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A. Reduction to Linear System
Here we show that solving linear systems in B is inherent in solving the top-k generalized eigenvector problem in the worst
case and we provide evidence a

√
κ(B) factor in the running time is essential for a broad class of iterative methods for the

problem.

Let M be a symmetric positive definite matrix and suppose we wish to solve the linear system Mx = m, i.e. compute x∗
with Mx∗ = m. If we set A = mm> and B = M then

argmax
x>Bx=1

x>Ax =
B−1m

m>B−1m

and consequently computing the top-1 generalized eigenvector yields the solution to the linear system. Therefore, the
problem of computing top-k generalized eigenvectors is in general harder than the problem of solving symmetric positive
definite linear systems.

Moreover, it is well known that any method which starts at m and iteratively applies M to linear combinations of the
points computed so far must apply M at least Ω(

√
κ(B)) in order to halve the error in the standard norm for the problem

(Shewchuk, 1994). Consequently, methods that solve the top-1 generalized eigenvector problem by simply applying A and
B, which is the same as applying M and taking linear combinations with m, must apply M at least Ω(

√
κ(M)) times to

achieve small error, unless they exploit more structure of M or the initialization.

B. Solving Linear System via Accelerated Gradient Descent

Algorithm 4 Nesterov’s accelerated gradient descent
Input: learning rate η, factor Q, initial point x0, T .
Output: minimizer x? of f .

for t = 0, · · · , T − 1 do
yt+1 ← xt − (1/β) · ∇f(xt)
xt+1 ← yt+1 + (

√
Q− 1)/(

√
Q+ 1) · (yt+1 − yt)

end for
Return yT .

Since we use accelerated gradient descent in our main theorems, for completeness, we put the algorithm and cite its result
about iteration complexity here without proof.

Theorem 8 ((Nesterov, 1983)). Let f be α-strongly convex and β-smooth, then accelerated gradient descent with learning
rate η = 1

β and Q = β/α satisfies:

f(xt)− f(x?) ≤ 2(f(x0)− f(x?)) exp(− t√
Q

) (2)

C. Proofs of Main Theorem
In this section we will prove Theorems 5, 6 and 7.

C.1. Rank-1 Setting

We first prove our claim that B−1A has an eigenbasis.

Lemma 9. Let (ui, σi) be the eigenpairs of the symmetric matrix B−1/2AB−1/2. Then B−1/2ui is an eigenvector of
B−1A with eigenvalue σi.

Proof. The proof is straightforward.

B−1A
(
B−1/2ui

)
= B−1/2

(
B−1/2AB−1/2ui

)
= σiB

−1/2ui.
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Denote the eigenpairs of B−1A by (λi,vi), the above lemma further tells us that v>i Bvj = u>i uj = δij .

Recall that we defined the angle between w and v1 in the B-norm: θ (w,v1) = arccos
(
|v>1 Bw|

)
.

To measure the distance from optimality, we use the following potential function for normalized vector w (‖w‖B = 1):

tan θ(w,v1) =

√
1− |v>1 Bw|2
|v>1 Bw|

. (3)

Lemma 10. Consider any w such that ‖w‖B = 1 and tan θ(w,v1) ≤ ε. Then, we have:

cos2 θ(w,v1) = (v>1 Bw)2 ≥ 1− ε2 and w>Aw ≥ λ1(1− ε2).

Proof. Clearly,

(v>1 Bw)2 = cos2 θ(w,v1) =
1

1 + tan2 θ(w,v1)
≥ 1

1 + ε2
≥ 1− ε2,

proving the first part. For the second part, we have the following:

w>Aw =
∑
i,j

(v>i Bw)(v>j Bw)v>i Avj =
∑
i,j

λj(v
>
i Bw)(v>j Bw)v>i Bvj

=
∑
i

λi(v
>
i Bw)2 ≥ λ1(v>1 Bw)2 ≥ (1− ε2)λ1,

proving the lemma.

Proof of Theorem 5. We will show that the potential function tan θ(wt,v1) decreases geometrically with t. This will
directly provides an upper bound for sin θ(wt,v1). For simplicity, through out the proof we will simply denote θ(wt,vi)
as θt.

