
Towards Faster Rates and Oracle Property for Low-Rank Matrix Estimation

Huan Gui HUANGUI2@ILLINOIS.EDU
Jiawei Han HANJ@ILLINOIS.EDU

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Quanquan Gu* QG5W@VIRGINIA.EDU

Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA 22904, USA

Abstract
We present a unified framework for low-rank ma-
trix estimation with nonconvex penalty. A proxi-
mal gradient homotopy algorithm is developed to
solve the proposed optimization problem. The-
oretically, we first prove that the proposed esti-
mator attains a faster statistical rate than the tra-
ditional low-rank matrix estimator with nuclear
norm penalty. Moreover, we rigorously show that
under a certain condition on the magnitude of the
nonzero singular values, the proposed estimator
enjoys oracle property (i.e., exactly recovers the
true rank of the matrix), besides attaining a faster
rate. Extensive numerical experiments on both
synthetic and real world datasets corroborate our
theoretical findings.

1. Introduction
Statistical estimation of low-rank matrices (Srebro et al.,
2004; Candès & Tao, 2010; Rohde et al., 2011; Koltchin-
skii et al., 2011a; Candès & Recht, 2012; Jain et al., 2013;
Hardt, 2014; Jain & Netrapalli, 2014) has received increas-
ing interest in the past decade. It has broad applications in
many fields such as data mining and computer vision. For
example, in the recommendation systems, one aims to pre-
dict the unknown preferences of a set of users over a set of
items, provided a partially observed rating matrix. Another
application of low-rank matrix estimation is image inpaint-
ing, to recover missing pixels based on a portion of pixels
being observed.
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Since it is not tractable to minimize the rank of a ma-
trix directly, many surrogate loss functions of the matrix
rank have been proposed (e.g., nuclear norm (Srebro et al.,
2004; Candès & Tao, 2010; Recht et al., 2010; Negahban &
Wainwright, 2011; Koltchinskii et al., 2011a), Schatten-p
norm (Rohde et al., 2011; Nie et al., 2012), max norm (Sre-
bro & Shraibman, 2005; Cai & Zhou, 2013), the von Neu-
mann entropy (Koltchinskii et al., 2011b)). Among those
surrogate losses for rank, nuclear norm is probably the most
widely used penalty for low-rank matrix estimation (Ne-
gahban & Wainwright, 2011; Koltchinskii et al., 2011a),
since it is the tightest convex relaxation of the matrix rank.

On the other hand, it is now well-known that `
1

penalty
in Lasso (Fan & Li, 2001; Zhang, 2010; Zou, 2006) in-
troduces a bias into the resulting estimator, which com-
promises the estimation accuracy. In contrast, noncon-
vex penalties such as smoothly clipped absolute deviation
(SCAD) penalty (Fan & Li, 2001) and minimax concave
penalty (MCP) (Zhang, 2010) are favored in terms of esti-
mation accuracy and variable selection consistency (Wang
et al., 2013b). Due to the close connection between `

1

norm and nuclear norm (nuclear norm can be seen as an `
1

norm defined on the singular values of a matrix), noncon-
vex penalties for low-rank matrix estimation have recently
received increasing attention for low-rank matrix estima-
tion. Typical examples of nonconvex approximation of the
matrix rank include Schatten `p-norm (0 < p < 1) (Nie
et al., 2012), the truncated nuclear norm (Hu et al., 2013),
and the MCP penalty defined on the singular values of a
matrix (Wang et al., 2013a; Liu et al., 2013). Although
good empirical results have been observed in these stud-
ies (Nie et al., 2012; Hu et al., 2013; Wang et al., 2013a;
Liu et al., 2013; Lu et al., 2014; Yao et al., 2015), little is
known about the theory of nonconvex penalty for low-rank
matrix estimation. The theoretical justification for the non-
convex surrogates of matrix rank is still an open problem.

In this paper, to bridge the gap between practice and the-
ory of low-rank matrix estimation, we propose a unified
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framework for low-rank matrix estimation with noncon-
vex penalty. A proximal gradient homotopy method is pre-
sented to solve the proposed estimator. We prove that our
proposed estimator, by taking advantage of singular values
with large magnitude, attains faster statistical convergence
rates, compared with the conventional estimator with nu-
clear norm penalty. Furthermore, under a mild assump-
tion on the magnitude of the singular values, we rigorously
show that the proposed estimator enjoys oracle property,
which exactly recovers the true rank of the underlying ma-
trix, as well as attains a faster rate. Our theoretical results
are verified through both simulations and thorough experi-
ments on real world datasets for collaborative filtering and
image inpainting.

