A Kronecker-factored approximate Fisher matrix for convolution layers

Roger Grosse
James Martens

Department of Computer Science, University of Toronto

Abstract

Second-order optimization methods such as nat-
ural gradient descent have the potential to speed
up training of neural networks by correcting for
the curvature of the loss function. Unfortunately,
the exact natural gradient is impractical to com-
pute for large models, and most approximations
either require an expensive iterative procedure
or make crude approximations to the curvature.
We present Kronecker Factors for Convolution
(KFC), a tractable approximation to the Fisher
matrix for convolutional networks based on a
structured probabilistic model for the distribution
over backpropagated derivatives. Similarly to the
recently proposed Kronecker-Factored Approxi-
mate Curvature (K-FAC), each block of the ap-
proximate Fisher matrix decomposes as the Kro-
necker product of small matrices, allowing for ef-
ficient inversion. KFC captures important curva-
ture information while still yielding comparably
efficient updates to stochastic gradient descent
(SGD). We show that the updates are invariant
to commonly used reparameterizations, such as
centering of the activations. In our experiments,
approximate natural gradient descent with KFC
was able to train convolutional networks several
times faster than carefully tuned SGD. Further-
more, it was able to train the networks in 10-20
times fewer iterationsthan SGD, suggesting its
potential applicability in a distributed setting.

1. Introduction

Despite advances in optimization, most neural networks are
still trained using variants of stochastic gradient descent
(SGD) with momentum. It has been suggested that natu-
ral gradient descent (Amari, 1998) could greatly speed up
optimization because it accounts for the geometry of the
optimization landscape and has desirable invariance prop-
erties. (See Martens (2014) for a review.) Unfortunately,

Proceedings of th&3" International Conference on Machine

Learning New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

RGROSSE @ CS.TORONTO.EDU
JMARTENS @ CS.TORONTO.EDU

computing the exact natural gradient is intractable for large
networks, as it requires solving a large linear system in-
volving the Fisher matrix, whose dimension is the number
of parameters (potentially tens of millions for modern ar-
chitectures). Approximations to the natural gradient typi-
cally either impose very restrictive structure on the Fisher
matrix (e.g. LeCun et al., 1998; Le Roux et al., 2008) or
require expensive iterative procedures to compute each up-
date, analogously to approximate Newton methods (e.g.
Martens, 2010). An ongoing challenge has been to develop
a curvature matrix approximation which reflects enough
structure to yield high-quality updates, while introducing
minimal computational overhead beyond the standard gra-
dient computations.

Much progress in machine learning has been driven by
the development of structured probabilistic models whose
independence structure allows for efficient computations,
yet which still capture important dependencies between the
variables of interest. In our case, since the Fisher ma-
trix is the covariance of the backpropagated log-likelihood
derivatives, we are interested in modeling the distribution
over these derivatives. The model must support efficient
computation of the inverse covariance, as this is what’s
required to compute the natural gradient. Recently, the
Factorized Natural Gradient (FANG) (Grosse & Salakhut-
dinov, 2015) and Kronecker-Factored Approximate Cur-
vature (K-FAC) (Martens & Grosse, 2015) methods ex-
ploited probabilistic models of the derivatives to efficiently
compute approximate natural gradient updates. In its sim-
plest version, K-FAC approximates each layer-wise block
of the Fisher matrix as the Kronecker product of two much
smaller matrices. These (very large) blocks can then be
can be tractably inverted by inverting each of the two fac-
tors. K-FAC was shown to greatly speed up the training of
deep autoencoders. However, its underlying probabilistic
model assumed fully connected networks with no weight
sharing, rendering the method inapplicable to two archi-
tectures which have recently revolutionized many applica-
tions of machine learning — convolutional networks (Le-
Cun et al., 1989; Krizhevsky et al., 2012) and recurrent neu-
ral networks (Hochreiter & Schmidhuber, 1997; Sutskever
etal., 2014).

We introduce Kronecker Factors for Convolution (KFC), an
approximation to the Fisher matrix for convolutional net-

A Kronecker-factored approximate Fisher matrix for convolution layers

works. Most modern convolutional networks have trainable
parameters only in convolutional and fully connected lay-
ers. Standard K-FAC can be applied to the latter; our contri-
bution is a factorization of the Fisher blocks corresponding
to convolution layers. KFC is based on a structured proba-
bilistic model of the backpropagated derivatives where the
activations are independent of the derivatives, the activa-
tions and derivatives are spatially homogeneous, and the
derivatives are spatially uncorrelated. Under these approx-
imations, we show that the Fisher blocks for convolution
layers decompose as a Kronecker product of smaller matri-
ces (analogously to K-FAC), yielding tractable updates.

KFC yields a tractable approximation to the Fisher matrix
of a conv net. It can be used directly to compute approxi-
mate natural gradient descent updates, as we do in our ex-
periments. One could further combine it with the adap-
tive step size, momentum, and damping methods from the
full K-FAC algorithm (Martens & Grosse, 2015). It could
also potentially be used as a pre-conditioner for iterative
second-order methods (Martens, 2010; Vinyals & Povey,
2012; Sohl-Dickstein et al., 2014). We show that the ap-
proximate natural gradient updates are invariant to widely
used reparameterizations of a network, such as whitening
or centering of the activations.

We have evaluated our method on training conv nets on ob-
ject recognition benchmarks. In our experiments, KFC was
able to optimize conv nets several times faster than care-
fully tuned SGD with momentum, in terms of both training
and test error. Furthermore, it required 10-20 times fewer
iterations suggesting its usefulness in the context of highly
distributed training algorithms.