Recall the updates in Algorithm 1, suppose at time t, we have wt such that ‖wt‖B = 1. Let us say

wt+1 =
1

Z
(B−1Awt + ξ) (4)

where Z is some normalization factor, and ξ is the error in solving the least squares. We will first prove the geometric
convergence claim assuming

‖ξ‖B ≤
|λ1| − |λ2|

4
min{cos θt, sin θt}, (5)

and then bound the time taken by black-box linear system solver to provide such an accuracy. Since wt can be written as
wt =

∑
i

(
w>t Bvi

)
vi, we know B−1Awt =

∑d
i=1 λi

(
w>t Bvi

)
vi. Since ‖wt+1‖B = 1 and v>i Bvj = δij , we have

tan θt+1 =

√
Z2 − |v>1 BZwt+1|2
|v>1 BZwt+1|

≤

√∑d
i=2

(
w>t Bvi

)2
λ2
i + ‖ξ‖B

|
(
w>t Bv1

)
λ1| − ‖ξ‖B

≤

√
1−

(
w>t Bv1

)2
|w>t Bv1|

×
|λ2|+ ‖ξ‖B√

1−(w>t Bv1)
2

|λ1| − ‖ξ‖B
|w>t Bv1|

= tan θt ×
|λ2|+ ‖ξ‖B√

1−(w>t Bv1)
2

|λ1| − ‖ξ‖B
|w>t Bv1|

By definition of θt, we know cos θt = |w>t Bv1| and sin θt =

√
1−

(
w>t Bv1

)2
giving us

tan θt+1 ≤ tan θt ×
|λ2|+ ‖ξ‖B

sin θt

|λ1| − ‖ξ‖Bcos θt

.
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Since ‖ξ‖B ≤ |λ1|−|λ2|
4 min{cos θt, sin θt}, we have that

tan θt+1 ≤
|λ1|+ 3|λ2|
3|λ1|+ |λ2|

× tan θt.

Letting γ = 3|λ1|+|λ2|
|λ1|+3|λ2| , this shows that G(wt) ≤ γtG(w0). Recalling the definition of eigengap ρ = 1− |λ2|

|λ1| , choosing t
to be

t ≥ 2

ρ
log

(
1

ε cos θ0

)
≥

log
(

tan θ0
ε

)(
1
γ − 1

) ≥
log
(

tan θ0
ε

)
log
(

1
γ

) , (6)

we are guaranteed that sin θt ≤ tan θt ≤ ε. This number of iterations 2
ρ log

(
1

ε cos θ0

)
could be further decompose into

two phase: 1) initial phase 2
ρ log 1

cos θ0
which mainly caused by large initial angle, 2) convergence phase 2

ρ log 1
ε which is

mainly due to the high accuracy ε we need.

We now focus on how to obtain the iterate wt+1 using accelerated gradient descent such that the error ξ has norm bounded
as in (5).

Let f(w)
def
= 1

2w
>Bw − w>Awt and recall that in each iteration, we use linear system solver to solve the following

optimization problem:

min
w

f(w). (7)

The minimizer of (7) is B−1Awt. Define εinit and εdes as initial error and required destination error of linear system solver
‖w −B−1Awt‖2B. Observe that for any w we have equality,

‖w −B−1Awt‖2B = 2(f(w)− f(B−1Awt)) (8)

Eq.(5) directly poses a condition on εdes:

εdes ≤
(|λ1| − |λ2|)2

16
min{cos2 θt, sin

2 θt}

Since we initialize Algorithm 4 with βtwt, where βt
def
=

w>t Awt

w>t Bwt
, the initial error can be bounded as follows:

εinit = 2(f(βtwt)− f(B−1Awt))

= 2(min
β
f(βwt)− f(B−1Awt)) ≤ 2(f(λ1wt)− f(B−1Awt))

= ‖λ1wt −B−1Awt‖2B
=
∑
i≥2

(λ1 − λi)2
(
w>t Bvi

)2 ≤ λ2
1(1−

(
w>t Bv1

)2
) = λ2

1 sin2 θt.

This means that we wish to decrease the ratio of final to initial error smaller than

εdes

εinit
≤ (|λ1| − |λ2|)2

16
min{cos2 θt, sin

2 θt} ×
1

λ2
1 sin2 θt

=
ρ2

16
min

{
1

tan2 θt
, 1

}
. (9)

Recall we defined T (δ) as the time for linear system solver to reduce the error by a factor δ. Therefore, in the initial phase
where θt is large, it would be suffice to solve linear system up to factor δ = ρ2 cos2 θ0

16 ≤ ρ2

16 tan θt
. In convergence phase,

where θt is small, choose δ = ρ2

16 would be sufficient.

