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Abstract
We develop a novel preconditioning method for
ridge regression, based on recent linear sketching
methods. By equipping Stochastic Variance Re-
duced Gradient (SVRG) with this precondition-
ing process, we obtain a significant speed-up rel-
ative to fast stochastic methods such as SVRG,
SDCA and SAG.

1. Introduction
Consider the ridge regression problem:

min
w∈Rd

{
L(w) =

1

n

n∑
i=1

1

2
(w>xi − yi)2 +

λ

2
‖w‖2

}
, (1)

where λ > 0 is a regularization parameter, xi ∈ Rd and
yi ∈ R for i = 1, · · · , n the training data. We focus on the
large scale regime, where both n and d are large. In this set-
ting, stochastic iterative methods such as SDCA (Shalev-
Shwartz & Zhang, 2013), SVRG (Johnson & Zhang, 2013),
and SAG (Roux et al., 2012) have become a standard choice
for minimizing the objective L. Specifically, the overall
complexity of a recent improved variant of SVRG due to
Xiao & Zhang (2014) depends on the average condition
number, which is defined as follows. Denote the empirical
correlation matrix and its eigenvalue decomposition by

C :=
1

n

n∑
i=1

xix
>
i =

d∑
i=1

λiuiu
>
i .

The average condition number of C + λI is defined as the
ratio between the trace of the Hessian of L and its minimal
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eigenvalue:

κ̂ := κ̂(C + λI) =
tr(C + λI)

λd(C + λI)
=

d∑
i=1

λi + λ

λd + λ
.

The mentioned variant of SVRG finds an ε-approximate
minimizer of L in time Õ((κ̂ + n)d log(1/ε)). Namely,
the output of the algorithm, denoted ŵ, satisfies E[L(ŵ)]−
L(w?) ≤ ε, where the expectation is over the randomness
of the algorithm. For an accelerated version of the algo-
rithm, we can replace κ̂ by

√
nκ̂ (Shalev-Shwartz & Zhang,

2014; Lin et al., 2015).

The regularization parameter, λ, increases the smallest
eigenvalue ofC+λI to be at least λ, thus improves the con-
dition number and makes the optimization problem easier.
However, to control the under/over fitting tradeoff, λ has
to decrease as n increases (Shalev-Shwartz & Ben-David,
2014). Moreover, in many machine learning applications
λd approaches zero and it is usually smaller than the value
of λ. Overall, this yields a large condition number in most
of the interesting cases.

A well-known approach for reducing the average condition
number is preconditioning. Concretely, for a (symmetric)
positive definite (pd) matrix P ∈ Rd×d, we define the pre-
conditioned optimization problem as

min
w̃∈Rd

L̃(w̃) := L(P−1/2w̃) . (2)

Note that w̃ is an ε-approximate minimizer of L̃ if and only
if w = P−1/2w̃ forms an ε-approximate minimizer of L.
Hence, we can minimize (2) rather than (1). As we shall
see, the structure of the objective allows us to apply the pre-
conditioning directly to the data (as a preprocessing step)
and consequently rewrite the preconditioned objective as
a ridge regression problem with respect to the precondi-
tioned data (see Section 5.1). For a suitable choice of a
matrix P , the average condition number is significantly re-
duced. Precisely, as will be apparent from the analysis, the
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pd matrix that minimizes the average condition number is
P = C + λI , and the corresponding average condition
number is d. However, we note that such preconditioning
process would require both the computation of P−1/2 and
the computation of P−1/2xi for each i ∈ [n]. By first order
conditions, computing (C + λI)−1/2 is equivalent to solv-
ing the original problem in (1), rendering this “optimal”
preconditioner useless.

Yet, the optimal preconditioner might not needed in many
cases. In fact, a common empirical observation (see Sec-
tion 6) is that (high-dimensional) machine learning prob-
lems tend to have few dominant features, while the other
coordinates are strongly correlated with the stronger fea-
tures. As a result, the spectrum of the correlation matrix
decays very fast. Hence, it is natural to expect to gain a lot
from devising preconditioning methods that focus on the
stronger directions of the data.

Our contributions are as follows. We develop a relatively
cheap preconditioning method that, coupled with SVRG,
assures to speed-up the convergence in practical applica-
tions while having a computational cost comparable to
SVRG alone. In order to approximately extract the stronger
directions while incurring a low computational cost, we
rely on a variant of the Block Lanczos method due to
Musco & Musco (2015) in order to compute an approx-
imated truncated SVD (Singular Value Decomposition) of
the correlation matrix C. Finally, by equipping SVRG with
this preconditioner, we obtain our main result.