2. Background

In this section, we outline the K-FAC method as previously
formulated for standard fully-connected feed-forward net-
works without weight sharing (Martens & Grosse, 2015).
Each layer of a fully connected network computes activa-
tions as:

s¢ = Wyap 1 (D
as =1 (se), 2
where " € {1,...,L} indexes the layer, s; denotes the

inputs to the layer, a; denotes the activations, W, =
(by W) denotes the matrix of biases and weights, a, =
(1 a,)" denotes the activations with a homogeneous di-
mension appended, and ! ; denotes a nonlinear activation
function (usually applied coordinate-wise). (Throughout
this paper, we will use the index O for all homogeneous co-
ordinates.) We will refer to the values s, as pre-activations
By convention, ag corresponds to the inputs x and a; cor-
responds to the prediction z made by the network. For con-
venience, we concatenate all of the parameters of the net-
work into a vector ! = (vec(W1) ,...,vec(W_))",
where vec denotes the Kronecker vector operator which
stacks the columns of a matrix into a vector. We denote

the function computed by the network as f(x,!) = a .

Typically, a network is trained to minimize an objective
h(!') given by L(y, f(x,!)) as averaged over the training
set, where L(y,z) is a loss function. The gradient VA of
h(!), which is required by most optimization methods, is
estimated stochastically using mini-batches of training ex-
amples. (We will often drop the explicit ! subscript when
the meaning is unambiguous.)

For the remainder of this paper, we will assume the net-
work’s prediction f(x,!) determines the value of the pa-
rameter z of a distribution Ry, over y, and the loss func-
tion is the corresponding negative log-likelihood L(y,z) =

—logr(y|z).

2.1. Second-order optimization of neural networks

Second-order optimization methods work by computing a
parameter update v that minimizes (or approximately min-
imizes) a local quadratic approximation to the objective,
given by h(!) = Vih' v + 2v' Cv, where C is a ma-
trix which quantifies the curvature of the cost function h
at ! . The exact solution to this minimization problem can
be obtained by solving the linear system Cv = —V, h.
The original and most well-known example is Newton’s
method, where C is chosen to be the Hessian matrix;
this isn’t appropriate in the non-convex setting because of
the well-known problem that it searches for critical points
rather than local optima (e.g. Pascanu et al., 2014). There-
fore, it is more common to use natural gradient (Amari,
1998) or updates based on the generalized Gauss-Newton
matrix (Schraudolph, 2002), which are guaranteed to pro-
duce descent directions because the curvature matrix C is
positive semidefinite.

Natural gradient descent can be usefully interpreted as
a second-order method (Martens, 2014) where C is the

Fisher information matrix F, as given by
| "
F=E xtpwa D' (D) , 3)
Y# Ryt (x,1)

where pgata denotes the training distribution, Ryt (x 1)
denotes the model’s predictive distribution, and D! =
Vi L(y, f(x,!)) is the log-likelihood gradient. For the re-
mainder of this paper, all expectations are with respect to
this distribution (which we term the modelOs distribution
so we will leave off the subscripts. (In this paper, we will
use the D notation for log-likelihood derivatives; deriva-
tives of other functions will be written out explicitly.) In
the case where Ry, corresponds to an exponential family
model with “natural” parameters given by z, F is equiv-
alent to the generalized Gauss-Newton matrix (Martens,
2014), which is an approximation of the Hessian which has
also seen extensive use in various neural-network optimiza-
tion methods (e.g. Martens, 2010; Vinyals & Povey, 2012).

F is an n X n matrix, where n is the number of param-
eters and can be in the tens of millions for modern deep
architectures. Therefore, it is impractical to represent F

A Kronecker-factored approximate Fisher matrix for convolution layers

explicitly in memory, let alone solve the linear system ex-A" 1 # B 1:

actly. There are two general strategies one typically takes # .) &

to Pnd a good search direction: either impose a structure on 'o g 1 1 0

F enabling fast inversion (e.geCun et al, 1998 Le Roux prl= & . ((5)
et al, 2008 Grosse & Salakhutding\2015, or use an it- e a1

erative procedure to approximately solve the linear system 0 Plia# 'y

(e.g.-Martens 2010. These two strategies are not mutu-)

ally exclusive: tractable curvature approximations can béVe do not represe” ! explicitly, as each of the blocks is
used as preconditioners in second order optimization, anduite large. Instead, we keep track of each of the Kronecker
this has been observed to make a large differemzgtens factors.

2019 Chapelle & Erhan2011, Vinyals & Povey 2012, The approximate natural gradiédt 1$ h can then be com-

. uted as follows:
2.2. Kronecker-factored approximate curvature P

. W&
Kronecker-factored approximate curvature (K-FAC; Vec) "1Gw.h)! ot
Martens & Grossg2015 is a recently proposed optimiza- P i h= E’% . ((6)
tion method for neural networks which can be seen as vt Lo wq ”
a hybrid of the two approximation strategies: it uses a vec" | “(Sw ! g

tractable approximation to the Fisher matfix but also

uses an optimization strategy which behaves locally likeye would often like to add a multiple of the identity ma-
conjugate gradient. This section gives a conceptual suMmyix to F for two reasons. First, many networks are regu-
mary of the aspects of K-FAC relevant to the contributions|arized with weight decay, which corresponds to a penalty
of this paper; a precise description of the full algorithm is ¢ %! 1" 1, for some parameter. Following the interpre-

given in AppendixB.2. tation of F as a quadratic approximation to the curvature,

The block-diagonal version of K-FAC (which is the simpler it would be appropriate to usé + ! | to approximate the