Notation. We use lowercase letters (a, b, . . .) to denote
scalars, bold lower case letters (a,b, . . .) for vectors, and
bold upper case letters (A,B, . . .) for matrices. For a
real number a, we denote by bac the largest integer that
is no greater than a. For a vector x, define vector norm
as kxk

2

=

p

P

i x
2

i . Considering matrix A, we de-
note by �

max

(A) and �
min

(A) the largest and small-
est eigenvalue of A, respectively. For a pair of matri-
ces A,B with commensurate dimensions, hA,Bi denotes
the trace inner product on matrix space that hA,Bi :=

trace(A>B). Given a matrix A 2 Rm1⇥m2 , its (or-
dered) singular values are denoted by �

1

(A) � �
2

(A) �
· · · � �m(A) � 0 where m = min{m

1

,m
2

}. More-
over, M = max{m

1

,m
2

}. We also define k·k for var-
ious norms defined on matrices, based on the singular
values, including nuclear norm kAk⇤ =

Pm
i=1

�i(A),
spectral norm kAk

2

= �
1

(A), and the Frobenius norm
kAkF =

phA,Ai = p

Pm
i=1

�2i (A). In addition, we de-
fine kAk1 = max

1jm1,1km2 Ajk, where Ajk is the
element of A at row j, column k.

2. Low-rank Matrix Estimation with
Nonconvex Penalty

In this section, we present a unified framework for low-rank
matrix estimation with nonconvex penalty, followed by the
theoretical analysis of the proposed estimator.

2.1. The Observation Model

We consider a generic observation model as follows:

yi = hXi,⇥
⇤i+ ✏i for i = 1, 2, . . . , n, (2.1)

where {Xi}ni=1

is a sequence of observation matrices,
and {✏i}ni=1

are i.i.d. zero mean sub-Gaussian observa-
tion noise with variance �2. Moreover, the observa-
tion model can be rewritten in a more compact way as
y = X(⇥⇤

) + ✏, where y = (y
1

, . . . , yn)
>, ✏ =

(✏
1

, . . . , ✏n)
>, and X(·) is a linear operator that X(⇥⇤

) :=

(hX
1

,⇥⇤i , hX
2

,⇥⇤i , · · · , hXn,⇥
⇤i)>. In addition, we

define the adjoint of the operator X as X⇤
: Rn !

Rm1⇥m2 , which is defined as X⇤
(✏) =

Pn
i=1

✏iXi. It is
worth noting that the observation model presented in (2.1),
by which many matrix estimation problems can be uni-
fied, has also been considered before by Koltchinskii et al.
(2011a); Negahban & Wainwright (2011).

2.2. Examples

Low-rank matrix estimation has broad applications. We
briefly review two examples: matrix completion and ma-
trix sensing. For more examples, please refer to Koltchin-
skii et al. (2011a); Negahban & Wainwright (2011).
Example 2.1 (Matrix Completion). In the setting of ma-
trix completion with noise, one uniformly observes partial
entries of the unknown matrix ⇥⇤ with noise. In detail,
the observation matrix Xi 2 Rm1⇥m2 is in the form of
Xi = eji(m1

)eki(m2

)

>, where eji(m1

) and eji(m2

) are
the canonical basis vectors in Rm1 and Rm2 , respectively.
Example 2.2 (Matrix Sensing). In the setting of matrix
sensing, one observes a set of random projections of the
unknown matrix ⇥⇤. More specifically, the observation
matrix Xi 2 Rm1⇥m2 has i.i.d. standard normal N(0, 1)
entries, so that one makes observations of the form yi =

hXi,⇥
⇤i + ✏i. It is obvious that matrix sensing is an in-

stance of the model (2.1).

2.3. The Proposed Estimator

We now propose an estimator that is naturally designed for
estimating low-rank matrices. Given a collection of n sam-
ples Zn

1

=

�

(yi,Xi)
 n

i=1

, which is assumed to be gener-
ated from the observation model (2.1), the unknown low-
rank matrix ⇥⇤ 2 Rm1⇥m2 can be estimated by solving
the following optimization problem

b⇥ = argmin

⇥2Rm1⇥m2

1

2n

�

�y � X(⇥)

�

�

2

2

+ P�(⇥), (2.2)

which includes two components: (i) the empirical loss
function Ln(⇥) = (2n)�1ky � X(⇥)k2

2

; and (ii) the non-
convex penalty (Fan & Li, 2001; Zhang, 2010; Zhang et al.,
2012) P�(⇥) with regularization parameter �, which helps
to enforce the low-rank structure constraint on the regular-
ized M-estimator b⇥. Considering the low rank assumption
on the matrices, we apply the nonconvex regularization on
the singular values of ⇥, which induces sparsity of singular
values, and therefore low-rankness of the matrix. For sin-
gular values of ⇥, �(⇥) =