2. Main Result
Theorem 1. Let k ∈ [d] be a given parameter and assume
that the regularization parameter, λ, is larger than λd. Our
preconditioning process runs in time O(ndk log(n)). By
equipping the SVRG of Xiao & Zhang (2014) with this pre-
conditioner, we find an ε-approximate minimizer for (1)
(with probability at least 9/10) in additional runtime of
O((κ̃ + n + d)d log(1/ε)), where κ̃ =

kλk+
∑

i>k λi

λ or

κ̃ =
(
n(kλk+

∑
i>k λi)

λ

)1/2

if we use accelerated SVRG.

When the runtimes of both the (accelerated) SVRG and
our preconditioned (accelerated) SVRG are controlled by
the average condition number (and both runtimes dominate
ndk), then ignoring logarithmic dependencies, we obtain a
speed-up of order

ratio =

∑d
i=1 λi

k λk +
∑
i>k λi

=

∑k
i=1 λi +

∑
i>k λi

k λk +
∑
i>k λi

. (3)

(or
√∑d

i=1 λi/(λkk +
∑
i>k λi) if acceleration is used)

over SVRG. If the spectrum decays fast then k λk �∑k
i=1 λi and

∑
i>k λi � k λk. In this case, the ratio will

be large. Indeed, as we show in the experimental section,
this ratio is often huge for relatively small k.

2.1. Main challenges and perspective

While the idea of developing a preconditioner that focuses
on the stronger directions of the data matrix sounds plausi-
ble, there are several difficulties that have to be solved.

• First, since a preconditioner must correspond to an
invertible transformation, it is not clear how to form
a preconditioner based on a low rank approximation
and, in particular, how should we treat the non-leading
components.

• One of the main technical challenges in our work is
to translate the approximation guarantees of the Lanc-
zos method into a guarantee on the resulted average
condition number. The standard measures of success
for low-rank approximation are based on either Frobe-
nius norm or spectral norm errors. As will be appar-
ent from the analysis (see Section 5.4), such bounds
do not suffice for our needs. Our analysis relies on
stronger per vector error guarantees (6) due to Musco
& Musco (2015).

It should be emphasized that while we use a variant of
SVRG due to Xiao & Zhang (2014), we could equally use
a variant of SDCA (Shalev-Shwartz, 2016) or develop such
a variant for SAG or SAGA. Furthermore, while we fo-
cus on the quadratic case, we believe that our ideas can be
lifted to more general setting. For example, when applied
to self-concordant functions, each step of Newton’s method
requires the minimization of a quadratic objective. There-
fore, it is natural to ask if we can benefit from applying our
method for approximating the Newton step.

2.2. Bias-complexity tradeoff

As we mentioned above, λ controls a tradeoff between un-
derfitting and overfitting. In this view, we can interpret our
result as follows. Assuming for simplicity that n ≥ d and
ignoring logarithmic dependencies, we note that if

λ =
kλk +

∑
i>k λi

nk
, (4)

then the runtime of our preconditioned SVRG is Õ(ndk).
For comparison, the runtime of (unconditioned) SVRG is
Õ(ndk) if

λ =

∑d
i=1 λi
nk

. (5)

The ratio between the RHS of (5) and (4) is the ratio
given in (3). Hence, for a given “runtime budget” of or-
der Õ(ndk), we can set the regularization parameter of the
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preconditioned SVRG to be smaller by this ratio. Similar
interpretation holds for the accelerated versions.

3. Related Work
Existing algorithms and their complexities: Since min-
imizing (1) is equivalent to solving the system (C +
λI)w = 1

n

∑n
i=1 yixi, standard numerical linear algebra

solvers such as Gaussian elimination can be used to solve
the problem in time O(nd2).

Iterative deterministic methods, such as Gradient De-
scent (GD), finds an ε-approximate minimizer in time
ndκ log(1/ε), where κ = λ1(C+λI)

λd(C+λI) is the condition num-
ber of C + λI (see Theorem 2.1.15 in Nesterov (2004)).
The Kaczmarz algorithm (Kaczmarz, 1937) has an iden-
tical complexity. Both the Conjugate Gradient (CG)
method (Hestenes & Stiefel, 1952) and the Accelerated
Gradient Descent (AGD) algorithm of Nesterov (1983) en-
joy a better runtime of nd

√
κ log(1/ε). In fact, CG has

a more delicate analysis (see Corollary 16.7 in Vishnoi
(2012)): If all but c ∈ [d] eigenvalues of C + λI are con-
tained in a range [a, b], then the runtime of CG is at most
nd(c +

√
b/a log(1/ε)). In particular, CG’s runtime is at

most O(nd2). Furthermore, following the interpretation of
our main result in Section 2.2, we note that for a “runtime
budget” of Õ(ndk), we can set the regularization parameter
of CG to be of order λk/k2 (which is usually much greater
than the RHS of (4)).

