the Rayleigh quotient error € = \; —x | 32 is small,
we can show that G(x) closely tracks €, so we can ana-
lyze our algorithms exclusively in terms of G(x) and then
convert the resulting bounds to Rayleigh quotient error (see
Lemma 3 of full paper).

3.2. Power Iteration

It is easy to see that the shifted-and-inverted power iteration
makes progress with respect to our objective function given
an exact linear system solver for B.

Theorem 4. Let x be a unit vector with {x,v1) # 0 and
let 7 = Bz, i.e. the power method update of B~ on .
Then, under our assumption on \, we have:

_ (B 1
G(z) < ———=G(z) < —G

@ < 35 O < 500
Proof. Writing x in the eigenbasis, we have = = ), a;v;
and 7 = Zz A\ (B_l) v;. Since <$,’U1> 7é 0, o 75 0
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and by the equivalent formulation of G(z) given in (1):
Vi a?N(BY)

B a2\ (B1)

X2 (BY) \/2122 @/ A(BT) (B

G(@)

< = G(x).
- )‘1 (B_l) Oé%/)\l(B_l) /\1 (B_l) ( )
Recalling that A; (B™!) /A, (B™!) > S5k = 100
yields the result. O

In the next section we show that Theorem 4 can be made
robust — we still make progress on our objective function
even if we only approximate B~z using a fast linear sys-
tem solver.

3.3. Approximate Power Iteration

We can show that each iteration of the shifted-and-inverted
power method makes constant expected progress on G(x)
assuming we:

1. Start with a sufficiently good = and an approximation
of )\1

2. Can apply B! approximately using a system solver
such that the function error (i.e. distance to B~z in
the B norm) is sufficiently small in expectation.

3. Can estimate Rayleigh quotients over 3 well enough
to only accept updates that do not hurt progress on the
objective function too much.

Note that the second assumption is very weak. An expected
progress bound allows, for example, the solver to occa-
sionally return a solution that is entirely orthogonal to vy,
causing us to make unbounded backwards progress. The
third assumption allows us to reject possibly harmful up-
dates and ensure that we still make progress in expectation.
In the offline setting, we can access A and are able to com-
pute Rayleigh quotients trivially. However, we only assume
the ability to estimate quotients, since in the online setting
we only have access to 3 through samples from D.

Theorem S (Approximate Shifted-and-Inverted Power It-
eration — Warm Start). Let x = ). o,v; be a unit vector

such that G(x) < \/%*0‘ Suppose we have an estimate \1 of
A1 suchthat 10/11 (A — X)) < A —:\\1 < X\ — \;. Further-
more, suppose we have a subroutine solve(-) such that on
any input x

_ Cc
E [[[solve (2) = B~ a[|p] < 3555 VA (B,

for some ¢, < 1, and a subroutine quot (-) that on any
quot (z) — quot(x)‘ < L=\

input x # 0 satisfies

def ¢T3

where quot(z) = £~ Let T = solve(x). Then the
following update procedure:
o quot@) = A—Xl)/esand
Seti =14 * i SN 1
17l = 5575
T otherwise,

satisfies: G(x) < \/% and B [G(2)] < 2£G(z) + &5
That is, not only do we decrease our potential function by
a constant factor in expectation, but we are guaranteed that
the potential function will never increase beyond 1//10.
Roughly, the proof of Theorem 5 shows that, conditioning
on accepting our iterative step:

_ [Pt
BEET=E 5 51,
G JE[-B ]
— 50 )\1(B—1)

That is, the potential function decreases as in the exact case
(Theorem 4) with additional additive error due to the inex-
act linear system solve.

Theorem 5 assumes that we can solve linear systems to
some absolute accuracy in expectation. However, system
solvers typically only guarantee relative progress bounds
with respect to an initial estimate of B~'z. Fortunately,
we can show that approximating B~z with ﬁx, and
applying a linear system solver that improves this estimate
by a constant factor in expectation gives small enough error
to make progress in each power iteration:

Corollary 6 (Relative Error Linear System Solvers). For
any unit vector x, we have:

