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Abstract
Domain adaptation arises in supervised learn-
ing when the training (source domain) and test
(target domain) data have different distribution-
s. Let X and Y denote the features and target,
respectively, previous work on domain adapta-
tion mainly considers the covariate shift situa-
tion where the distribution of the features P (X)
changes across domains while the conditional
distribution P (Y |X) stays the same. To re-
duce domain discrepancy, recent methods try to
find invariant components T (X) that have sim-
ilar P (T (X)) on different domains by explic-
itly minimizing a distribution discrepancy mea-
sure. However, it is not clear if P (Y |T (X)) in
different domains is also similar when P (Y |X)
changes. Furthermore, transferable components
do not necessarily have to be invariant. If the
change in some components is identifiable, we
can make use of such components for prediction
in the target domain. In this paper, we focus on
the case where P (X|Y ) and P (Y ) both change
in a causal system in which Y is the cause for X .
Under appropriate assumptions, we aim to ex-
tract conditional transferable components whose
conditional distribution P (T (X)|Y ) is invariant
after proper location-scale (LS) transformation-
s, and identify how P (Y ) changes between do-
mains simultaneously. We provide theoretical
analysis and empirical evaluation on both syn-
thetic and real-world data to show the effective-
ness of our method.
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1. Introduction
Standard supervised learning relies on the assumption that
both training and test data are drawn from the same distri-
bution. However, this assumption is likely to be violated in
practice if the training and test data are sampled under dif-
ferent conditions. Considering the problem of object recog-
nition, images in different datasets are taken with different
cameras or in different imaging conditions (e.g., pose and
illumination). In the indoor WiFi localization problem, sig-
nals collected during different time periods have different
distributions, and one may want to adapt a model trained
on the signals received from one time period to the signals
collected during other time periods. Domain adaptation ap-
proaches aim to solve this kind of problems by transferring
knowledge between domains (Pan & Yang, 2010; Jiang,
2008).

To perform domain adaptation, certain assumptions must
be imposed in how the distribution changes across
domains. For instance, many existing domain adaptation
methods consider the covariate shift situation where the
distributions on two domains only differ in the marginal
distribution of the features P (X), while the conditional
distribution of the target given the features P (Y |X) does
not change. In this case, one can match the feature distri-
bution P (X) on source and target domains by importance
reweighting methods if the source domain is richer than the
target domain (Shimodaira, 2000; Sugiyama et al., 2008;
Huang et al., 2007). The weights are defined as the den-
sity ratio between the source and target domain features
and can be efficiently estimated by various methods such
as the kernel mean matching procedure (KMM) (Huang
et al., 2007). Theoretical analysis of importance reweight-
ing methods for correcting covariate shift has also been s-
tudied in (Cortes et al., 2010; Yu & Szepesvári, 2012).

In addition to instance reweighting methods, several state-
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of-the-art approaches try to reduce the domain shift by
finding invariant representations or components across
domains (Ben-David et al., 2007; Pan et al., 2011; Luo
et al., 2014). These invariant components (IC)-type ap-
proaches assume that there exist a transformation T such
that PS(T (X)) ≈ P T (T (X)), where PS denotes the
source domain distribution and P T denotes the target do-
main distribution. To obtain the shared representation,
some methods firstly create intermediate representations
by projecting the original feature to a series of subspaces
and then concatenate them (Gopalan et al., 2011; Gong
et al., 2012). Other methods learn a low dimensional pro-
jection by explicitly minimizing the discrepancy between
the distributions of projected features on source and tar-
get domains (Pan et al., 2011; Long et al., 2014; 2015;
Baktashmotlagh et al., 2013; Si et al., 2010; 2011; Muan-
det et al., 2013). Because there are no labels in the tar-
get domain in the unsupervised domain adaptation scenari-
o, T can not be learned by minimizing the distance be-
tween PS(Y |T (X)) and P T (Y |T (X)). Therefore, these
methods simply assume that the transformation T learned
by matching the distribution of transformed features satis-
fies PS(Y |T (X)) ≈ P T (Y |T (X)). However, it is not
clear why and when this assumption holds in practice, i.e.,
under what conditions would PS(T (X)) ≈ P T (T (X))
imply PS(Y |T (X)) ≈ P T (Y |T (X))? Moreover, the
components that are transferable between domains are not
necessarily invariant. If the changes in some components
are identifiable from the empirical joint distribution on the
source domain and the empirical marginal distribution of
the features on the target domain, we can make use of these
components for domain adaptation.