Linear Sketching: Several recently developed methods
in numerical linear algebra are based on the so-called
sketch-and-solve approach, which essentially suggests that
given a matrix A, we first replace it with a smaller ran-
dom matrix AS, and then perform the computation on
AS (Woodruff, 2014; Clarkson & Woodruff, 2013; Sarlos,
2006). For example, it is known that if the entries of S
are i.i.d. standard normal variables and S has p = Ω(k/ε)
columns, then with high probability, the column space of
AS contains a (1 + ε) rank-k approximation to A with re-
spect to the Frobenius norm. This immediately yields a fast
PCA algorithm (see Section 4.1 in Woodruff (2014)).

While the above sketch-and-solve approach sounds promis-
ing for this purpose, our analysis reveals that controlling the
Frobenius norm error does not suffice for our needs. We
need spectral norm bounds, which are known to be more
challenging (Witten & Candès, 2013). Furthermore, as
mentioned above, the success of our conditioning method
heavily depends on the stronger per vector error guarantees
(6) obtained by Musco & Musco (2015) which are not ob-
tained by simpler linear sketching methods.

Sketched preconditioning: Recently, subspace embed-
ding methods were used to develop cheap precondition-

ers for linear regression with respect to the squared
loss (Woodruff, 2014). Precisely, Clarkson & Woodruff
(2013) considered the case λ = 0 (i.e, standard least-
squares) and developed a preconditioning method that re-
duces the average condition number to a constant. There-
after, they suggest applying a basic solver such as CG. The
overall running time is dominated by the preconditioning
process which runs in time Õ(d3 + nd). Hence, a sig-
nificant improvement over standard solvers is obtained if
n� d.

The main shortcoming of this method is that it does not
scale well to large dimensions. Indeed, when d is very
large, the overhead resulted from the preconditioning pro-
cess can not be afforded.

Efficient preconditioning based on random sampling:
While we focus on reducing the dependence on the dimen-
sionality of the data, other work investigated the gain from
using only a random subset of the data points to form the
conditioner (Yang et al., 2014). The theoretical gain of this
approach has been established under coherence assump-
tions (Yang et al., 2014).

4. Preliminaries
4.1. Additional notation and definitions

Any matrix B ∈ Rd×n of rank r can be written in (thin)
SVD form as B = UΣV > =

∑r
i=1 σi(B)uiv

>
i . The sin-

gular values are ordered in descending order. The spectral
norm of B is defined by ‖B‖ = σ1(B). The spectral norm
is submultiplicative, i.e., ‖AB‖ ≤ ‖A‖‖B‖ for all A and
B. Furthermore, the spectral norm is unitary invariant, i.e.,
for allA andU such that the columns ofU are orthonormal,
‖UA‖ = ‖A‖. For any k ∈ [r], it is well known that the
truncated SVD ofB,Bk := UkΣkVk =

∑k
i=1 σi(B)uiv

>
i ,

is the best rank-k approximation of B w.r.t. the spec-
tral norm (Trefethen & Bau III, 1997). A twice continu-
ously differentiable function f : Rd → R is said to be
β-smooth if ‖∇2f(w)‖ ≤ β for all w, where ∇2f(w) is
the Hessian of f at w. f is said to be α-strongly convex
if λd(∇2f(w)) ≥ α for all w. If g is convex and f is α-
strongly convex, then f + g is α-strongly convex.

4.2. Stochastic Variance Reduced Gradient (SVRG)

We consider a variant of the Stochastic Variance Reduced
Gradient (SVRG) algorithm of Johnson & Zhang (2013)
due to Xiao & Zhang (2014). The algorithm is an epoch-
based iterative method for minimizing an average, F (w) =
1
N

∑N
i=1 fi(w), of smooth functions. It is assumed that

each fi : Rd → R is convex and βi-smooth. The en-
tire function F is assumed to be α-strongly convex. The
algorithm is detailed in Algorithm 1. Its convergence rate
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Algorithm 1 SVRG (Xiao & Zhang, 2014)

1: Input: Functions f1, . . . , fn, β1, . . . , βn
2: Parameters: w̄0 ∈ Rd, m, η, S ∈ N
3: for s = 1, 2, . . . , S do
4: w̄ = w̄s−1

5: v̄ = ∇F (w̄)
6: w0 = w̄
7: for t = 1, . . . ,m do {New epoch}
8: Pick it ∈ [N ] with probability qit = βit/

∑
βj

9: vt = (∇fit(wt−1)−∇fit(w̄))/qit + v̄
10: wt = wt−1 − ηvt
11: end for
12: w̄s = 1

m

∑m
t=1 wt

13: end for
14: Output: the vector w̄S

depends on the averaged smoothness of the individual func-
tions and the average condition number of F , defined as

β̂ =
1

N

N∑
i=1

βi ; κ̂F =
β̂

α
.