of the two versions, and is what we will present here) iscurvature of the regularized objective. The second reason
based on two approximations Fowhich together make it is that the local quadratic approximation bfimplicitly
tractable to invert. First, weight derivatives in different lay- used when computing the natural gradient may be inaccu-
ers are assumed to be uncorrelated, which corresporfids torate over the region of interest, owing to the approximation
being block diagonal, with one block per layer. Each blockof F by P, to the approximation of the Hessian By and

is given byE[vec(DW) vec(DW ,)']. This approxima- Pnally to the error associated with approximatings lo-

tion by itself is insufbcient, because each of the blocks mayally quadratic in the prst place. A common way to ad-
still be very large. (E.g., if a network has 1,000 units in dress this issue is to damp the updates by addlinip the
each layer, each block would be of sit® ! 10°.) Forthe approximate curvature matrix, for some small valyde-
second approximation, observe that fore minimizing the local qugdratic model. Therefore, we

"1

! " . . = | n
E D[,J; DW Ji; = E[D[s][1 Ds] [a- 1. would ideally like to computeP + (! + ")I $h.
. I Unfortunately, adding! + ")I breaks the Kronecker fac-
If we approximate the activations and pre- torization structure. While itis possible to exactly solve the
activation derivatives as independent, » this candamped system (see Appendix), itis often preferable to
be decomposed asE D[W,Jj D[W] " approximateP + (! + ")l in a way that maintains the fac-
E[D[s]iD[s]i]E[[@~ 1]; [@- 1];:]. This can be written torizaton structure Martens & Gross€2015 pointed out
algebraically as a decomposition into a Kronecker producthat

of two smaller matrices: | . 4 $. %
. .. ﬁ;+(!+")|! P+ L+ 1" "!+i P+ "

E[vecM)vec(W) [" ! wa# " ! Py, (4) # @)
where! »1 = E[a- 8. ,]and", = E[s;s|] denote We will denote this damped approximation BS =

the second moment matrices of the activations and prer ,()1# " .(). Mathematically# can be any positive scalar,
activation derivatives, respectively. Call the block diagonalput Martens & Gross€2015 suggest the formula
approximate Fisher matrix, with blocks given by Edn.

P. The two factors are estimated online from the empiri-

cal moments of the modelOs distribution using exponential # =
moving averages.

% 1 # 1%
“hE % 8)

To invertP, we use the facts that (1) we can invert a block wherev@%denotes some matrix norm, as this value mini-
diagonal matrix by inverting each of the blocks{. and (2)mizes the norm of the residual in Egn. In this work, we
the Kronecker product satisPes the identity# B)" 1 = use the trace norB %= tr B. The approximate natural

A Kronecker-factored approximate Fisher matrix for convolution layers

gradient©h is then computed as: "as aT |# J matrixA - and the preactivations ag&|# |
! (e 1 () 1°° matrixS-. The weights are represented ds#d! |J matrix
cvee [T g) ST W

On1 O] h=

: n

) 1 W) 1 2.3.1. EFFICIENT IMPLEMENTATION AND VECTORIZED
vec [T S(tw DM LA

NOTATION
©) - - o
For modern large-scale vision applications, itOs necessary

) to implement conv nets efpciently fora GPU (or some other
The algorithm as presented byartens & Gross€2019 massively parallel computing architecture). Since one con-

has many additional elements which are orthogonal to thgipytion of our own work was to exploit the same under-
contribution_s of t_his paper. For concision, a full descriptiomying implementation to efbciently compute the statistics
of the algorithm is relegated to Append2. needed by our algorithm, we outline a typical GPU im-
plementation of a conv net. As a bonus, discussing the
2.3. Convolutional networks implementation gives us a convenient high-level notation

Convolutional networks can require somewhat crufty nota—for analyzing conv nets mathematically. Due to space con-

tion when the computations are written out in full. In our strants, we relegate this material to AppendixThis ap-

case, we are interested in computing correlations of deriv pendix also contains a table of all conv net notation used in

tives, which compounds the notational difpculties. In this his paper.
section, we summarize the notation we use. (Tdbists
all convolutional network notation used in this paper.) In3. Kronecker factorization for convolution
sections which focus on a single layer of the network, we |ayers
drop the explicit layer indices.

)) o We begin by assuming a block-diagonal approximation to
A convolution layer takes as input a layer of activationsihe Fisher matrix like that of K-FAC, where each block
{a}, wherej " {1,...,J} indexes the input map and cqontains all the parameters relevant to one layer (see Sec-
t" T indexes the spatial location. (Her®,is the set of oy 2 2) (Recall that these blocks are typically too large
spatial locations, which is typically a 2-D grid. For sim- 14 jnvert exactly, or even represent explicitly, which is why
plicity, we assume convolution is performed with a stride e fyrther Kronecker approximation is required.) The Kro-
of 1 and padding equal t&, so that the set of spatial pecker factorization from K-FAC applies only to fully con-
locations is shared between the input and output featurgected layers. Convolutional networks introduce several
maps.) This layer is parameterized by a set of weight§ings of layers not found in fully connected feed-forward
wij, 1 and biase$), wherei " {1,...,1} indexes the out- nepworks: convolution, pooling, and response normaliza-
put map, indexes the input map, and” ! indexes the oy Since pooling and response normalization layers
spatial offset (from the center of the Plter). If the bltersyonGt have trainable weights, they are not included in the
are of size(2R + 1) # (2R + 1), then we would have Fisher matrix. However, we must deal with convolution
= {$R,...,R} # {$R,...,R}. We denote the num- |5yers. In this section, we present our main contribution,
bers of §pat|al locations and spatial offsetgBpand|! |, an approximate Kronecker factorization for the block®of
res_pecpvely. The convolut_lon layer computes a set of preE:orresponding to convolution layers. In the tradition of fast
activations{s; } as f?HOWS' food puns Ranzato & Hinton201Q Yang et al, 2014, we

