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1 Proof of Theorem 4

Proof. We use the following shorthand notation:

LD(h) = E
(x,y)∼D

`(h,x, y) and LS(h) =
1

m

∑
(x,y)∈S

`(h,x, y) .

Consider any convex function ∆ : [0, 1]×[0, 1] → R. Applying consecutively Jensen’s Inequality and the
change of measure inequality (see Seldin & Tishby (2010, Lemma 4) and McAllester (2013, Equation (20))),
we obtain

∀ρ on H : m×∆

(
E
h∼ρ
LS(h), E

h∼ρ
LD(h)

)
≤ E

h∼ρ
m×∆ (LS(h),LD(h))

≤ KL(ρ‖π) + ln
[
Xπ(S)

]
,

with
Xπ(S) = E

h∼π
em×∆(LS(h),LD(h)).

Then, Markov’s Inequality gives

Pr
S∼Dm

(
Xπ(S) ≤ 1

δ E
S′∼Dm

Xπ(S′)
)
≥ 1−δ ,

and

E
S′∼Dm

Xπ(S′) = E
S′∼Dm

E
h∼π

em×∆(LS′ (h),LD(h))

= E
h∼π

E
S′∼Dm

em×∆(LS′ (h),LD(h))

≤ E
h∼π

m∑
k=0

(
k

m

)
(LD(h))k(1−LD(h))m−kem×∆( k

m ,LD(h)), (1)

where the last inequality is due to Maurer (2004, Lemma 3) (we have an equality when the output of ` is in
{0, 1}). As shown in Germain et al. (2009, Corollary 2.2), by fixing

∆(q, p) = −c×q − ln[1−p (1−e−c)] ,

Line 1 becomes equal to 1, and then E
S′∼Dm

Xπ(S′) ≤ 1. Hence,

Pr
S∼Dm

(
∀ρ on H : −c E

h∼ρ
LS(h)− ln[1− E

h∼ρ
LD(h) (1−e−c)] ≤

KL(ρ‖π) + ln 1
δ

m

)
≥ 1−δ .

By reorganizing the terms, we have, with probability 1−δ over the choice of S ∈ Dm,

∀ρ on H : E
h∼ρ
LD(h) ≤ 1

1−e−c

[
1− exp

(
−c E

h∼ρ
LS(h)−

KL(ρ‖π) + ln 1
δ

m

)]
.

The final result is obtained by using the inequality 1− exp(−z) ≤ z.
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2 Using dalc with a kernel function

Let S={(xi, yi)}ms
i=1, T ={x′i}

mt
i=1 and m = ms +mt. We will denote

x# =

{
xi if # ≤ ms (source examples)

x′#−ms
otherwise. (target examples)

The kernel trick allows us to work with dual weight vector ααα ∈ Rm that is a linear classifier in an
augmented space. Given a kernel k : Rd × Rd → R, we have

hw(·) = sign

[
m∑
i=1

αik(xi, ·)

]
.

Let us denote K the kernel matrix of size m × m such as Ki,j = k(xi,xj) . In that case, the objective
function—Equation (13) of the main paper—can be rewritten in term of the vector

ααα = (α1, α2, . . . αm)

as

C ×
m∑

i=ms

Φ

(∑m
j=1 αjKi,j√

Ki,i

)
Φ

(
−
∑m
j=1 αjKi,j√

Ki,i

)
+B ×

ms∑
i=1

[
Φ

(
yi

∑m
j=1 αjKi,j√

Ki,i

)]2

+

m∑
i=1

m∑
j=1

αiαjKi,j .

For our experiments, we minimize this objective function using a Broyden-Fletcher-Goldfarb-Shanno
method (BFGS) implemented in the scipy python library Jones et al. (2001–).

We initialize the optimization procedure at αi=
1
m for all i ∈ {1, . . . ,m}.

3 Experimental Protocol

For obtaining the dalcRCV results of Table 1, the reverse validation procedure searches on a 20 × 20
parameter grid for a C between 0.01 and 106 and a parameter B between 1.0 and 108, both on a logarithm
scale. The results of the other algorithms are reported from Germain et al. (2013).
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