Theorem 2. (Xiao & Zhang, 2014) Fix ε > 0. Running
SVRG (Algorithm 1) with any w0, S ≥ log((F (w0) −
minw∈Rd F (w))/ε), m = dκ̂F e, and η = 0.1/β̂ yields
an ε-approximate minimizer of F . Furthermore, assuming
that each single gradient ∇fi(w) can be computed in time
O(d), the overall runtime is O((κ̂F +N)d log(ε0/ε)).

In the original definition of SVRG (Johnson & Zhang,
2013), the indices it are chosen uniformly at random from
[n], rather than proportional to βi. As a result, the conver-
gence rate depends on the maximal smoothness, max{βi},
rather than the average, β̂. It will be apparent from our
analysis (see Theorem 4) that in our case, max{βi} is pro-
portional to the maximum norm of any preconditioned xi.
Since we rely on the improved variant of Xiao & Zhang
(2014), our bound depends on the average of the βi’s,
which scale with the average norm of the preconditioned
xi’s. To simplify the presentation, in the sequel we refer to
Algorithm 1 as SVRG.

4.3. Randomized Block Lanczos

A randomized variant of the Block Lanczos method due
to Musco & Musco (2015) is detailed1 in Algorithm 2.
Note that the matrix ŨkΣ̃kṼ

>
k forms an SVD of the ma-

trix Ãk := Q(Q>A)k = ŨkŨ
>
k A.

Theorem 3. (Musco & Musco, 2015) Consider the run of
Algorithm 2 and denote Ãk = ŨkΣ̃kṼk =

∑k
i=1 σ̃iũiṽ

>
i .

1More precisely, Algorithm 2 in Musco & Musco (2015) re-
turns the projection matrix ŨkŨ

>
k , while we also compute the

SVD of ŨkŨ
>
k A. The additional runtime is negligible.

Algorithm 2 Block Lanczos method (Musco & Musco,
2015)

1: Input: A ∈ Rd×n, k ≤ d, ε′ ∈ (0, 1)

2: q = Θ
(

log(n)√
ε

)
, p = qk, Π ∼ N (0, 1)n×k

3: Compute K = [AΠ, (AA>)AΠ, . . . , (AA>)q−1AΠ]
4: Orthonormalize K’s columns to obtain Q ∈ Rd×qk
5: Compute the truncated SVD (Q>A)k = W̃kΣ̃kṼ

>
k

6: Compute Ũk = QW̃k

7: Output: the matrices Ũk, Σ̃k, Ṽk

Denote the SVD of A by A =
∑d
i=1 σiviu

>
i . The following

bounds hold with probability at least 9/10:

‖A− Ãk‖ ≤ (1 + ε′)‖A−Ak‖ ≤ (1 + ε′)σk

∀i ∈ [k], |z>i AA>zi − u>i AA>ui| = |σ̃2
i − σ2

i |
≤ ε′σ2

k+1 . (6)

The runtime of the algorithm is O
(
ndk log(n)√

ε′
+ k2(n+d)

ε′

)
.

5. Sketched Conditioned SVRG
In this section we develop our sketched conditioning
method. By analyzing the properties of this conditioner and
combining it with SVRG, we will conclude Theorem 1.

Recall that we aim at devising cheaper preconditioners
that lead to a significant reduction of the condition num-
ber. Specifically, given a parameter k ∈ [d], we will
consider only preconditioners P−1/2 for which both the
computation of P−1/2 itself and the computation of the
set {P−1/2xi, . . . , P

−1/2xn} can be carried out in time
Õ(ndk). We will soon elaborate more on the considera-
tions when choosing the preconditioner, but first we would
like to address some important implementation issues.

5.1. Preconditioned regularization

In order to implement the preconditioning scheme sug-
gested above, we should be able to find a simple form
for the function L̃. In particular, since we would like to
use SVRG, we should write L̃ as an average of n compo-
nents whose gradients can be easily computed. Denote by
x̃i = P−1/2xi for all i ∈ [n]. Since for every i ∈ [n],
((P−1/2w)>xi− yi)2 = (w>x̃i− yi)2, it seems natural to
write L̃(w) = L(P−1/2w) as follows:

L̃(w) =
1

n

n∑
i=1

1

2
(w>x̃i − yi)2︸ ︷︷ ︸

=:˜̀i

+
λ

2
‖P−1/2w‖2 .

Assume momentarily that λ = 0. Note that the gradient of
˜̀
i at any point w is given by ∇˜̀

i(wt) = (w>x̃i − yi)x̃i.



Solving Ridge Regression using Sketched Preconditioned SVRG

Hence, by computing all the x̃i’s in advance, we are able
to apply SVRG directly to the preconditioned function and
computing the stochastic gradients in time O(d).