G = ! Wij e et + B, (10) call our method Kronecker Factors for Convolution (KFC).

et For this section, we focus on the Fisher block for a single
whereh denotes the bias parameter. The activations are ddayer, so we drop the layer indices. All conv net notation is
Pned to take the value 0 outside™f The pre-activations summarized in AppendiR.
are passed through a nonlinearity such as ReLU to computlsecall that the Fisher matrik = E D! (D!)’ # is the
the output layer activations, but we have no need to r(afef:ovariance of the log-likelihood gradient under the modelOs

to this explicitly when analyzing a single layer. (For sim- gistribution. (In this paper, all expectations are with respect
plicity, we assume operations such as pooling and response the modelOs distribution unless otherwise specibed.) By

normalization are implemented as separate layers.) plugging in Eqn.11, the entries corresponding to weight
o o _ derivatives are given by:
Pre-activation derivativelSs;; are computed during back-)>* ,
‘ . .) +
propagation. One then c!omputes weight derivatives as: E[Dw,; -Dwy1; 1] = E aj; +-DSig
DWi’j’ 1 = ai"t +1 DSi’t . (11) * T -
tT +
e DS (12)
In some cases, it is useful to introduce vectorized notation e

for conv nets. We will represent the activations for a layer To think about the computational complexity of computing

A Kronecker-factored approximate Fisher matrix for convolution layers

the entries directly, consider the second convolution layeSUD yields the following factorization:

of AlexNet (Krizhevsky et al. 2012, which has 48 input

feature maps, 128 output feature maps,! 27 = 729 E[DDwij Dwirjre]=""0 G $ D)"Y 0),
spatial locations, anél! 5 Plters. Since there ark28! (16)
48! 5! 5 =245760weights and 128 biases, the full block

would require245888 " 60.5 billion entries to represent where

explicitly, and inversion is clearly impractical.

oy 1, 1! in(1. 1" 4
Recall that K-FAC approximation for classical fully con- (L1 8 (Ta$ max(ty, 1y, 0) +min(1y, 1, 0)

nected networks can be derived by approximating activa- &(T2$ max(!2,!15,0) +min(!2,!5,0)) (17)
tions and pre-activation derivatives as being statistically in-
dependent (this is th&D approximation below). Deriving prgof. See Appendik. 0

an analogous Fisher approximation for convolution layers
will require some additional approximations.]])
To talk about how this bts in to the block diagonal
Here are the approximations we will make in deriving our agpproximation to the Fisher matrik, we now restore
Fisher approximation: the explicit layer indices and use the vectorized nota-
tion from Section2.3.1 The above factorization yields
¥ Independent activations and derivatives (IAD). & Kronecker factorization of each block, which will be
The activations are independent of the pre-activatiortseful for computing their inverses (and ultimately our
derivativesj.e.{aj; } # {Dsi;}. approximate natural gradient). In particular, R "
E[vec(DW -)vec(DW -)"] denotes the block of the ap-
¥ Spatial homogeneity (SH).The Prst-order statistics proximate Fisher for layef, Eqn.16yields our KFC factor-
of the activations are independent of spatial location.ization of P- into a Kronecker product of smaller factors:
The second-order statistics of the activations and pre-

activation derivatives at any two spatial locatidrasd Po=1.,8&", (18)
t' depend only ont' $ t. This implies there are func-
tionsM,! and" such that; where
Ela:]=M() (13) LS TR R (N D AN (N R)
Elasae]="!(Gj t's$t) (14) it (i, 0). (19)

TN |
E[Dsi Dsio]="(i031). (15) (We will derive much simRIerformuIas far., 1 and" - in

. the next section.) Using this factorization, the rest of the K-
Note thatE[Ds;;] = 0 under the modelOs distribution, FAC algorithm can be carried out without modibcation. For
soCov (Dsj; ,Dsj' 1) = E[Dsit Dsjr 1] instance, we can compute the approximate natural gradient
using a damped version & analogously to Eqng. and9
¥ Spatially uncorrelated derivatives (SUD).The pre- of Section2.2
activation derivatives at any two distinct spatial loca- A1) () ()
tions are uncorrelatede.” (i,i',!) = 0 for ! &o0. Pol=ta " (20)
R T LY
We believeSHiis fairly innocuous, as one is implicitly mak- $ 1" %
ing a spatial homogeneity assumption when choosing to ot = T #L (21)
use convolution in the pbrst placBUD perhaps sounds like & P
a more severe approximation, but in fact appeared to de- covee [T G
scribe the modelOs distribution quite well in the networks,s, _ [BO)] 1 = : :
we investigated; this is analyzed empirially in Sectioh (! : #

w (1)1 1qm () g1
We now show that combining the above three approx- vee ['LT (" I L]
imations yields a Kronecker factorization of the Fisher (22)
blocks. For simplicity of notation, assume the data are two-
dimensional, so that the offsets can be parameterized wit

indices! = (!5,12) and!" = (!3,!5), and denote the di- | '\" 514\ 1) = 128 1 1201matrix. Therefore the factors
mensions of the activations map@s, T2). The formulas .41 and" - are1201l 1201and128! 128 respectively.

can be generalized to data dimensions higher than 2 in th'?hese matrices are small enough that they can be repre-

pbtvr:pus w?y. Fgrtctlke]lrlty, we I;:_ave out dthe :'as I;E’.I‘?‘.r"’lmeter%ented exactly and inverted in a reasonable amount of time,
In this section, but these are discussed in Appendix allowing us to efbciently compute the approximate natural
Theorem 1. Combining approximation$AD, SH, and gradient direction using Eq22.