In fact, to successfully transfer knowledge between
domains, one need to capture the underlying causal
mechanism, or the data generating process. In particular,
for domain adaptation, one would be interested in what
types of information are invariant, what types of informa-
tion change, and how they change across domains. To this
end, some recent work address the domain adaptation prob-
lem using causal models to characterize how the distri-
bution changes between domains (Schölkopf et al., 2012;
Kun Zhang et al., 2013; 2015; Mateo et al., 2016). Let
C and E denote the cause and effect, respectively, P (C)
characterizes the process which generates the cause and
P (E|C) describes the mechanism transforming cause C to
effect E. An important feature of a causal system C → E
is that the mechanism P (E|C) is independent of the cause
generating process P (C) (Schölkopf et al., 2012; Janz-
ing & Schölkopf, 2010). For example, in a causal sys-
tem X → Y , if P (Y |X) changes across domains, one
can hardly correct P (Y |X) unless it is changed by spe-
cific transformations like randomly flipping labels (Liu &
Tao, 2016), because P (X) contains no information about

Table 1: Notation used in this paper.

random variable X Y
domain X Y
observation x y
RKHS F G
feature map ψ(x) φ(y)
kernel k(x, x′) l(y, y′)
kernel matrix on source domain K L
source domain data matrix xS yS

target domain data matrix xT yT

source domain feature matrix ψ(xS) φ(yS)
target domain feature matrix ψ(xT ) φ(yT )

P (Y |X).

In this paper, we aim to find conditional invariant or trans-
ferable components in the generalized target shift (GeTarS)
(Kun Zhang et al., 2013) scenario where the causal direc-
tion is Y → X . In this scenario, P (Y ) and P (X|Y )
change independently to each other, whereas P (X) and
P (Y |X) usually change dependently; thus it is possible to
correct P (Y |X) from labeled source domain data and unla-
beled target domain data. The GeTarS method (Kun Zhang
et al., 2013) assumes that all the features can be transferred
to the target domain by location-scale (LS) transformation.
However, many of the features can be highly noisy or can-
not be well matched after LS transformation, which makes
GeTarS restrictive in practice. In this paper, under appro-
priate assumptions, we aim to find the components whose
conditional distribution is invariant across domains, i.e.,
PS(T (X)|Y ) ≈ P T (T (X)|Y ), and estimate the target
domain label distribution P T (Y ) from the labeled source
domain and unlabeled target domain. In this way, we can
correct the shift in P (Y |X) by using the conditional invari-
ant components and reweighting the source domain data.
Similarly, we are able to find the transferable components
whose conditional distribution is invariant after proper LS
transformations. In addition, we provide theoretical anal-
ysis of our method, making clear the assumptions under
which the proposed method as well as the previous IC-type
methods can work. Finally, we present a computationally
efficient method to estimate the involved parameters based
on kernel mean embedding of distributions (Smola et al.,
2007; Gretton et al., 2012).

2. Conditional Transferable Components
We define conditional invariant components (CIC) Xci as
those components satisfying the condition that P (Xci|Y )
stays invariant across different domains. Since the location-
scale (LS) transformation often occurs in the conditional
distribution of the features given the label, we also present
the conditional transferable components (CTC) method,
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Figure 1: (a) Graphical representation of CIC. Here domain
denotes the domain-specific selection variable. Xci de-
notes the components of X whose conditional distribution,
P (Xci|Y ), is domain-invariant. We assume that Xci can
be recovered from X as T (X). X⊥ denotes the remain-
ing components of X; it might be dependent on Y given
the domain, and when estimating Xci, we would like such
dependence to be as weak as possible so that Xci contains
as much information about Y as possible. (b) CTC, where
P (Xct|Y ) differs only in the location and scale across dif-
ferent domains for each value of Y .

where for each Y value, the conditional distribution of the
extracted conditional transferable components Xct given
Y , P (Xct|Y ), differs only in the location and scale across
all domains. Figure 1 gives a simple illustration of the CIC
and CTC.

2.1. Conditional Invariant Components

We first assume that there exist d-dimensional conditional
invariant components that can be represented as a linear
transformation of the D-dimensional raw features, that is,
Xci = W ᵀX , where W ∈ RD×d and X ∈ RD. To
guarantee that there is no redundant information across di-
mensions of Xci, we constrain the columns of W to be
orthonormal:

W ᵀW = Id. (1)

If we have two domains on which bothX and Y are known,
we can directly enforce the condition

P T (Xci|Y ) = PS(Xci|Y ). (2)

However, in unsupervised domain adaptation, we do not
have access to the Y values on the target domain, and thus
can not match the conditional distributions directly. Only
the empirical marginal distribution of X is available on the
test domain.

We will show that under mild conditions, matching the
conditional distributions, (2), can be achieved by match-
ing the marginal distribution P T (Xci), which equals to∫
P T (Xci|y)P T (y)dy, with the constructed marginal of

X corresponding to PS(Xci|Y ) and Pnew(Y ):

Pnew(Xci) =

∫
PS(Xci|y)Pnew(y)dy. (3)

Definition 1. A transformation T (X) is called trivial
if P

(
T (X)|Y = vc

)
, c = 1, ..., C, are linearly dependent.