�

�
1

(⇥), �
2

(⇥), . . . , �m(⇥)

�

,
where �

1

(⇥) � . . . � �m(⇥) � 0, we define P�(⇥) =

Pn
i=1

p�
�

�i(⇥)

�

, where p� is a univariate nonconvex
function. There is a line of research on nonconvex regu-
larization and various nonconvex penalties have been pro-
posed, such as SCAD (Fan & Li, 2001) and MCP (Zhang,
2010). We take SCAD and MCP penalties as illustrations.
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Hence, for SCAD, the function p�(·) is defined as follows

p�(t) =

8

>

<

>

:

�|t|, if |t|  �,
� t2�2b�|t|+�2

2(b�1)

, if � < |t|  b�,

(b+ 1)�2/2, if |t| > b�,

where b > 2 and � > 0. The SCAD penalty corresponds to
a quadratic spline function with knots at t = � and t = b�.
Regarding MCP, we have

p�(t) = �

Z |t|

0

⇣

1� z

�b

⌘

+

dz

=

✓

�|t|� t2

2b

◆

1(|t|  b�) +
b�2

2

1(|t| > b�),

where b > 0 is a fix parameter.

In addition, the nonconvex penalty p�(t) can be further
decomposed as p�(t) = �|t| + q�(t), where |t| is the `

1

penalty and q�(t) is a concave component. For the SCAD
penalty, q�(t) can be obtained as follows,

q�(t) = �
�|t|+ �

�

2

/
�

2(b� 1))1(� < |t|  b�)

+

�

1/2(b+ 1)�2 � �|t|�1(|t| > b�).

For MCP, the concave part is

q�(t) = � t2

2b
1(|t|  b�) +

✓

b�2

2

� �|t|
◆

1(|t| > b�).

Since the regularization term P�(⇥) is imposed on the
vector of singular values, hence, the decomposability of
p�(t) is equivalent to the decomposability of P�(⇥) as
P�(⇥) = �k⇥k⇤ +Q�(⇥), where Q�(⇥) is the concave
component, Q�(⇥) =

Pm
i=1

q�
�

�i(⇥)

�

, and k⇥k⇤ is the
nuclear norm.

2.4. Optimization Algorithm

In this section, we present a proximal gradient homotopy
algorithm, which is adapted from Xiao & Zhang (2013), as
shown in Algorithm 1, to solve the optimization problem
with nonconvex penalty (2.2).

The main idea of proximal gradient homotopy method
(PGH) is to solve the optimization problem with an initial
regularization parameter � = �

0

that is sufficiently large
and then gradually decrease � until the target regulariza-
tion parameter �

tgt

is attained, which will be given in The-
orem 3.4 and Theorem 3.5, respecting different conditions.

In addition, we have �t = ⌘t�
0

, where ⌘ is an absolute
constant. The number of iterations for the homotopy algo-
rithm is K = bln(�

0

/�tgt)/ln(1/⌘)c. For the final stage of
the proximal gradient homotopy method, we need to solve
up to high precision with ✏

opt

⌧ �
tgt

/4. The key compo-
nent in Algorithm 1 is the function ProxGrad() (Line 6 and

Algorithm 1
�

⇥t
 K+1

t=1

 PGH(�
0

,�
tgt

, ✏
opt

, L
min

)

input �
0

> 0,�
tgt

> 0, ✏
opt

> 0, L
min

> 0

1: parameters ⌘ 2 (0, 1), � 2 (0, 1)

2: initialize ⇥0  0, L
0

 L
min

,K  
j

ln(�0/�tgt)

ln(1/⌘)

k

3: for t = 0, 1, 2, . . . ,K � 1 do
4: �t+1

 ⌘�t
5: ✏t+1

 �t/4
6: {⇥t+1, Lt+1

} ProxGrad(�t+1

, ✏t+1

,⇥t, Lt)

7: end for
8: {⇥K+1, LK+1

} ProxGrad(�
tgt

, ✏
opt

,⇥K , LK)

9: return
�

⇥t
 K+1

t=1

8), a proximal gradient method tailored for the M-estimator
with nonconvex penalty, as shown in Algorithm 2. The de-
tails of the proximal gradient algorithm are introduced as
follows.