*
*
*
+

ﬂeturning to our running example of AlexNef - is a

A Kronecker-factored approximate Fisher matrix for convolution layers

3.1. Estimating the factors

Since the true covariance statistics are unknown, we esti-
mate them empirically by sampling from the model’s dis-
tribution, similarly to Martens & Grosse (2015). To sam-
ple derivatives from the model’s distribution, we select a
mini-batch, sample the outputs from the model’s predictive
distribution, and backpropagate the derivatives.

We need to estimate the Kronecker factors {€2,};~, and

{T,}}_,. Since these matrices are defined in terms of the
autocovariance functions €2 and I, it would appear natu-
ral to estimate these functions empirically. Unfortunately,
if the empirical autocovariances are plugged into Eqn. 19,
the resulting €2, may not be positive semidefinite. This
is a problem, since negative eigenvalues in the approxi-
mate Fisher could cause the optimization to diverge (a phe-
nomenon we have observed in practice).

Instead, we estimate each €2, directly using the following
fact:

Theorem 2. Under assumption SH,

E [[Adi[AdxH]

DS, DS,] . (23)

Qy

1
I''=—E
T [

(The [] notation is defined in Appendix A.)

Proof. See Appendix E. O

We maintain exponential moving averages of the covari-
ance statistics, where the empirical statistics are computed
on each mini-batch using these formulas.

3.2. Using KFC in optimization

So far, we have defined an approximation F® to the Fisher
matrix F' which can be tractably inverted. This can be used
in any number of ways in the context of optimization, most
simply by using Vh = [F()]~1V} as an approximation to
the natural gradient F~'Vh. Alternatively, we could use it
in the context of the full K-FAC algorithm, or as a precon-
ditioner for iterative second-order methods (Martens, 2010;
Vinyals & Povey, 2012; Sohl-Dickstein et al., 2014).

In our experiments, we explored two particular instantia-
tions of KFC in optimization algorithms. First, in order
to provide as direct a comparison as possible to standard
SGD-based optimization, we used Vh in the context of
a generic approximate natural gradient descent procedure;
this procedure is like SGD, except that Vh is substituted
for the Euclidean gradient. Additionally, we used momen-
tum, update clipping, and parameter averaging — all stan-
dard techniques in the context of stochastic optimization.!

'Our SGD baseline used momentum and parameter averaging
as well. Clipping was not needed for SGD, for reasons explained
in Appendix B.1.

One can also view this as a preconditioned SGD method,
where F(¥) is used as the preconditioner. Therefore, we re-
fer to this method in our experiments as KFC-pre (to distin-
guish it from the KFC approximation itself). This method
is spelled out in detail in Appendix B.1.

We also explored the use of FO) in the context of the full
K-FAC training procedure (see Appendix B.2). Since this
performed about the same as KFC-pre, we report results
only for KFC-pre.

With the exception of inverting the Kronecker factors, all
of the heavy computation for our methods was performed
on the GPU. We based our implementation on CUDAMat
(Mnih, 2009) and the convolution kernels provided by the
Toronto Deep Learning ConvNet (TDLCN) package (Sri-
vastava, 2015). Full details on our GPU implementation
and other techniques for minimizing computational over-
head are given in Appendix B.3.

4. Theoretical analysis
4.1. Invariance

Natural gradient descent is motivated partly by way of its
invariance to reparameterization: regardless of how the
model is parameterized, the updates are equivalent to the
first order. Approximations to natural gradient don’t satisfy
full invariance to parameterization, but certain approxima-
tions have been shown to be invariant to more limited, but
still fairly broad, classes of transformations (Ollivier, 2015;
Martens & Grosse, 2015). For instance, K-FAC was shown
to be invariant to affine transformations of the activations
(Martens & Grosse, 2015).

For convolutional layers, we cannot expect an algorithm to
be invariant to arbitrary affine transformations of a given
layer’s activations, as such transformations can change the
set of functions which are representable. (Consider for in-
stance, a transformation which permutes the spatial loca-
tions.) However, we show that the KFC updates are in-
variant to homogeneous, pointwise affine transformations
of the activations, both before and after the nonlinearity.
This is perhaps an overly limited statement, as it doesn’t
use the fact that the algorithm accounts for spatial correla-
tions. Howeyver, it still accounts for a broad set of transfor-
mations, such as normalizing activations to be zero mean
and unit variance either before or after the nonlinearity.

To formalize this, recall that a layer’s activations are rep-
resented as a | 7| x J matrix and are computed from that
layer’s pre-activations by way of an elementwise nonlin-
earity, i.e. Ay = @¢(S¢). We replace this with an activation
function @, which additionally computes affine transforma-
tions before and after the nonlinearity. Such transforma-
tions can be represented in matrix form:

A, =0,(S,) =S, Us+1c/)V, +1d;, (24

where U, and V, are invertible matrices, and ¢, and d,

A Kronecker-factored approximate Fisher matrix for convolution layers

are vectors. For convenience, the inputs to the network cawe used were carefully tuned at a low level to implement
be treated as an activation functibp which takes no ar- SGD updates efbciently for both of these architectures.
guments. We also assume the Pnal layer outputs are ndherefore, we believe our SGD baseline is quite strong.
transformed, i.eV; = I andd; = 0. KFC is invariant to

this class of transformations: 5.1. Evaluating the probabilistic modeling assumptions

Theorem 3. Let N be a network with parameter vector 6

L . 7) e One of the benebpts of using a structured probabilistic model
and activation functions {! ;},.o. Given activation func-

to approximate the Fisher matrix is that we can analyze
tions {! [}io defined as in Eqn. 24, there exists a param- \yhether the modeling assumptions are satisbed. As dis-
eter vector 01 such that a network N't with parameters 07 cussed aboveAD is the standard approximation made by

and ac[ivati()nfunc[i()ns {' 2}520 computes the Samefunc- standard K-FAC, and was discussed in detail both theoret-

tion as N'. The KFC updates on N and N'* are equivalent, ically and empirically byMartens & Gross¢2015. One

in that the resulting networks compute the same function. implicitly assumesSH when choosing to use a convolu-
tional architecture. Howeveg§UD s perhaps less intuitive.