With a trivial transformation, the transformed components,
T (X), lose some power for predicting the target Y . For
instance, consider a classification problem with only two
classes. With a trivial transformation, P

(
T (X)|Y = vc

)
,

c = 1, 2, are the same, and as a consequence, T (X) is not
useful for classification.

Fortunately, according to Theorem 1, under mild con-
ditions, if Pnew(Xci) is identical to P T (Xci), i.e.,

Pnew(Xci) = P T (Xci), (4)

the conditional invariance property of Xci, i.e., condition
(2), holds; moreover, the Y distribution on the target do-
main can also be recovered.

Theorem 1. Assume that the linear transformation W is
non-trivial. Further assume

ACIC: The elements in the set
{
κc1P

S(W ᵀX|Y = vc) +

κc2P
T (W ᵀX|Y = vc) ; c = 1, ..., C

}
are linearly

independent ∀ κc1, κc2 (κ2
c1 + κ2

c2 6= 0), if they are
not zero.

If Eq. 4 holds, we have PS(Xci|Y ) = P T (Xci|Y ) and
pnew(Y ) = pT (Y ), i.e., Xci are conditional invariant
components from the source to the target domain.

A complete proof of Theorem 1 can be found in Section S1
of the Supplementary Material. ACIC is enforced to en-
sure that the changes in the weighted conditional distribu-
tions P (Xci|Y = vc)P (Y = vc), c = 1, ..., C are linearly
independent, which is necessary for correcting joint dis-
tributions by matching marginal distributions of features.
Theorem 1 assumes that the distributions on different do-
mains can be perfectly matched. However, it is difficult to
find such ideal invariant components in practice. In Sec-
tion 3, we will show that the distance between the joint dis-
tributions across domains can be bounded by the distance
between marginal distributions of features across domains
under appropriate assumptions.

Now we aim to find a convenient method to enforce the
condition (4). Assume that P new(Y ) is absolutely contin-
uous w.r.t. PS(Y ). We can represent P new(Y = y) as
P T (y) = β(y)PS(y), where β(y) is a density ratio, sat-
isfying β(y) ≥ 0 and

∫
β(y)PS(y)dy = 1, since both

P new(Y ) and PS(Y ) are valid distribution density or mass
functions. Let βi , β(ySi ), and β = [β1, .., βnS ]ᵀ ∈ RnS

;
they satisfy the constraint

βi ≥ 0, and
nS∑
i=1

βi = nS . (5)
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A method to achieve (4) is to minimize the squared maxi-
mum mean discrepancy (MMD):∣∣∣∣µPnew(Xci)[ψ(Xci)]− µPT (Xci)[ψ(Xci)]

∣∣∣∣2 (6)

=
∣∣∣∣EXci∼Pnew(Xci)[ψ(Xci)]− EXci∼PT (Xci)[ψ(Xci)]

∣∣∣∣2.
One way to enforce this condition is to exploit the em-
bedding of the conditional distribution PS(Xci|Y ) as
the bridge to connect the two involved quantities, as
in (Kun Zhang et al., 2013). However, we will show it is
possible to develop a simpler procedure1.

Because of (3), we have

EXci∼Pnew(Xci)[ψ(Xci)] =

∫
ψ(xci)Pnew(xci)dxci

=

∫
ψ(xci)PS(xci|y)PS(y)β(y)dydxci

=

∫
ψ(xci)β(y)PS(y, xci)dydxci

=E(Y,Xci)∼PS(Y,Xci)[β(Y )ψ(Xci)]. (7)

As a consequence, (6) reduces to

Jci =
∣∣∣∣E(Y,X)∼pS [β(Y )ψ(W ᵀX)]−EX∼pT [ψ(W ᵀX)]

∣∣∣∣2.
In practice, we minimize its empirical version

Ĵci =
∣∣∣∣∣∣ 1

nS
ψ
(
W ᵀxS

)
β − 1

nT
ψ(W ᵀxT )1

∣∣∣∣∣∣2
=

1

nS
2β

ᵀKSWβ − 2

nSnT
1ᵀKT ,SW β +

1

nT
21

ᵀKTW1

where β , β(yS), 1 is the nT × 1 vector of ones, KTW
and KSW denote the kernel matrix on W ᵀxT and W ᵀxS ,
respectively, and KT ,SW the cross kernel matrix between
W ᵀxT and W ᵀxS . Note that the kernel has to be char-
acteristic; otherwise there are always trivial solutions. In
this paper, we adopt the Gaussian kernel function, which
has been shown to be characteristic (Sriperumbudur et al.,
2011).