L <o /MB - G),
B

z "Bz
so instantiating Theorem 5 with ¢; = o1G(x) gives
E[G(Z)] < 5 G(x) as long as:

z—B 'z

B

. H)\—mTZI
E [[jsolve (¢) = B~z < 1000

B

3.4. Initialization

Theorem 5 and Corollary 6 show that, given a good enough
approximation to v;, we can rapidly refine this approxi-
mation by applying the shifted-and-inverted power method
with very coarse approximate linear system solves. To ob-
tain the initial approximation, we rely on a ‘burn-in’ period
in which we solve each linear system to higher accuracy.
During burn-in, we may have a very small component of
z in the direction of vy, and so require higher accuracy to
ensure that we do not ‘lose’ this component.
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Theorem 8 (Approximate Shifted-and-Inverted Power
Method — Burn-In). Suppose we initialize xo ~ N(0,1)
and suppose we have access to a subroutine solve (-) such
that

E [||solve (z) — BfleB]
1 1
< . —-B!
= 30004 (B~1)d2! ‘)\ sz g’
where k(B™1) = % = O(3 p) Then iteratively
computing: x; = solve (x4 /Hso e(xt g for T =

O (log(d/gap)), we have G(xr) < \/ﬁ with probability
1= Ot

4. Offline Eigenvector Computation

We now discuss how to instantiate the framework of Sec-
tion 3 in the offline setting. We adapt Stochastic Variance
Reduced Gradient (SVRG) (Johnson & Zhang, 2013) to
solve linear systems in B. To solve a system in the positive
definite matrix AT A, one optimizes the objective function
f(z) = 22TAT Az — b"z. This function is the sum of n
convex components, V;(x) = %zT (aiaj) T — bex In
each iteration of traditional gradient descent, one computes
the full gradient of f(x;) and takes a step in that direction.
In stochastic gradient methods, at each iteration, a single
component is sampled, and the step direction is based only
on the gradient of the sampled component. Hence, a full
gradient computation is avoided at each iteration, leading
to runtime gains.

Unfortunately, while we have access to the rows of A
and so can solve systems in ATA, it is less clear how to
solve systems in B = M — ATA. To do this, we will
split our function into components of the form v;(z) =
12" (wI—a;a) )z — LbTx for some set of weights w;
with } 20 wi = A

Importantly, w;I — a;a; may not be positive semidefinite.
We are minimizing a sum of functions which is convex, but
consists of non-convex components. While recent results
for minimizing such functions could be applied directly
(Shalev-Shwartz, 2015; Csiba & Richtarik, 2015), in our
full paper we obtain stronger results by using a more gen-
eral form of SVRG and analyzing the specific properties of
our function.

Our analysis shows that we can make constant fac-
tor progress in solving linear systems in B in time

@) (nnz(A) + d;;g?)). If %ﬁﬁ) < nnz(A) this gives
a runtime proportional to the input size — the best we
could hope for. If not, we show that it is possi-
ble to accelerate our system solver using the results of

(Frostig et al., 2015b; Lin et al., 2015), achieving run-

fime O (nnz(A)g/\jg%r(A))l/ *1og (32;) ) We show how

to use the unaccelerated system solvers to obtain our main
offline result. The analysis is identical in the accelerated
case.

Theorem 16 (Shifted-and-Inverted Power Method With
SVRG). Let B = Xl — ATA for (1+82) ) < X <
(1+ 838) Ay and let zy ~ N(0,1) be a random initial
vector. Running the inverted power method on B initial-
ized with xg, using the SVRG solver from Theorem 12
(in our full paper) to approximately apply B! at each
step, returns x such that with probability 1 — O (d%),
2z 2z > (1 — )\, in total time

o (w452 (o0 () e 1))

Instantiating the theorem with ¢/ = ¢ - gap, we can find a
unit vector  with |v{ #| > 1 — ¢ in the same asymptotic
running time (an extra log(1/gap) term is absorbed into the

log?(d/gap) term).

Proof. By Theorem 8, if we start with xg ~ A(0,1
can run O (log (%)) iterations of the inverted power
method, to obtain z; with G(z1) < 1/4/10 with proba-
bility 1 — O(1/d'?). Each iteration requires applying an
linear solver that decreases initial error in expectation by a
factor of Such a solver is given by applying

) we

1
poly(d,1/gap)"
our constant factor solver O(log(d/gap)) times. So overall
in order to find z; with G(z1) < 1/4/10, we require time

(0] ((nnz(A) + %ﬁy) log? (g1p>)

After this initial ‘burn-in’ period we can apply Corollary
6 of Theorem 5. In each iteration, we only need to use
a solver that decreases initial error by a constant factor in

dsr(A))  with
g'lp

O(log(d/e)) iterations, we can obtain x with E [G(z)?] =
O(e/d*?), which is sufficient for the result. Note that the
second stage requires O (log (%)) = O(logd + log(1/¢))
iterations to achieve the high probability bound. How-

ever, the O(log d) term is smaller than the O (log ( d ))

gap

expectation so requires time O (nnz(A) +

term, so is absorbed into the asymptotic notation.