Why should we suppose the derivatives are spatially uncor-
related? Conversely, why not go a step further and assume
theactivations are spatially uncorrelated (as do some meth-
Invariance to afPne transformations also implies approxiods; see Appendig) or even drop all of the correlations
mate invariance to smooth nonlinear transformations; seg@hereby obtaining a much simpler diagonal approximation
Martens(2014) for further discussion. to the Fisher matrix)?

Proof. See AppendiE. O

AppendixD.1 analyzes empirically the validity of assump-
tion SUD on conv nets trained to CIFAR-10 and SVHN.

It is possible to interpret many other neural net optimiza-We conclude thaBUD appears to describe the model dis-
tion methods as structured probabilistic approximations tdributions quite well for both networks. By contrast, the
natural gradient. This includes coordinatewise rescalingletworksO activations have very strong spatial correlations,
methods (e.g.eCun et al, 1998 Duchi et al, 2011 Tiele- SO it is signiPcant that KFC does not assume spatially un-
man & Hinton 2012 Zeiler, 2013 Kingma & Ba 2015, correlated activations.

centering of activationsGho et al, 2013 Vatanen et a.

2013 loffe & Szegedy 2015 e.g.), and the recently pro- 5.2. Optimization performance

posed Projected Natural Gradiebtgsjardins et a|2015.) .

This allows us to compare the modeling assumptions imYVe évaluated KFC-pre in the context of optimizing deep

plicitly made by different methods. See Appendlxor a convolutional networks. We compared against stochastic
full discussion. gradient descent (SGD) with momentum, which is widely

considered a strong baseline for training conv nets. All ar-
. chitectural choices (e.g. sizes of layers) were kept consis-
5. Experiments tent with the previously published conbgurations. Since
éhe focus of this work is optimization rather than general-
ization, metaparameters were tuned with respectdia-
2009, and Street View Housing Numbers (SVHNetzer ing error. Th?s protocol was favorable to the SGD base!in_e,
as the learning rates which performed the best on training

etal, 2011). Our aim is not to achieve state-of-the-art per- oo herformed the best on test efraie tuned the
formance, but to evaluate KFCOs ability to optimize previ—I : ',[3 f i 3.0.1.0.03 0.0003)
ously published architectures. We brst examine the proba—earnlng rates from e_sé(t). i e } sep
bilistic assumptions, and then present optimization results;.irat(aly for eaph experiment, For KFC—pre, we also chose

Several algorithmic parameters using the method of Ap-

For CIFAR-10, we used the architecture from pendixB.3, which considers only per-epoch running time
cuda-convnet? which achieved 18% error in 20 and not bnal optimization performante.

minutes. This network consists of three convolution layers—; o
and a fully connected layer. (Whileuda—convnet For KFC-pre, we encountered a more signibPcant tradeoff be-

. . - een training and test error, most notably in the choice of mini-
provides some better-performing architectures, we COUI(Egtch size, so the presented results do not reRect our best runs on

not use these, since these included locally connecteghe test set. For instance, as reported in Fiduthe test error on
layers, which KFC canOt handle.) For SVHN, we usedIFAR-10 leveled off at 18.5% after 5 minutes, after which the
the architecture ofSrivastava(2013. This architecture network started overbtting. When we reduced the mini-batch size
consists of three convolutional layers followed by three“lrgg}1 5#2 t%ézs.v the tes|_t| error rearc]hed 17-50? afterdeminutes and
o o after 35 minutes. However, this run performed far worse on
fully connected Iay(_ars, and uses dropout for regul""”Z‘E‘t'oﬂthe training set. On the Rip side, very large mini-batch sizes hurt
Both of these architectures were carefully tuned for theirgeneralization for both methods, as discussed in Sebt@n
respective tasks. Furthermore, the TDLCN CUDA kernels “For SGD, we used a momentum parameter of 0.9 and mini-
—_— batches of size 128, which match the previously published conpbg-

4.2. Relationship with other algorithms

We have evaluated our method on two standard imag
recognition benchmark datasets: CIFAR-KJighevsky,

https://code.google.com/p/cuda-convnet/

https://code.google.com/p/cuda-convnet/

A Kronecker-factored approximate Fisher matrix for convolution layers

(a) CIFAR-10 (neg. log-likelihood) (b) CIFAR-10 (classification error) {c) SVHN (neg. log-likelihood) (d) SVHN (classification error)
o, .06 ¢
14 — sGD — sGD
— KFC-pre 0.35 — KFC-pre

1.0

0| \
0.6 N
04 %,

0.2

25 3 0 50 100 150 200 250 50 50 200 250
1

10 15 20 10 15 20 1
wall clock time (minutes) wall clock time (minutes) wall clock time (minutes) wall clock time (minutes)

Figure 1.Optimization performance of KFC-pre and SGR) CIFAR-10, negative log-likelihood(b) CIFAR-10, classibcation error.
(c) SVHN, negative log-likelihood(d) SVHN, classibcation erroSolid linesrepresent test error arthshed linesrepresent training
error. Thehorizontal dashed linerepresents the previously reported test error for the same architecture.