2.2. Location-Scale Conditional Transferable
Components

In practice, one may not find sufficient conditional in-
variant components which also have high discriminative
power. To discover more useful conditional transferable
components, we assume here that there exist transferable

1Alternatively, one may make use of the kernel mean embed-
ding of conditional distributions in the derivation, as in the algo-
rithm for correcting target shift (Kun Zhang et al., 2013), but it
will be more complex. Likewise, by making use of (7), the objec-
tive function used there can be simplified: in their equation (5),
the matrix Ω can be dropped.

components that can be approximated by a location-scale
transformation across domains. More formally, we assume
that there exist W , a(Y S) = [a1(Y S), ..., ad(Y

S)]ᵀ and
b(Y S) = [b1(Y S), ..., bd(Y

S)]ᵀ, such that the conditional
distribution of Xct , a(Y S) ◦ (W ᵀXS) + b(Y S) given
Y S is close to that of W ᵀXT given Y T . The transformed
training data matrix xct ∈ Rd×nS

can be written in matrix
form

xct = A ◦
(
W ᵀxS

)
+ B, (8)

where ◦ denotes the Hadamard product, the i-th column-
s of A ∈ Rd×nS

and B ∈ Rd×nS
are a(yi) and b(yi),

respectively. Using (8), we can generalize Jci to

Jct =
∣∣∣∣E(Y,Xct)∼pS [β(Y )Xct]− EX∼pT [ψ(W ᵀX)]

∣∣∣∣2,
and its empirical version Ĵci to

Ĵct =
∣∣∣∣∣∣ 1

nS
ψ
(
xct
)
β − 1

nT
ψ(W ᵀxT )1

∣∣∣∣∣∣2
=

1

nS
2β

ᵀK̃Sβ − 2

nSnT
1ᵀK̃T ,Sβ +

1

nT
21

ᵀKTW1

where K̃S denote the kernel matrix on xct and K̃T ,S the
cross kernel matrix between W ᵀxT and xct. The iden-
tifiability of A and B can be easily obtained by comb-
ing the results of Theorem 1 in this paper and Theorem
2 in (Kun Zhang et al., 2013). In practice, we expect the
changes in the conditional distribution of Xct given Y S to
be as small as possible. Thus we add a regularization term
on A and B, i.e., Jreg = λS

nS ||A− 1d×nS ||2F + λL

nS ||B||2F ,
where 1d×nS is the d× nS matrix of ones.

2.3. Target Information Preservation

At the same time, because the componentsXct will be used
to predict Y , we would likeXct to preserve the information
about Y . The information in the given feature X about the
Y is completely preserved in the components Xct if and
only if Y ⊥⊥ X |Xct. We adopt the kernel dimensionality
reduction framework (Fukumizu et al., 2004) to achieve so.
It has been shown that Y ⊥⊥ X |Xct ⇐⇒ ΣY Y |Xct −
ΣY Y |X = 0, where ΣY Y |X is the conditional covariance
operator on G.

Consequently, to minimize the conditional dependence be-
tween Y and X given Xct, one can minimize the determi-
nant of trace of ΣY Y |Xct . Here we use a slightly simpler
estimator for its trace. According to its definition (Baker,
1973), ΣY Y |Xct = ΣY Y −ΣY,XctΣ−1

Xct,XctΣXct,Y , where
Σ·· is the covariance or cross-covariance operator.

We can use 1
nS φ(yS)φᵀ(yS), 1

nS φ(yS)ψᵀ(xct), and
1
nS ψ(xct)ψᵀ(xct) as the estimators of ΣY Y , ΣY,Xct , and
ΣXct,Xct , respectively, on the source-domain data. Conse-
quently, on such data we have the estimator

Tr[Σ̂Y Y |Xct ]
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=Tr[Σ̂Y Y ]− Tr[Σ̂Y,XctΣ̂−1
Xct,XctΣ̂Xct,Y ]

=
1

nS
Tr[φ(yS)φᵀ(yS)]− 1

nS
Tr[φ(yS)ψᵀ(xct)·(

ψ(xct)ψᵀ(xct) + nSεI
)−1 · ψ(xct)φᵀ(yS)]

=εTr[L(K̃S + nSεI)−1], (9)

where ε is a regularization parameter to prevent ill condi-
tions on the matrix inverse and is set to 0.01 in our experi-
ments.

2.4. Reparameterization of β, A, and B

By combining Ĵct, Jreg , and Tr[Σ̂Y Y |Xct ], we aim to esti-
mate the parameters β, W , A, and B by minimizing

Ĵctcon = Ĵct + λTr[Σ̂Y Y |Xct ] + Jreg (10)

under constraints (1) and (5). However, we cannot directly
minimize (10) with respect to β, A, and B because β, a,
and b are functions of y. Thus, we reparametrize β, A,
and B with new parameters. In this paper, we focus on
the case where Y is discrete. Let C be the cardinality of
Y and denote by v1, ..., vC its possible values. Let nc de-
notes number of examples with Y = vc, we can define a
matrix Rdis ∈ RnS×C where Rdisic is nS

nc
if yi = vc and

is zero everywhere else. β can then be reparameterized as
β = Rdisα, where the α ∈ RC×1 is the new parame-
ter, providing a compact representation for β. Similarly, A
and b can be reparameterized as (RdisG)ᵀ and (RdisH)ᵀ,
where G ∈ RC×d and H ∈ RC×d are the effective param-
eters. The constraint on β, (5), is equivalent to the corre-
sponding constraint on α:

