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1 Proof of Theorem 4

Proof. We use the following shorthand notation:

Lp(h)= E ((hx,y) and ,Cg(h):% > Uh,x,y).

GowP (xaes
Consider any convex function A : [0,1]x[0,1] — R. Applying consecutively Jensen’s Inequality and the
change of measure inequality (see Seldin & Tishby (2010, Lemma 4) and McAllester (2013, Equation (20))),
we obtain

VponH : mxA ( E Ls(h), E £D(h)> < E mxA(Ls(h),Lp(h))
h~p h~p h~p
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with
Xﬂ_(s) — E emXA(ﬁs(h),ﬁp(h)).
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Then, Markov’s Inequality gives
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where the last inequality is due to Maurer (2004, Lemma 3) (we have an equality when the output of £ is in
{0,1}). As shown in Germain et al. (2009, Corollary 2.2), by fixing

A(g,p) = —cxq —In[l—p (1—e™9)],
Line 1 becomes equal to 1, and then o EDme(S’) < 1. Hence,
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By reorganizing the terms, we have, with probability 1—4§ over the choice of S € D™,
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The final result is obtained by using the inequality 1—exp(—2z) < z. O



2 Using DALC with a kernel function

Let S={(xi,y:)}ivsy, T={x/}", and M =ms+ m;. We will denote

!

X; if # <mg (source examples)
X =
# XYy _,,, oOtherwise.  (target examples)

The kernel trick allows us to work with dual weight vector @ € RM that is a linear classifier in an
augmented space. Given a kernel k : R? x RY — R, we have

hw() = Sign [Z aik(xi,-)] .

Let us denote K the kernel matrix of size M x M such as K;; = k(x;,x;). In that case, the objective
function—Equation (13) of the main paper—can be rewritten in term of the vector

o = (051,042, .. .OéM)
as
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For our experiments, we minimize this objective function using a Broyden-Fletcher-Goldfarb-Shanno
method (BFGS) implemented in the scipy python library Jones et al. (2001-).
We initialize the optimization procedure at o; =1 for all i € {1,...,M}.

3 Experimental Protocol

For obtaining the DALCTCY results of Table 1, the reverse validation procedure searches on a 20 x 20
parameter grid for a C' between 0.01 and 10° and a parameter B between 1.0 and 108, both on a logarithm
scale. The results of the other algorithms are reported from Germain et al. (2013).
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