(a) CIFAR-10 (b) SVHN

For both SGD and KFC-pre, we used an exponential mov- ..
ing average of the iterates (see Appendixl) with a
timescale of 50,000 training examples (which corresponds:...| *
to one epoch on CIFAR-10). This helped both SGD and fox)\-
KFC-pre substantially. All experiments for which wall =/
clock time is reported were run on a single Nvidia GeForce .. .
GTX Titan Z GPU board. e e s L S

iterations (x 1000) # iterations (x 1000)
As baselines, we also tried Adagrdduchi et al, 2011),
RMSProp Tieleman & Hinton 2012, and AdamKingma Figure 2.Classibcation error as a function of the number of iter-
& Ba, 2015, but none of these approaches outperformeditions (weight updates). Heuristically, this is a rough measure of
carefully tuned SGD with momentum. This is consistenthow the algorithms might perform in a highly distributed setting.
with the observations dfingma & Ba(2015. (a) CIFAR-10. (b) SVHN. See Figurd. caption for details.

Figure 1(a,b) shows the optimization performance on the
CIFAR-10 dataset, in terms of wall clock time. Both KFC-
pre and SGD reached approximately the previously pubby using new network parameters as soon as they become
lished test error of 18% before they started overbttingavailable, but needing to compute gradients with stale pa-
However, KFC-pre reached 19% test error in 3 minutesyameters limits the benepts of this approach.
compared with 9 minutes for SGD. The difference in train-A . . .

s a proxy for how the algorithms are likely to performin a

ing error was more signibcant: KFC-pre reaches a train; . - : . .
ing error of 6% in 4 minutes, compared with 30 minuteshlghly distributed setting we measured the classibcation

for SGD. On SVHN, KFC-pre reached the previously IOub_error as a function of theumber of iterationgweight up-
lished test error of 2.78% in 120 minutes, while SGD did dates) for each algorithm. Both algorithms were run with

not reach it within 250 minutes. (As discussed above, teslfalrge mini-batches of size 4096 (in placg .Of 128 for SGD
. : . and 512 for KFC-pre). Figur2 shows training curves for
error comparisons should be taken with a grain of salt.) both algorithms on CIFAR-10 and SVHN, using the same

AppendixD.2 analyzes the performance of KFC-pre in re- architectures as abo¥eKFC-pre required far fewer weight
lation to the recently proposed batch normalization methodipdates to achieve good training and test error compared

(loffe & Szegedy2015. with SGD. For instance, on CIFAR-10, KFC-pre obtained
a training error of 10% after 300 updates, compared with
5.3. Potential for distributed implementation 6000 updates for SGD, a 20-fold improvement. Similar

] speedups were obtained on test error and on the SVHN
Much work has been devoted recently to highly parallel orgataset. These results suggest that a distributed implemen-
distributed implementations of neural network optimiza-tation of KFC-pre has the potential to obtain large speedups

tion (e.g.Dean et al.(2012). Synchronous SGD effec- qyer distributed SGD-based algorithms.
tively allows one to use very large mini-batches efbciently,

which helps optimization by reducing the variance in the °The gradient computations can be farmed out to worker

stochastic gradient estimates. However, the per-update pefodes, exactly as with SGD, and we expect the computations

: of Kronecker factors and their inverses can be performed asyn-
formace levels off to that of batch SGD once the Var'ancechronously. Therefore, we would not expect additional sequential

is no longer signibcant and curvature effects come to dompgttienecks or communication overhead.

inate. Asynchronous SGD partially alleviates this issue goth SGD and KFC-pre reached a slightly worse test er-

T — ror before they started overbtting, compared with the small-

urations. For KFC-pre, we used a momentum parametelrsof 0-Sninibatch experiments of the previous section. This is because
mini-batches of size 512, and a damping parameter 10" °. |arge mini-batches lose the regularization benebt of stochastic
In both cases, our informal explorations did not Pnd other valuegradients. One would need to adjust the regularizer in order to
which performed substantially better in terms of training error. get good generalization performance in this setting.

A Kronecker-factored approximate Fisher matrix for convolution layers

Acknowledgments LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W., and Jackel, L. D. Backpropagation applied to

We gratefully acknowledge support from Google, NSERC, handwritten zip code recognitioheural Computationl:541D

and the Banting Research Foundation. We thank Jimmy 551, 1989.

Ba, Guillaume Desjardins, Geoffrey Hinton, and Nitish Sri-

. . LeCun, Y., Bottou, L., Orr, G., and Mler, K. Efbcient backprop.
vastava for helpful discussions.

Neural networks: Tricks of the tradpp. 5460546, 1998.

Martens, J. Deep learning via Hessian-free optimization. In
References Proceedings of the 27th International Conference on Machine
Amari, Shun-Ichi. Natural gradient works efbciently in learning. ~ Learning (ICML) 2010.

Neural Computation10(2):2519276, 1998. o . .

Martens, J. New insights and perspectives on the natural gradient

Chapelle, O. and Erhan, D. Improved preconditioner for Hessian- Method, 2014.

free optimization. INNIPS Workshop on Deep Learning and - .

Unsupervised Feature Learning011. Martens, J. and Grosse, R. Optimizing neural networks with

Kronecker-factored approximate curvature. liternational

Chellapilla, K., Puri, S., and Simard, P. High performance con- Conference on Machine Learning015.

volutional neural networks for document processinglnlier- .) .

national Workshop on Frontiers in Handwriting Recognition Mnih, V. CUDAMat: A CUDA-based matrix class for Python.