[Rdisα]i ≥ 0, and 1ᵀα = 1. (11)

2.5. Optimization

We estimate the parameters α, W , G, and H by minimiz-
ing Ĵctcon under constraints (1) and (11). We iteratively alter-
nate between minimizing α, W , and [G, H]. For the CIC
method, we only optimize W and α by fixing G and H.
For α, we use quadratic programming (QP) to minimize
Ĵctcon w.r.t. α under constraint (11). When minimizing Ĵctcon
w.r.t. W , one should guarantee thatW is on the Grassmann
manifold, as implied by constraint (1). Therefore, we find
W by the conjugate gradient algorithm on the Grassman-
n manifold , which is an efficient approach by exploiting
the geometric properties of orthogonality and rotation in-
variance (Edelman et al., 1999). [G, H] can be found by
standard conjugate gradient optimization procedure. The
derivation of the required derivatives is given in the Sec-
tion S5 of the Supplementary Materials.

3. Theoretical Analysis
We theoretically analyze our CIC method by developing a
bound relating source and target domain expected errors.
The analysis of the CTC method can be performed in a
similar way. Current analysis methods on domain adap-
tation (Ben-David et al., 2007; 2010) decompose the joint
distribution P (X,Y ) to P (X)P (Y |X) and measure their
distance between domains separately. Therefore, many ex-
isting methods explicitly minimizes the discrepancy be-
tween source and target domains by learning invariant com-
ponents Xci = W ᵀX with similar marginal distributions
pS(Xci) ≈ pT (Xci). However, it is not sure whether the
distance between PS(Y |Xci) and P T (Y |Xci) is also s-
mall.

We will show that, in the Y → X situation, the dis-
tance between the joint distributions across domains can
be bounded by the distance between marginal distributions
of features across domains , if the assumptions in The-
orem 1 holds. Different from previous works, we de-
compose the joint distribution in the causal direction, i.e.,
P (Xci, Y ) = P (Xci|Y )P (Y ). Following (Ben-David
et al., 2007; 2010), we only consider the binary classifi-
cation problem with 1− 0 loss for convenience.

Before stating the main theorems, we first introduce the fol-
lowing Lemma. It is similar to Theorem 1 in (Ben-David
et al., 2010), but we directly measure the distance between
joint distributions on different domains instead of separate-
ly measuring the distance between PS(X) and P T (X) and
the distance between PS(Y |X) and P T (Y |X).

Lemma 1. For a hypothesis h ∈ H, let εnew(h) and εT (h)
be the expected error w.r.t. 1-0 loss on the constructed new
domain and target domain respectively. We have

εT (h) ≤ εnew(h) + d1(pnew(Xci, Y ), pT (Xci, Y )), (12)

where d1(pnew(Xci, Y ), pT (Xci, Y )) is theL1 or variation
divergence defined in (Ben-David et al., 2010).

The proof of Lemma 1 is given in Section S2 of the Sup-
plementary Material.

Because d1 is difficult to calculate in practice, we measure
distribution discrepancy between the joint distribution on
the new domain and the target domain by squared MMD
distance, i.e.,

dk(pnew(Xci, Y ), pT (Xci, Y ))

=
∣∣∣∣E(Xci,Y )∼P new(Xci,Y )[ψ(Xci)⊗ φ(Y )]

− E(Xci,Y )∼PT (Xci,Y )[ψ(Xci)⊗ φ(Y )]
∣∣∣∣2, (13)

where ⊗ denotes the tensor product.

The following theorem states that the distance between the
source and target domain joint distribution can be bounded
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by the distance between the source and target domain
marginal distribution of Xci under certain assumptions.
Theorem 2. Let ∆c denote

∆c =P new(Y = c)µpS(Xct|Y=c)[ψ(Xct)]

− P T (Y = c)µpT (Xct|Y=c)[ψ(Xct)], c = 0, 1,

and θ denote the angle between ∆0 and ∆1. If W is
non-trivial and ACIC holds, i.e., 0 < θ < π,

dk(pnew(Xci, Y ), pT (Xci, Y )) ≤ Jci10<θ≤π/2

+
2Jci

sin2 θ
1π/2<θ<π,

where 1{·} denotes the indicator function.

The proof of Theorem 2 can be found in Section S3 of the
Supplementary Material.