When λ > 0, the computation of the gradient at some point
w involves the computation of P−1w. We would like to
avoid this overhead. To this end, we decompose the regu-
larization function as follows. Denote the standard basis of
Rd by e1, . . . , ed. Note that the function L can be rewritten
as follows:

L(w) =
1

n+ d

n+d∑
i=1

`i(w) ,

where `i(w) = n+d
n

1
2 (w>xi − yi)2 for i = 1, . . . , n and

`n+i(w) = λ(n + d) 1
2 (w>ei)

2 for i = 1, . . . , d. Finally,
denoting bi = P−1/2ei for all i, we can rewrite the precon-
ditioned function L̃ as follows:

L̃(w) =
1

n+ d

n+d∑
i=1

˜̀
i(w) ,

where ˜̀
i(w) = n+d

n
1
2 (w>x̃i − yi)2 for i = 1, . . . , n and

˜̀
n+i(w) = λ(n + d) 1

2 (w>bi)
2 for i = 1, . . . , d. By com-

puting the x̃i’s and the bi’s in advance, we are able to apply
SVRG while computing stochastic gradients in time O(d).

5.2. The effect of conditioning

We are now in position to address the following funda-
mental question: How does the choice of the precondi-
tioner, P−1/2, affects the resulted average condition num-
ber of the function L̃ (4.2)? The following lemma upper
bounds κ̂L̃ by the average condition number of the matrix
P−1/2(C + λI)P−1/2, which we denote by κ̃ (when the
identity of the matrix P is understood).

Theorem 4. Let P−1/2 be a preconditioner. Then, the av-
erage condition number of L̃ is upper bounded by

κ̂L̃ ≤ κ̃ =
tr(P−1/2(C + λI)P−1/2)

λd(P−1/2(C + λI)P−1/2)
.

The proof is in the appendix. Note that an optimal bound
of O(d) is attained by the whitening matrix P−1/2 = (C+
λI)−1/2.

5.3. Exact sketched conditioning

Our sketched preconditioner is based on a random approx-
imation of the best rank-k approximation of the data ma-
trix. It will be instructive to consider first a precondi-
tioner that is based on an exact rank-k approximation of
the data matrix. Let X ∈ Rd×n be the matrix whose
i-th columns is xi and let X̄ = n−1/2X . Denote by
X̄ =

∑rank(X̄)
i=1 σiuiv

>
i = UΣV > the SVD of X̄ and

recall that X̄k =
∑k
i=1 σiuiv

>
i is the best k-rank ap-

proximation of X̄ . Note that X̄X̄> = C and therefore
σ2
i = λi(C) = λi. Furthermore, the left singular vectors

of X̄ , u1, . . . , uk, coincide with the k leading eigenvectors
of the matrix C. Consider the preconditioner,

P−1/2 =

k∑
i=1

uiu
>
i√

λi + λ
+
I −

∑k
i=1 uiu

>
i√

λk + λ
,

where uk+1, . . . , ud are obtained from a completion of
u1, . . . , uk to an orthonormal basis.

Lemma 1. Let k ∈ [d] be a parameter and assume that the
regularization parameter, λ, is larger than λd. Using the
exact sketched preconditioner, we obtain

κ̂L̃ ≤
kλk +

∑
i>k λi

λ
+ d . (7)

Proof. A simple calculation shows that for i = 1, . . . , k,

λi(P
−1/2(C + λI)P−1/2) =

λi + λ

λi + λ
= 1 .

Similarly, for i = k + 1, . . . , d,

λi(P
−1/2(C + λI)P−1/2) =

λi + λ

λk + λ
.

Finally,

λd(P
−1/2(C + λI)P−1/2) ≥ λ

λk + λ
.

Combining the above with Theorem 4, we obtain that

κ̂L̃ ≤
tr(P−1/2(C + λI)P−1/2)

λd(P−1/2(C + λI)P−1/2)

≤ kλk + λ

λ
+

d∑
i=k+1

λi + λ

λ

=
kλk +

∑
i>k λi

λ
+ d .

5.4. Sketched conditioning

An exact computation of the SVD of the matrix X̄ takes
O(nd2). Instead, we will use the Block Lanczos method in
order to approximate the truncated SVD of X̄ . Specifically,
given a parameter k ∈ [d], we invoke the Block Lanczos
method with the parameters X̄, k and ε′ = 1/2. Recall that
the output has the form X̃k = ŨkΣ̃kṼ

>
k =

∑k
i=1 σ̃iũiṽ

>
i .