Therefore, adding the computational cost of Algorithm 1 other than by linear system solver, it’s not hard to get the total
running time will be bounded by

2

ρ

(
log

1

cos θ0
· T (

ρ2 cos2 θ0

16
) + log

1

ε
· T (

ρ2

16
)

)
+

2

ρ
(nnz (A) + nnz (B) + d) log

1

ε cos θ0
.
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Furthermore, if we run Nesterov’s accelerated gradient descent (Algorithm 4) on function f(w) to solve the linear
systems. Since the condition number of the optimization problem (7) is κ(B), by Theorem 8, we know T (δ) =
O(nnz (B)

√
κ(B) log 1

δ ). Substituting this gives runtime:

O

(
nnz (B)

√
κ(B)

ρ

(
log

1

cos θ0
log

1

ρ cos θ0
+ log

1

ε
log

1

ρ

)
+

1

ρ
nnz (A) log

1

ε cos θ0

)
.

which finishes the proof.

C.2. Top-k Setting

To prove the convergence of subspace, we need a notion of angle between subspaces. The standard definition the is
principal angles.

Definition 11 (Principal angles). Let X and Y be subspaces of Rd of dimension at least k. The principal angles 0 ≤
θ(1) ≤ · · · ≤ θ(k) between X and Y with respect to B-based scalar product are defined recursively via:

θ(i)(X ,Y) = min{arccos(
〈x,y〉B
‖x‖B‖y‖B

) : x ∈ X ,y ∈ Y,x ⊥B xj ,y ⊥B yj for all j < i}

(xi,yi) ∈ argmin{arccos(
〈x,y〉B
‖x‖B‖y‖B

) : x ∈ X ,y ∈ Y,x ⊥B xj ,y ⊥B yj for all j < i}

For matrices X and Y, we use θj(X,Y) to denote the j-th principal angle between their range.

Since for our interest, we only care the largest principal angle, thus, in the following proof, without ambiguity, for X,Y ∈
Rd×k, we use θ(X,Y) to indicate θ(k)(X,Y). Next lemma will tells us this definition of θ(X,Y) to be the largest
principal angle is same as what we defined in the main paper Definition 4.

Lemma 12. Let X,Y ∈ Rd×k be orthonormal bases (w.r.t B) for subspace X ,Y respectively. Let X⊥ be an orthonormal
basis for orthogonal complement of X (w.r.t B). Then we have

cos θ(X ,Y) = σk(X>BY), sin θ(X ,Y) = ‖X>⊥BY‖ (10)

and assuming X>BY is invertible (θ(X ,Y) < π
2 ), we have:

tan θ(X ,Y) = ‖X>⊥BY(X>BY)−1‖ (11)

Proof. By definition of principal angle, it’s easy to show cos θ(X ,Y) = σk(X>BY). The projection operator onto
subspace X is XX>B. It’s also easy to show XX>B + X⊥X

>
⊥B = I Then, we have:

(X>⊥BY)>X>⊥BY = Y>BX⊥X
>
⊥BY

= Y>B(I−XX>B)Y = Y>BY − (X>BY)>(X>BY) = I− (X>BY)>(X>BY) (12)

Therefore:
‖X>⊥BY‖2 = 1− σ2

k(X>BY) = 1− cos2 θ(X ,Y) = sin2 θ(X ,Y) (13)

Similarily:

[X>⊥BY(X>BY)−1]>X>⊥BY(X>BY)−1

=[(X>BY)−1]>[I− (X>BY)>(X>BY)](X>BY)−1

=[(X>BY)−1]>(X>BY)−1 − I (14)

Therefore:
‖X>⊥BY(X>BY)−1‖2 =

1

σ2
k(X>BY)

− 1 =
1

cos2 θ(X ,Y)
− 1 = tan2 θ(X ,Y) (15)

Obviously, θ(X ,Y) is acute, thus sin θ(X ,Y) > 0 and tan θ(X ,Y) > 0, which finishes the proof.
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Similar to the top one case, for simplicity, we denote θt
def
= θ (Wt,V), where V ∈ Rd×k is top k eigen-vector of

generalized eigenvalue problem. Now we are ready to prove the theorem. We also denote V⊥ ∈ Rd×(d−k). Also
throughout the proof, for any matrix X, we use notation ‖X‖B ≡ ‖B

1
2X‖ ≡

√
‖X>BX‖ and ‖X‖B,F = ‖B 1

2X‖F =√
tr(X>BX).