Remark Suppose we have found the ideal β such that
P new(Y ) = P T (Y ), then ∆1 and ∆0 represent the changes
in conditional distribution P (Xci|Y = 1) and P (Xci|Y =
0), respectively. If one can find perfectly invariant compo-
nents, i.e., Jci = 0, which implies ∆1 + ∆0 = 0. If ACIC

is violated, that is ∆1 and ∆0 can be linearly dependent
if they are not zeros, then one cannot expect that the con-
ditional distribution P (Xci|Y ) is invariant, i.e., ∆1 = 0
and ∆0 = 0. In this case, the conditional distributions
P (Xci|Y = 1) and P (Xci|Y = 0) change dependently
to make the marginal distribution P (Xci) invariant across
domains. This usually happens in the X → Y situation,
while rarely happens in the Y → X situation. If ACIC

is violated, it can be seen from Theorem 2 that dk cannot
be bounded by Jci when θ = π. Interestingly, when the
changes in P (Xci|Y = 1) and P (Xci|Y = 0) do not can-
cel each other, i.e., 0 < θ ≤ π/2, dk can be tightly bound-
ed by Jci which can be estimated from labeled data in the
source domain and unlabeled data in the target domain.

In practice, we optimize Ĵci w.r.t. W and α under con-
straints (11) and (1). Let αn and Wn be the learned pa-
rameter according to Ĵci. Since the objective function is
non-convex w.r.t. W , we cannot expect Wn to converge to
the optimal one. However, the optimality of the parameter
α can be obtained. We will provide an upper bound for the
following defect Jci(αn,Wn) − Jci(α∗,Wn), where α∗

denotes the optimal one.
Theorem 3. Assume the RKHS employed are bounded
such that

∣∣∣∣ψ(x)
∣∣∣∣

2
≤ ∧2 for all x ∈ X . For any δ > 0,

with probability at least 1− δ, we have

Jci(αn,Wn)− Jci(α∗,Wn) ≤ 8 ∧2
2

2

√√√√ C∑
c=1

1

nc
+

1

nT

+8

√
1

2
log

2

δ
( max
c∈{1,...,C}

1

nc
+

1

nT
)

) 1
2

.
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Figure 2: Toy data to illustrate the difference between DIP
and CIC: (a) The source domain data; (b) The target do-
main data.

The proof of Theorem 3 can be found in Section S4 of the
Supplementary Material.

4. Relation to IC-type Methods
If P (Y ) stays the same across domains, the CIC method re-
duces to one of the IC-type methods: domain invariant pro-
jection (DIP) (Baktashmotlagh et al., 2013). However, their
motivations are quite different. IC-type methods, which
were proposed for correction of covariate shift, aim to find
components Xci whose distribution P (Xci) is invariant
across domains. Since P (Y |X) stays the same in the co-
variate shift, p(Y |Xci) also stays the same. However, if
P (Y |X) changes, it is not sure whether P (Y |Xci) could
stay the same.

We find that IC-type methods can actually be considered as
a way to achieve our CIC method under target shift, given
that the distributionP (Y ) remains the same across domain-
s. According to Theorem 1, if PS(Y ) = Pnew(Y ), we
have PS(Xci, Y ) = P T (Xci, Y ) and thus PS(Y |Xci) =
P T (Y |Xci). In other words, under assumption ACIC,
if P (Y ) stays the same across domains, PS(Xci) =
P T (Xci) leads to PS(Y |Xci) = P T (Y |Xci).

If P (Y ) changes, CIC and DIP usually lead to differen-
t results. Suppose there exist some components of X ,
Xci, whose conditional distribution given Y stay the same
across domains. In general, when P (Y ) changes across do-
mains, it is very unlikely for Xci to have domain-invariant
distributions. As illustrated in Figure 2, the conditional dis-
tributions P (X1|Y = 1), P (X1|Y = 2) , and P (X2|Y =
2) do not change across domains, while the conditional dis-
tribution P (X2|Y = 1) is changed by shifting its mean
from 3 to 4. The class prior P (Y = 1) on the source
and target domain is 0.5 and 0.8, respectively. Thus X1

is a conditional invariant component while X2 is not. We
evaluate the squared MMD between the marginal distri-
bution of these two components. DIP gives the results of
MMD2

X1
= 7.72e− 2 and MMD2

X2
= 2.38e− 2 and CIC

gives MMD2
X1

= 2.25e − 4 and MMD2
X2

= 6.44e − 2.
That is to say, DIP wrongly considersX2 as conditional in-
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Figure 3: Performance comparison on simulated data: (a)
Classification error w.r.t. class ratio; (b) Classification error
w.r.t. dimension d.

variant component, while CIC considers X1 as conditional
invariant component correctly.