Analogously to the exact sketched preconditioner, we de-
fine our sketched preconditioner by

P−1/2 =

k∑
i=1

ũiũ
>
i√

σ̃2
i + λ

+
I −

∑k
i=1 ũiũ

>
i√

σ̃2
k + λ

. (8)



Solving Ridge Regression using Sketched Preconditioned SVRG

Theorem 5. Let k ∈ [d] be a parameter and assume that
the regularization parameter, λ, is larger that λd. Using
the sketched preconditioner defined in (8), up to a multi-
plicative constant, we obtain the bound (7) on the average
condition number with probability at least 9/10.

The rest of this section is devoted to the proof of Theo-
rem 5. We follow along the lines of the proof of Lemma 1.
Up to a multiplicative constant, we derive the same up-
per and lower bounds on the eigenvalues of P−1/2(C +
λI)P−1/2.

From now on, we assume that the bounds in Theorem 3
(where ε′ = 1/2) hold. This assumption will be valid with
probability of at least 9/10. We next introduce some nota-
tion. We can rewrite P−1/2 = Ũ(Σ̃2 + λI)−1/2Ũ> where
Σ̃ is a diagonal d×dwith Σ̃i,i = σ̃i if i ≤ k and Σ̃i = σ̃k if
i > k. and the columns of Ũ are a completion of ũ1, . . . , ũk
to an orthonormal basis. Recall that the SVD of X̄ is de-
noted by X̄ =

∑d
i=1 σiuiv

>
i = UΣV >.

Lemma 2. (Upper bound on the leading eigenvalue) We
have

λ1(P−1/2(C + λI)P−1/2) ≤ 17 .

Proof. Since λ1(P−1/2(C + λI)P−1/2) = ‖P−1/2(C +
λI)P−1/2‖ = ‖P−1/2CP−1/2 + λP−1‖, using the trian-
gle inequality we have that

λ1(P−1/2(C+λI)P−1/2) ≤ ‖P−1/2CP−1/2‖+λ‖P−1‖ .

By the definition of P we have that ‖P−1‖ = 1
σ̃2
k+λ

and
therefore the second summand on the right hand side of
the above is at most λ

σ̃2
k+λ

≤ 1. As to the first summand,

recall that C = X̄X̄> and therefore ‖P−1/2CP−1/2‖ =
‖X̄>P−1/2‖2. We will show that ‖X̄>P−1/2‖ ≤ 4 which
will imply that ‖P−1/2CP−1/2‖ ≤ 16. To do so, we first
apply the triangle inequality,

‖X̄>P−1/2‖ = ‖(X̃k + (X̄ − X̃k))>P−1/2‖
≤ ‖X̃>k P−1/2‖+ ‖(X̄ − X̃k)>P−1/2‖ .

Let us consider one term at the time. Recall that X̃k =
ŨkΣ̃kṼ

>
k . Since Ũ>k Ũ ∈ Rk,d is a diagonal matrix with

ones on the diagonal, and since the spectral norm is invari-
ant to multiplication by unitary matrices, we obtain that

‖X̃>k P−1/2‖ = ‖ṼkΣ̃kŨ
>
k Ũ(Σ̃2 + λI)−1/2Ũ>‖

= ‖Σ̃kŨ>k Ũ(Σ̃2 + λI)−1/2‖

= max
i∈[k]

σ̃i√
σ̃2
i + λ

≤ max
i∈[k]

σ̃i

σ̃i +
√
λ
≤ 1 .

Next, by the submutiplicativity of the spectral norm,

‖(X̄ − X̃k)>P−1/2‖ ≤ ‖X̄ − X̃k‖ · ‖P−1/2‖ .

Theorem 3 implies that ‖X̄ − X̃k‖ ≤ 3
2σk and

‖P−1/2‖ =
1√

σ̃2
k + λ

≤ 1√
σ̃2
k

≤ 1√
σ2
k − (1/2)σ2

k+1

≤ 1

σk

√
1
2

=

√
2

σk
<

2

σk
.

Hence, ‖X̄ − X̃k‖ · ‖P−1/2‖ ≤ 3. Combining all of the
above bounds concludes our proof.

Lemma 3. (Refined upper bound on the last d− k eigen-
values) For any i ∈ {k + 1, . . . , d},

λi

(
P−1/2(C + λI)P−1/2

)
≤ 2(λi + λ)

λk + λ
.

Proof. Using the Courant minimax principle (Bhatia,
2013), we obtain the following bound for all i ∈ {k +
1, . . . , d}:

λi

(
P−1/2(C + λI)P−1/2

)
= max
M⊆Rd:

dim(M)=i

min
x∈M:
x 6=0

x>P−1/2(C + λI)P−1/2x

‖x‖2

= max
M⊆Rd:

dim(M)=i

min
x∈M:
x 6=0

x>P−1/2(C + λI)P−1/2x

‖P−1/2x‖2
· ‖P

−1/2x‖2

‖x‖2

≤

 max
M⊆Rd:

dim(M)=i

min
x∈M:
x 6=0

x>P−1/2(C + λI)P−1/2x

‖P−1/2x‖2

×
max
x∈Rd:
x 6=0

x>P−1x

‖x‖2


= λi (C + λI) · λ1(P−1) = (λi + λ) · (σ̃2

k + λ)−1 .