Proof of Theorem 5. Let V ∈ Rd×k,ΛV ∈ Rk×k be the top k generalized eigen-pairs; and V⊥ ∈ Rd×(d−k),ΛV⊥ ∈
R(d−k)×(d−k) be the remaining (d− k) generalized eigen-pairs (assume all eigen-vectors normalized w.r.t. B). Then, we
have:

A = B(VΛVV> + V⊥ΛV⊥V
>
⊥)B

B = B(VV> + V⊥V
>
⊥)B

By approximately solving argminW∈Rd×k tr( 1
2W

>BW −W>AWt) and Gram-Schmidt process, we have:

Wt+1 = (B−1AWt + ξ)R (16)

where R ∈ Rk×k is an invertable matrix generated by Gram-Schmidt process.

We will follow the same strategy as in top 1 case, which will first prove the geometric convergence of tan θt assuming

‖ξ‖B ≤
|λk| − |λk+1|

4
min{sin θt, cos θt} (17)

Note here ξ is a matrix, and ‖ξ‖B = ‖B 1
2 ξ‖ =

√
‖ξ>Bξ‖. Then we will bound the time taken by black-box linear system

solver to provide such an accuracy.

By definition of tan θt and linear algebra calculation, we have

tan θt+1 = ‖V>⊥BWt+1(V>BWt+1)−1‖
= ‖V>⊥BW̃t+1(V>BW̃t+1)−1‖
= ‖(ΛV⊥V

>
⊥BWt + V>⊥Bξ)(ΛVV>BWt + V>Bξ)−1‖

≤ ‖(ΛV⊥V
>
⊥BWt + V>⊥Bξ)(V

>BWt)
−1‖

σk(ΛV + V>Bξ(V>BWt)−1)

≤ ‖ΛV⊥‖ tan θt + ‖V>⊥Bξ(V>BWt)
−1‖

σk(ΛV)− ‖V>Bξ(V>BWt)−1‖

≤ ‖ΛV⊥‖ tan θt + ‖V>⊥Bξ‖‖V>BWt)
−1‖

σk(ΛV)− ‖V>Bξ‖‖(V>BWt)−1‖

=
‖ΛV⊥‖ tan θt +

‖V>⊥Bξ‖
cos θt

σk(ΛV)− ‖V
>Bξ‖

cos θt

≤ tan θt
|λk+1|+ ‖ξ‖B

sin θt

|λk| − ‖ξ‖Bcos θt

(18)

Since ‖ξ‖B ≤ |λk|−|λk+1|
4 min{sin θt, cos θt}, we have that:

tan θt+1 ≤
|λk|+ 3|λk+1|
3|λk|+ |λk+1|

tan θt (19)

= (1− 2(|λk| − |λk+1|)
3|λk|+ |λk+1|

) tan θt ≤ exp(−|λk| − |λk+1|
2|λk|

) tan θt (20)

Recall in this problem ρ = 1− |λk+1|
|λk| , therefore, we know:

sin θt ≤ tan θt ≤ exp(−ρ
2
· t) tan θ0 ≤ exp(−ρ

2
· t) 1

cos θ0
(21)
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If we want sin θt ≤ ε, which gives iterations:

t ≥ 2

ρ
log

1

ε cos θ0
(22)

Let f(W) = tr( 1
2W

>BW −W>AWt). For this problem, we can view W as a dk dimensional vector, and use linear
system to solve this d, k dimensional problem. Therefore, if we represent W in terms of matrix, the corresponding
linear system error is ‖W −B−1AWt‖B,F , recall ‖W‖B,F = ‖B 1

2W‖F =
√

tr(W>BW). To satisfy the accuracy
requirement, we only need

εdes = ‖ξ‖2B,F ≤
(|λk| − |λk+1|)2

16
min{sin2 θt, cos2 θt} (23)

Recall we initialize the linear system solver with WtΓt with Γt = (W>
t BWt)