5. Experiments
In this section we present experimental results on both sim-
ulated and real data to show the effectiveness of the pro-
posed CIC and CTC method. We select the hyperparame-
ters of our methods as follows. For Gaussian kernel used
in MMD, we set the standard deviation parameter σ to the
median distance between all source examples. The regu-
larization parameters of the LS transformation are set to
λS = 0.001 and λL = 0.0001. We choose different pa-
rameters for location and scale transformations because we
find that the conditional distributions usually have larger
location changes. The regularization parameter for the tar-
get information preserving (TIP) term is set to λ = 0.001,
resulting in two regularized methods: CIC-TIP and CTC-
TIP. We use β-weighted support vector machine (SVM)
and weighted kernel ridge regression (KRR) for classifi-
cation and regression problems, respectively. For details,
please refer to (Kun Zhang et al., 2013). We use linear ker-
nel for simulation data and Gaussian kernel for real data.

5.1. Simulations

We generate binary classification training and test data
from a 10-dimensional mixture of Gaussians:

x ∼
2∑
i=1

πiN (θi,Σi), θij ∼ U(−0.25, 0.25)

Σi ∼ 0.01 ∗W(2× ID, 7), (14)

where U(a, b) and W(Σ, df) represent the uniform distri-
bution and Wishart distribution, respectively. The cluster
indices are used as the ground truth class labels. We apply
two types of transformations to the test data to make the
test and training data have different distributions. Firstly,
we randomly apply LS transformation on 5 randomly se-
lected features for each class. In addition, we apply affine
transformation on another 2 randomly chosen features. The

Table 2: Comparison of different methods on the Of-
fice+Caltech256 dataset.

SVM GFK TCA LM GeTarS DIP DIP-CC CTC CTC-TIP

A→C 41.7 42.2 35.0 45.5 44.9 47.4 47.2 48.6 48.8
A→D 41.4 42.7 36.3 47.1 45.9 50.3 49.0 52.9 52.2
A→W 34.2 40.7 27.8 46.1 39.7 47.5 47.8 49.8 49.1

C→A 51.8 44.5 41.4 56.7 56.9 55.7 58.7 58.1 57.9
C→D 54.1 43.3 45.2 57.3 49.0 60.5 61.2 59.2 58.5
C→W 46.8 44.7 32.5 49.5 46.4 58.3 58.0 58.6 57.8

W→A 31.1 31.8 24.2 40.2 38.4 42.6 40.9 43.2 43.1
W→C 31.5 30.8 22.5 35.4 34.3 34.2 37.2 38.3 38.8
W→D 70.7 75.6 80.2 75.2 86.0 88.5 91.7 94.3 93.6

remaining 3 features are left unchanged to ensure that the
IC-type methods will not fail on the transformed data.

We compare our methods against domain invariant projec-
tion (DIP) (Baktashmotlagh et al., 2013), which is equiva-
lent to our CIC method when P (Y ) does not change. We
also include the GeTarS method (Kun Zhang et al., 2013)
which assumes that all the features are transferable by LS-
transformation. The regularization parameter C of SVM
are selected by 5-fold cross validation on a grid. We re-
peat the experiments for 20 times and report the average
classification error.

Firstly, we test the methods’ sensitiveness to changes in
class prior probability P (Y ). we set the source class prior
PS(Y = 1) to 0.5 and the number of components d to
5. The target domain class prior pT (Y = 1) varies from
0.1 to 0.9 and the corresponding class ratio β1 = pT (Y =
1)/PS(Y = 1) is 0.2, 0.4, ..., 1.8. We compare CIC and
DIP which all aim at finding invariant components. Figure
3 (a) gives the classification error as β1 ranges from 0.2 to
1.8. We can see that the performance of DIP decreases as
β1 gets far away from 1, while CIC performs well with all
the β1 values. We can also see that DIP outperforms CIC
when P (Y ) changes slightly, which is reasonable because
CIC introduces random error in the estimation of β.

Secondly, we evaluate the effectiveness of discovering
transferable components with LS transformation. We set
the prior distribution on both domains to PS(Y = 1) =
pT (y = 1) = 0.5 and demonstrate how the performances
vary with the dimensionality d of the learned components.
Figure 3 (b) shows the classification error of each method
as d ranges from 1 to 9. We can see that CTC outper-
forms DIP when d > 4, indicating that CTC successfully
matches the features transformed by LS transformation for
domain transfer. GeTarS does not perform well because
LS transformation fails to match the two affine-transformed
features.

5.2. Object Recognition

We also compare our approaches with alternatives on the
Office-Caltech dataset introduced in (Gong et al., 2012).
The Office-Caltech dataset was constructed by extracting
the 10 categories common to the Office dataset (Saenko
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Table 3: Comparison of different methods on the WiFi dataset.