Finally, using Theorem 3 we have that σ̃2
k ≥ σ2

k− 1
2σ

2
k+1 ≥

1
2σ

2
k = 1

2λk and therefore,

(σ̃2
k + λ)−1 ≤ ( 1

2λk + λ)−1 ≤ 2 (λk + λ)−1 .

Lemma 4. (Lower bound on the smallest eigenvalue)

λd(P
−1/2CP−1/2) ≥ λ

19(λk + λ)
.

Proof. Note that

λd(P
−1/2(C + λI)P−1/2) =

1

‖P 1/2(C + λI)−1P 1/2‖
,

(9)
so we can derive an upper bound on ‖P 1/2(C +
λI)−1P 1/2‖. Consider an arbitrary completion of
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ṽ1, . . . , ṽk to an orthonormal set, ṽ1, . . . , ṽd ∈ Rn. Let
Ṽ ∈ Rn×d be the matrix whose i-th column is ṽi. Since
the spectral norm is unitary invariant and both Ũ and Ṽ
have orthonormal columns,

‖P 1/2(C + λI)−1P 1/2‖
= ‖Ũ(Σ̃2 + λI)1/2Ũ>(C + λI)−1Ũ(Σ̃2 + λI)1/2Ũ>‖
= ‖Ṽ (Σ̃2 + λI)1/2Ũ>(C + λI)−1Ũ(Σ̃2 + λI)1/2Ṽ >‖ .

Denote by Z̃ = Ũ(Σ̃2 + λI)1/2Ṽ >. By the triangle in-
equality and the submutiplicativity of the spectral norm,

‖Z̃>(C + λI)−1Z̃‖ ≤ ‖X̄>(C + λI)−1X̄‖
+ ‖(Z̃ − X̄)>(C + λI)−1(Z̃ − X̄)‖

≤ ‖X̄>(C + λI)−1X̄‖+ ‖Z̃ − X̄‖2‖(C + λI)−1‖ .(10)

To bound the first summand of (10), we use the unitary
invariance to obtain

‖X̄>(C + λI)−1X̄‖ = ‖V ΣU>U(Σ2 + λI)−1U>UΣV >‖

= ‖Σ(Σ2 + λI)−1Σ‖ = max
i

λ2
i

λ2
i + λ

≤ 1 .

For the second summand of (10), note that ‖(C+λI)−1‖ =
1

λd+λ and that, using the triangle inequality,

‖Z̃ − X̄‖ = ‖(Ũ Σ̃Ṽ > − X̄) + (Z̃ − Ũ Σ̃Ṽ >)‖
≤ ‖Ũ Σ̃Ṽ > − X̄‖+ ‖Ũ((Σ̃2 + λI)1/2 − Σ̃)Ṽ >‖ .

By using unitary invariance together with the inequality√
σ̃2
i + λ− σ̃i ≤

√
λ (which holds for every i), we get

‖Ũ((Σ̃2 +λI)1/2−Σ̃)Ṽ >‖ = ‖(Σ̃2 +λI)1/2−Σ̃‖ ≤
√
λ .

Hence, using the inequality (x + y)2 ≤ 2x2 + 2y2, we
obtain

‖Z̃ − X̄‖2 ≤ 2‖Ũ Σ̃Ṽ > − X̄‖2 + 2λ .

We next derive an upper bound on ‖Ũ Σ̃Ṽ > − X̄‖. Since
Ũ Σ̃Ṽ > = X̃k + σ̃k

∑d
i=k+1 ũiṽ

>
i ,

‖Ũ Σ̃Ṽ > − X̄‖ ≤ ‖X̃k − X̄‖+ σ̃k

∥∥∥∥∥
d∑

i=k+1

ũiṽ
>
i

∥∥∥∥∥ .
Using Theorem 3 we know that ‖X̃k − X̄‖ ≤ 1.5σk and

that σ̃k ≤
√
σ2
k + 0.5σ2

k+1 ≤ 1.5σk. Combining this with

the fact that ‖
∑d
i=k+1 ũiṽ

>
i ‖ = 1, we obtain

‖Ũ Σ̃Ṽ > − X̄‖ ≤ 3σk .

Combining the above inequalities, we obtain

‖P 1/2(C + λI)−1P 1/2‖ ≤ 1 +
2 · (3σk)2 + 2λ

λd + λ

≤ 19(λk + λ)

λ
,

and using (9) we conclude our proof.