5. Online Eigenvector Computation

We now discuss how to extend our results to the online set-
ting. This setting is somewhat more difficult since there is
no canonical A, — we only have access to the distribution
D through samples. In order to apply Theorem 5 we must
show how to both estimate the Rayleigh quotient as well as
solve the requisite linear systems in expectation.

Our Rayleigh quotient estimation procedure is standard —
we first approximate the Rayleigh quotient by its empiri-
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cal value on a batch of k samples and prove using Cheby-
shev’s inequality that the error on this sample is small
with constant probability. We then repeat this procedure
O(log(1/p)) times and output the median, obtaining a good
estimate probability 1 — p.

Theorem 18 (Online Rayleigh Quotient Estimation).
Given ¢ € (0,1], p € [0,1], and unit vector x set k =
[4v(D)e 2] and m = O(log(1/p)). For all i € [k] and
j € [m] let al(-J ) be drawn independently from D and set
R ;= xTaEJ)(a(-]))Tx and Rj = 1 i B If we let

7

z be median value of the R; then with probability 1 — p we
have ’z — xTEx‘ < €N

The next challenge is to solve linear systems in B in the
streaming setting. We follow the general strategy of the
offline algorithms given in Section 4, replacing traditional
SVRG with the streaming SVRG algorithm of (Frostig
et al., 2015a). Whereas in the offline case, we could en-
sure that our initial error ||zg — x°P* H]23 is small by simply
scaling by the Rayleigh quotient (Corollary 6) in the online
case estimating the Rayleigh quotient to sufficient accuracy
would require too many samples. Instead, we simply show
how to use streaming SVRG to solve the desired linear sys-
tems to absolute accuracy without an initial point. Ulti-
mately, due to the different error dependences in the online
case this guarantee suffices and the lack of an initial point
is not a bottleneck.

Corollary 24 (Streaming SVRG Solver). Given a linear
system Bx = b with unit vector b there is a streaming al-

gorithm that returns x with E ||z — z°P* HzB < 10c\;(B71)
v(D)
gap?-c

using O( ) samples from D.

Note that convergence for this streaming algorithm is sig-
nificantly worse than for offline SVRG algorithms. The
number of samples we take is proportional to 1/c, so, if we
wanted to for example, apply Theorem 8 we would need
poly(1/gap, d) samples (compared with just log(d/gap)
iterations in the online case). This is why we only give a
warm-start algorithm in the online case — one that operates
in the regime where coarse linear solves are sufficient. Our
main theorem is:

Theorem 25 (Online Shifted-and-Inverted Power Method —
Warm Start). Let B = \I—A T A for (1 + %) A <A<
(14 828 1 and let z:g be some vector with G(xq) < \/%.
Running the shifted-and-inverted power method on B ini-
tialized with x, using the streaming SVRG solver of Corol-
lary 24 to approximately apply B™1 at each step, returns
such that © " Xx > (1 — €)\; with constant probability for
any target € < gap. The algorithm uses O(%) samples
and amortized O(d) time per sample.

6. Parameter Estimation for Offline
Eigenvector Computation

In Section 4, in order to invoke Theorems 5 and 8 we as-
sumed knowledge of some A with (1+gap/150)A; < A <
(1 + gap/100)A;. Here we mention that it is possible to
efficiently estimate this parameter, incurring a modest ad-
ditional runtime cost. Algorithm 1 of our full paper uses
the gap-free eigenvalue estimation algorithm of (Musco
& Musco, 2015), applying the shifted-and-inverted power
method with the SVRG based solver of Section 4 to two
vectors simultaneously to compute estimates of both A\; and
Ao, Using the gap between these estimates, the algorithm
iteratively refines its approximation of gap. Overall:

Theorem 26. There is an algorithm that, with probability
1 — O(1/d*¥®) returns X with (1 + gap/150)A\; < A <
(14 gap/100) A1 (A1) in time

0 ([nnz(A) + dgziﬁ)} log? (g:p)) .

Note that, by using the accelerated solver dis-
cussed in_ Section 4 we can also accelerate this to

o) nnZ(A)3$gT;r(A))l/4 . The runtime of Theorem 26 is

within a O(log(d/gap)) factor of our runtimes that assume
knowledge of A. Additionally, note that this extra cost is
separated from the € dependencies in the runtimes.
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