−1(W>
t AWt), we then have

εinit = ‖WtΓt −B−1AWt‖2B,F = tr[(WtΓt −B−1AWt)
>B(WtΓt −B−1AWt)]

=2[f(WtΓt)− f(B−1AWt)] = 2[argmin
Γ∈Rk×k

f(WtΓ)− f(B−1AWt)] (24)

Let Γ̂t = (V>BWt)
−1ΛV(V>BWt), and observe ‖ξ‖2B,F = ‖B 1

2 ξ‖2F = ‖V>Bξ‖2F + ‖V>⊥Bξ‖2F (Pythagorean
theorem under B norm), then we have:

εinit =‖WtΓt −B−1AWt‖2B,F = 2[argmin
Γ∈Rk×k

f(WtΓ)− f(B−1AWt)]

≤2[f(WtΓ̂t)− f(B−1AWt)] = ‖WtΓ̂t −B−1AWt‖2B,F
=‖V>B(WtΓ̂t −B−1AWt)‖2F + ‖V>⊥B(WtΓ̂t −B−1AWt)‖2F
=‖V>BWtΓ̂t − ΛVV>BWt‖2F + ‖V>⊥BWtΓ̂t − ΛV⊥V

>
⊥BWt‖2F

=0 + ‖V>⊥BWtΓ̂t − ΛV⊥V
>
⊥BWt‖2F

≤k‖V>⊥BWtΓ̂t − ΛV⊥V
>
⊥BWt‖2

≤2k sin2 θt(‖Γ̂t‖2 + ‖ΛV⊥‖2) ≤ 4k|λ1|2 tan2 θt (25)

The last step is correct since ‖ΛV⊥‖ ≤ |λ1| and ‖Γ̂t‖ ≤ ‖(V>BWt)
−1‖‖ΛV‖‖V>B

1
2 ‖‖B 1

2Wt‖ ≤ 1
cos θt

|λ1|

This means we wish to decrease the ratio of final to initial error smaller than:

εdes

εinit
≤ ρ2

64kγ2
min{ 1

cos2 θt
,

sin2 θt
cos4 θt

} (26)

where γ = |λ1|
|λk| . Therefore, a two phase analysis of running time depending on θt is large or small similar to top 1 case

would gives the total runtime:

2

ρ

(
log

1

cos θ0
· T (

ρ2 cos4 θ0

64kγ2
) + log

1

ε
· T (

ρ2

64kγ2
)

)
+

2

ρ

(
nnz (A) k + nnz (B) k + dk2

)
log

1

ε cos θ0
,

if we are using the accelerated gradient descent to solve the linear system, we are essentially solve k disjoint optimization
problem, with each problem dimension d and condition number κ(B). Directly apply Theorem 8 gives runtime

O

(
nnz (B) k

√
κ(B)

ρ

(
log

1

cos θ0
log

kγ

ρ cos θ0
+ log

1

ε
log

kγ

ρ

)
+

(
nnz (A) k + dk2

)
ρ

log
1

ε cos θ0

)
.

Finally, since both results Theorem 5 and Theorem 7 are stated in terms of initialization θ0, here we will give probablistic
guarantee for random initialization.
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Lemma 13 (Random Initialization). Let top k eigen-vector be V ∈ Rd×k, and the remaining eigen-vector be V⊥ ∈
Rd×(d−k). If we initialize W0 as in Algorithm 2, then With at least probability 1− η, we have:

tan θ0 = ‖V>⊥BW0(V>BW0)−1‖ ≤ O(

√
κ(B)dk

η
) (27)

Proof. Recall W̃ is entry-wise sampled from standard Gaussian, and

tan θ0 =‖V>⊥BW0(V>BW0)−1‖ = ‖V>⊥BW̃0(V>BW̃0)−1‖ ≤ ‖V>⊥BW̃0‖
σk(V>BW̃0)

≤ ‖V
>
⊥BṼ⊥‖

σk(V>BṼ)

‖Ṽ⊥
>
W̃0‖

σk(Ṽ>W̃0)
(28)

Where Ṽ⊥, Ṽ are the right singular vectors of V>⊥B,V
>B respectively. Then, we have first term:

‖V>⊥BṼ⊥‖
σk(V>BṼ)

=
‖V>⊥B‖
σk(V>B)

≤ ‖V>⊥B
1
2 ‖‖B 1

2 ‖
σk(V>B

1
2 )σmin(B

1
2 )

= κ(B)
1
2 (29)

The last step is true since both V>⊥B
1
2 and V>B

1
2 are orthonormal matrix.