Proof. (of Theorem 5) The three last lemmas imply that
the inequalities derived during the proof of Lemma 1 re-
main intact up to a multiplicative constant. Therefore, the
bound (7) on the condition number also holds up to a mul-
tiplicative constant. This completes the proof.

5.5. Sketched Preconditioned SVRG

By equipping SVRG with the sketched preconditioner (8),
we obtain the Sketched Preconditioned SVRG (see Algo-
rithm 3).

Proof. (of Theorem 1) The theorem follows from Theo-
rem 5 and Theorem 2.

Algorithm 3 Sketched Preconditioned SVRG

1: Input: x1, . . . , xn ∈ Rd, y1, . . . , yn ∈ R, ε > 0
2: Parameters: λ > 0, k ∈ [d]
3: Let X̄ ∈ Rd,n be the matrix whose i’th column is

(1/n)xi
4: Run the Block Lanczos method (Algorithm 2) with the

input X̄, k, ε′ = 1/2 to obtain X̃k = ŨkΣ̃kṼk
5: Let ũi be the columns of Ũk and σ̃i be the diagonal

elements of Σ̃k
6: Form the preconditioner P−1/2 according to (8)
7: Compute x̃i = P−1/2xi, bi = P−1/2ei
8: Let `i(w) = n+d

n
1
2 (w>x̃i − yi)2 for i = 1, . . . , n and

`i(w) = λ(n+ d)(w>bi)
2 for i = n+ 1, . . . , n+ d

9: Let βi = n+d
n ‖x̃i‖

2 for i = 1, . . . , n and βi = λ(n +

d)‖bi‖ for i = n+ 1, . . . , n+ d. Let β̂ = 1
n

∑n+d
i=1 βi

10: Run SVRG (Algorithm 1)
11: Return ŵ = P 1/2w̃

6. The Empirical Gain of Sketched
Preconditioning

In this section we empirically demonstrate the gain of our
method. We consider both regression problems and binary
classifications tasks, where the square loss serves as a sur-
rogate for the zero-one loss. We use the following datasets:

• Synthetic: We draw two random 5000× 20000 matri-
ces, X(1) and X(2), whose singular vectors are drawn
uniformly at random and the q-th singular value is
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(d) Real-sim dataset.

Figure 1. Plot of the ratio (3) as a function of k.

1/q and 1/q2, respectively. We then normalize the
columns. For each X = X(j), we consider a regres-
sion problem, where the labels are generated as fol-
lows: we first draw a vector w? ∈ N (0, 1)5000 and
then set yi = w?>X·,i + zi, where zi ∼ N (0, 0.1).

• MNIST:2 A subset of MNIST, corresponding to the
digits 4 and 7, where the task is to distinguish between
the two digits. Here, n = 12107, d = 784.

• RCV1:3 The Reuters RCV1 collection. Here, n =
20242, d = 47236 and we consider a standard binary
document classification task.

• CIFAR-10:4 Here, n = 50000, d = 3072. Following
Frostig et al. (2015), the classification task is to distin-
guish between the animal categories to the automotive
ones.

• real-sim:5 Here, n = 72309, d = 20958, and we con-
sider a standard binary document classification task.

6.1. Inspecting our theoretical speed-up

Recall that the ratio (3) quantifies our theoretical speedup.
Hence, we first empirically inspect the prefixes of the cor-
responding quantities (as a function of k) for each of the
datasets (see Figure 1). We can see that while in MNIST
and CIFAR-10 the ratio is large for small values of k, in
RCV1 and real-sim the ratio increases very slowly (note
that for the former two datasets we use logarithmic scale).

2http://yann.lecun.com/exdb/mnist/
3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
4http://www.cs.toronto.edu/ kriz/cifar.html
5https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 2. Convergence of Sketched Preconditioned SVRG vs
SVRG. The x-axis is the number of epochs and the y-axis is the
suboptimality, L(w̄t) − minw∈Rd L(w), in logarithmic scale.

6.2. Empirical advantage of Sketched Preconditioned
SVRG

We now evaluate Algorithm 3 and compare it to the SVRG
algorithm of Xiao & Zhang (2014). To minimally affect the
inherent condition number, we added only a slight amount
of regularization, namely, λ = 10−8. The loss used is the
square loss. The step size, η, is optimally tuned for each
method. Similarly to previous work on SVRG (Xiao &
Zhang, 2014; Johnson & Zhang, 2013), the size of each
epoch, m, is proportional to the number of points, n. We
minimally preprocessed the data by average normalization:
each instance vector is divided by the average `2-norm of
the instances. The number of epochs is up to 60. Note
that in all cases we choose a small preconditioning pa-
rameter, namely k = 30, so that the preprocessing time
of Algorithm 3 is negligible. There is a clear correspon-
dence between the ratios depicted in Figure 1 and the ac-
tual speedup. In other words, the empirical results strongly
affirm our theoretical results.
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