2006. Technical Report 004, University of Toronto, 2009.

Cho, K., Raiko, T., and llin, A. Enhanced gradient for training More, J.J. The Levenberg-Marquardt algorithm: implementation
restricted Boltzmann machineeural Computation25:805D and theoryNumerical analysispp. 105D116, 1978.
813, 2013. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng,
Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, A. Y. Reading digits in natural images with unsupervised
Q. V., Mao, M. Z., Ranzato, M., Senior, A., Tucker, P., Yang, feature learning. IrNeural Information Processing Systems
K., and Ng, A. Y. Large scale distributed deep networks. In Deep Learning and Unsupervised Feature Learning Workshop
Neural Information Processing Syster2612. 2011.

Demmel, J. WApplied Numerical Linear AlgebraSIAM, 1997. Nocedal, Jorge and Wright, StephenNumerical optimization
Springer, 2. ed. edition, 2006.
Desjardins, G., Simonyan, K., Pascanu, R., and Kavukcuoglu, K.)))
Natural neural networks. arXiv:1507.00210, 2015. Ollivier, Y. Riemannian metrics for neural networks I: feed-
forward networks. Information and Inference4(2):1080153,
Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient meth- 2015.
ods for online learning and stochastic optimizatidaurnal of))))
Machine Learning Research?2:212192159, 2011. Pascanu, R., Mikolov, T., and Bengio, Y. On the difpculty of train-
ing recurrent neural networks. International Conference on
Grosse, Roger and Salakhutdinov, Ruslan. Scaling up natural Machine Learning2013.
gradient by sparsely factorizing the inverse Fisher matrix. In)))
Proceedings of the 32nd International Conference on Machiné?ascanu, R., Dauphin, Y. N., Ganguli, S., and Bengio, Y.
Learning (ICML) 2015. On the saddle point problem for non-convex optimization.
.] arXiv:1405.4604, 2014.
Heskes, Tom. On OnaturalO learning and pruning in multilayered]]]
perceptronsNeural Computation12(4):8819901, 2000. Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic ap-
proximation by averagingSIAM Journal of Control and Opti-
Hochreiter, S. and Schmidhuber, J. Long short-term memory. mization 30(4):838D855, 1992.
Neural Computation9:1735D1780, 1997.])])
Povey, Daniel, Zhang, Xiaohui, and Khudanpur, Sanjeev. Parallel
loffe, S. and Szegedy, C. Batch normalization: accelerating deep training of DNNs with natural gradient and parameter averag-
network training by reducing internal covariate shift. lirter- ing. InInternational Conference on Learning Representations:
national Conference on Machine Learnir2p15. Workshop track2015.

Kingma, D. P. and Ba, J. L. Adam: a method for stochastic opti-Ranzato, M. and Hinton, G. E. Modeling pixel means and co-
mization. Ininternational Conference on Learning Represen- variances using factorized third-order Boltzmann machines. In

tations 2015. Computer Vision and Pattern Recognitj@910.
Krizhevsky, A. Learning multiple layers of features from tiny Schraudolph, Nicol N. Fast curvature matrix-vector products for
images. Technical report, University of Toronto, 2009. second-order gradient desceNeural Computationl4, 2002.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet clas-Simoncelli, E. P. and Olshausen, B. A. Natural image statistics
sibcation with deep convolutional neural networks.Nieural and neural representatioAnnual Review of Neuroscien@:
Information Processing Systen2912. 1193D1216, 2001.

Le Roux, Nicolas, Manzagol, Pierre-antoine, and Bengio,Sohl-Dickstein, J., Poole, B., and Ganguli, S. Fast large-scale
Yoshua. Topmoumoute online natural gradient algorithm. In optimization by unifying stochastic gradient and quasi-Newton
Advances in Neural Information Processing Systemspp0 methods. Ininternational Conference on Machine Learnjng
849D856. MIT Press, 2008. 2014.

A Kronecker-factored approximate Fisher matrix for convolution layers

Srivastava, N. Improving neural networks with dropout. MasterOs
thesis, University of Toronto, 2013.

Srivastava, N. Toronto Deep Learning ConvNetttps:
/lgithub.com/TorontoDeepLearning/convnet/ ,
2015.

Sutskever, 1., Vinyals, O., and Le, Q. V. V. Sequence to sequence
learning with neural networks. INeural Information Process-
ing Systems2014.

Swersky, K., Chen, Bo, Marlin, B., and de Freitas, N. A tu-
torial on stochastic approximation algorithms for training re-
stricted Boltzmann machines and deep belief neténflorma-
tion Theory and Applications Workshop (ITA), 20pf. 1D10,
Jan 2010.

Tieleman, T. and Hinton, G. Lecture 6.5, RMSProp. In Coursera
course Neural Networks for Machine Learning, 2012.

Vatanen, Tommi, Raiko, Tapani, Valpola, Harri, and LeCun,
Yann. Pushing stochastic gradient towards second-order meth-
ods B backpropagation learning with transformations in non-
linearities. 2013.

Vinyals, O. and Povey, D. Krylov subspace descent for deep learn-
ing. InInternational Conference on Artibcial Intelligence and
Statistics (AISTATSP012.

Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola, A.,
Song, L., and Wang, Z. Deep fried convnets. arXiv:1412.7149,
2014.

Zeiler, Matthew D. ADADELTA: An adaptive learning rate
method. 2013.

https://github.com/TorontoDeepLearning/convnet/
https://github.com/TorontoDeepLearning/convnet/