For the second term, we know ‖Ṽ⊥
>
W̃0‖ ∼ O(

√
d +
√
k) with high probability, and by equation 3.2 in (Rudelson &

Vershynin, 2010) we know σk(Ṽ>W̃0) ≥ η√
k

with probability at least 1− η, which finishes the proof.

C.3. CCA Setting

Since our approach to CCA directly calls Algorithm 2 for solving generalized eigenvalue problem as subroutine, most of
the theoretical property should be clear other than random projection step in Algorithm 3. Here, we give following lemma.
The proof of Theorem 7 easily follow from the combination of this lemma and Theorem 6.

Lemma 14. If the
(

W̄x

W̄y

)
as constructed in Algorithm 3 has angle at most θ with the true top-2k generalized eigenspace

of A,B, then with probability 1 − ζ, both Wx, Wy has angle at most O(k2θ/ζ2) with the true top-k canonical space of
X,Y.

Proof. We will prove this for Wy , the proof for Wx follows directly from same strategy.

Recall B =

(
Sxx 0
0 Syy

)
. Let Φ ∈ Rd1×k be the true top k subspace of X and Ψ ∈ Rd2×k be the true top k subspace

of Y.Then by construction we know the top 2k subspace should be 1√
2

(
Φ −Φ
Ψ Ψ

)
.

By properties of principal angle, we know there exists an orthonormal matrix R ∈ R2k×2k such that

‖ 1√
2
B1/2

(
Φ −Φ
Ψ Ψ

)
R−B1/2

(
W̄x

W̄y

)
‖ ≤ 2 sin

θ

2
.

In particular, if we only look at the last d2 rows, we have

‖ 1√
2
S1/2
yy

(
Ψ Ψ

)
R− S1/2

yy W̄y‖ ≤ 2 sin
θ

2
.

Let U be the random Gaussian projection we used, and let RU =

(
U1

U2

)
, we know
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S1/2
yy W̄yU =

1√
2
S1/2
yy

(
Ψ Ψ

)( U1

U2

)
+ E

=
1√
2
S1/2
yy Ψ(U1 + U2) + E,

where E is the error (after multipled by random matrix U), with ‖E‖ ≤ O(2
√
k sin θ

2 ) ≤ O(
√
kθ).

Let V = (S
1/2
yy W̄yU)>S

1/2
yy W̄yU, the orthonormalization step gives a matrix Wy that is equivalent (up to rotation) to

W̄yUV−1/2. Our goal is to show V−1/2 ≈ ((U1 + U2)>(U1 + U2))−1/2 so we get roughly Ψ.

Note that Ψ>SyyΨ = I, therefore V = 1
2 (U1 +U2)>(U1 +U2)+E′ where the error E′ = ( 1√

2
S

1/2
yy Ψ(U1 +U2))>E+

1√
2
E>(S

1/2
yy Ψ(U1 + U2)) + E>E). We know with high probability ‖U1 + U2‖ ≤ O(

√
k), with probability at least

1 − ζ, σmin(U1 + U2) ≥ Ω(ζ/
√
k). Therefore we know σmin[(U1 + U2)>(U1 + U2)] ≥ Ω(ζ2/k) and ‖E′‖ ≤

O(kθ). By matrix perturbation for inverse we know ‖V−1/2 −
√

2((U1 + U2)>(U1 + U2))−1/2‖ ≤ O(k2θ/ζ2). Since
(U1 +U2)((U1 +U2)>(U1 +U2))−1/2 = R′ is an orthonormal matrix, we know there’s some orthonormal matrix R′′

so that:

‖S1/2
yy Wy − S1/2

yy ΨR′′‖ = ‖S1/2
yy W̄yUV−1/2 − S1/2

yy ΨR′‖

≤‖S1/2
yy W̄yUV−1/2 −

√
2S1/2

yy W̄yU((U1 + U2)>(U1 + U2))−1/2‖

+ ‖
√

2S1/2
yy W̄yU((U1 + U2)>(U1 + U2))−1/2 − S1/2

yy ΨR′‖ ≤ O(k2θ/ζ2)

Therefore the angle between the Wy and the truth Ψ is bounded by O(k2θ/ζ2).