KRR TCA SuK DIP DIP-CC GeTarS CTC CTC-TIP

t1→ t2 80.84± 1.14 86.85± 1.1 90.36± 1.22 87.98± 2.33 91.30± 3.24 86.76± 1.91 89.36± 1.78 89.22± 1.66
t1→ t3 76.44± 2.66 80.48± 2.73 94.97± 1.29 84.20± 4.29 84.32± 4.57 90.62± 2.25 94.80± 0.87 92.60± 4.50
t2→ t3 67.12± 1.28 72.02± 1.32 85.83± 1.31 80.58± 2.10 81.22± 4.31 82.68± 3.71 87.92± 1.87 89.52± 1.14

hallway1 60.02± 2.60 65.93± 0.86 76.36± 2.44 77.48± 2.68 76.24± 5.14 84.38± 1.98 86.98± 2.02 86.78± 2.31
hallway2 49.38± 2.30 62.44± 1.25 64.69± 0.77 78.54± 1.66 77.8± 2.70 77.38± 2.09 87.74± 1.89 87.94± 2.07
hallway3 48.42± 1.32 59.18± 0.56 65.73± 1.57 75.10± 3.39 73.40± 4.06 80.64± 1.76 82.02± 2.34 81.72± 2.25

et al., 2010) and the Caltech256 (Griffin et al., 2007)
dataset. We have four domains in total: Amazon (images
downloaded from Amazon), Webcam (low-resolution im-
ages by a web camera), DSLR (high-resolution images by
a SLR camera), and Caltech-256. We use the bag of visu-
al words features provided by (Gong et al., 2013) for our
evaluation.

In our experiments, we use the evaluation protocol in
(Gong et al., 2013). We compare CTC and CTC-TIP
with several state-of-the-art methods: geodesic flow ker-
nel (GFK) (Gong et al., 2012), transfer component analysis
(TCA) (Pan et al., 2011), landmark selection (LM) (Gong
et al., 2013), DIP and its cluster regularized version DIP-
CC, and GeTarS. The dimensionality of the of the projec-
tion matrix W is determined by the subspace disagreement
measure introduced in (Gong et al., 2012). We set the
Gaussian kernel width parameter σ to the median distance
between all source examples. The regularization parame-
ter C of SVM are selected by 5-fold cross validation on
a grid. The classification accuracy is given in Table 2. It
can be seen that our methods generally work better than
DIP and other competitors, which verifies that our methods
successfully find the conditional transferable components.
Note that the class ratio changes slightly across domain-
s, the main improvement on this dataset and the following
WiFi dataset is attributed to the location-scale transform.

5.3. Cross-Domain Indoor WiFi Localization

We finally perform evaluations on the cross-domain indoor
WiFi location dataset provided in (Kai Zhang et al., 2013).
The WiFi data were collected from the hallway area of an
academic building. The hallway area was discretized into a
space of 119 grids at which the strength of WiFi signals re-
ceived from D access points were collected. The task is to
predict the location of the device from the D-dimensional
WiFi signals, which is usually considered as a regression
problem. In our CTC method, we consider Y as a discrete
variable when matching the distributions. The training and
test data often have different distributions because they are
collected at different time periods by different devices.

We compare CTC and CTC-TIP with KMM, surrogate
kernels (SuK) (Kai Zhang et al., 2013), TCA, DIP and
DIP-CC, and GeTarS. Following the evaluation method in

(Kai Zhang et al., 2013), we randomly choose 60% of the
examples from the training and test domains and report the
average performance of 10 repetitions. The reported accu-
racy is the percentage of examples on which the predicted
location is within 3 meters from the true location. The hy-
perparamters, including Gaussian kernel width, KRR regu-
larization parameter, and the dimension of W , are tuned on
a very small subset of the test domain.

Transfer Across Time Periods In this task, the WiFi da-
ta were collected in three different time periods t1, t2, and
t3 in the same hallway. We evaluate the methods on three
domain adaptation tasks, i.e., t1 → t2, t1 → t3, and
t2 → t3. The results are given in the upper part of Ta-
ble 3. We can see that our methods outperform the IC-type
methods like TCA and DIP. Also, our methods are com-
parable to SuK which is a state-of-the-art method on this
dataset.

Transfer Across Devices The signals from different de-
vices may vary from each other due to different signal
sensing capabilities. To transfer between different devices,
the WiFi data were collected from two different devices
at 3 straight-line hallways, resulting in three tasks, i.e.,
hallway1, hallway2, hallway3. The lower part of Table
3 gives the experimental results. Our methods significant-
ly outperform the competitors, indicating that CTC is very
suitable for transferring between devices.

6. Conclusion
We have considered domain adaptation by learning con-
ditional transferable components in the situation where the
distribution of the covariate and the conditional distribution
of the target given the covariate change across domains. We
have shown that, if target causes the covariate, under appro-
priate assumptions, we are able to find conditional trans-
ferable components whose conditional distribution given
the target is invariant after proper location-scale transfor-
mations, and estimate the target distribution of the target
domain. Also, we discussed the relation of our method to
the IC-type methods, pointing out that those methods can
be considered as a way to achieve our method when the dis-
tribution of the target does not change. Finally, we provided
theoretical analysis and empirical evaluations to show the
effectiveness of our method.
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