Recall that P�(⇥) = �k⇥k⇤ +Q�(⇥). We define

��(⇥) = Ln(⇥) + P�(⇥) =

eLn,�(⇥) + �k⇥k⇤, (2.3)

where eLn,�(⇥) = Ln(⇥) + Q�(⇥). For any fixed ma-
trix M and a given regularization parameter �, we define a
local model of ��(⇥) around M using a simple quadratic
approximation of eLn,�(·) as follows:

 L,�(⇥;M) =

eLn,�(M) +r eLn,�(M)

>
(⇥�M)

+

L

2

k⇥�Mk2F + �k⇥k⇤. (2.4)

Suppose TL,�(M) is the unique minimize of  L,�(⇥;M),

TL,�(M) = argmin

⇥
 L,�(⇥;M). (2.5)

Via exploiting the structure of the nuclear norm regular-
ization in (2.4), the optimization problem in (2.5) can be
easily solved by singular value thresholding method (Ji &
Ye, 2009; Cai et al., 2010).

Suppose b⇥ is the global solution to the optimization prob-
lem (2.2). According to the optimality condition, there ex-
ists ⌥ 2 @k b⇥k⇤ such that, for all ⇥ 2 Rm1⇥m2 ,

(

b⇥�⇥)

>�r eLn,�(
b⇥) + �⌥

�  0. (2.6)

Hence, based on the optimality condition in (2.6), we mea-
sure the suboptimality of a ⇥ 2 Rm1⇥m2 using

!�(⇥) = min

⌥02@k b⇥k⇤
max

⇥0

⇢

(⇥�⇥0
)

>�r eLn,�(⇥) + �⌥0�

k⇥�⇥0k⇤

�

= min

⌥02@k b⇥k⇤

n

�

�r eLn,�(⇥) + �⌥0�
�

2

o

,

where the second equality follows from the duality be-
tween k · k⇤ and k · k

2

. The main idea of the suboptimality
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is that, if ⇥ is an exact optimum, by the optimality condi-
tion (2.6), we have !�(⇥) < 0; otherwise, if ⇥ is close to
the optimum, !�(⇥) is likely to be a small positive value.

To use Algorithm 2, we need to choose an initial optimistic
estimate L

min

for the Lipschitz constant L eLn,�
, such that

0 < L
min

 L eLn,�
. The detailed discussion on Lipschitz

constant L eLn,�
will be presented in Section 3.

Algorithm 2 { e⇥, bL} ProxGrad(�,b✏,⇥0, L
0

)

input � > 0,b✏ > 0,⇥0 2 Rm1⇥m2 , L
0

> 0, k = 0

1: repeat
2: k  k + 1

3: {⇥k, Nk} LineSearch(�,⇥k�1, Lk�1

)

4: Lk  max{L
min

, Nk/2}
5: until !�

�

⇥k
�  b✏

6: e⇥ ⇥k, bL Lk

7: return { e⇥, bL}
Line 3 in Algorithm 2 is the line search algorithm (Algo-
rithm 3), adaptively searching for the best quadratic coeffi-
cient Lk for the local quadratic approximation in (2.4).

Algorithm 3 {⇥, N} LineSearch(�,M, L)

input � > 0,⇥ 2 Rm1⇥m2 , L > 0

1: repeat
2: ⇥ TL,�(M)

3: if ��(⇥) >  L,�(⇥;M) then
4: L 2L
5: end if
6: until ��(⇥)   L,�(⇥;M)

7: N  L
8: return {⇥, N}

Particularly, following the analysis in Xiao & Zhang
(2013); Wang et al. (2013b), the iterative solution sequence
�

⇥t
 K+1

t=1

, which is obtained by Algorithm 1, conver-
gences at geometric rate towards b⇥, as defined in (2.2).

3. Main Theory
In this section, we are going to present the main theoretical
results for the proposed estimator in (2.2). We first lay out
the assumptions made on the empirical loss function and
the nonconvex penalty.

Suppose the SVD of ⇥⇤ is ⇥⇤
= U⇤�⇤V⇤>, where U⇤ 2

Rm1⇥r, V⇤ 2 Rm2⇥r and �⇤
= diag(�⇤

i ) 2 Rr⇥r. We
can construct the subspaces F and F? as follows

F(U⇤,V⇤
) := {�|row(�) ✓ V⇤ and col(�) ✓ U⇤},

F?
(U⇤,V⇤

) := {�|row(�) ? V⇤ and col(�) ? U⇤}.

Shorthand notations F and F? are used whenever U⇤,V⇤

are clear from context. It is worth noting that F is the span

of the row and column space of ⇥⇤, and ⇥⇤ 2 F conse-
quently. In addition, ⇧F (·) is the projection operator that
projects matrices into the subspace F .

To begin with, we impose two conditions on the empirical
loss function Ln(·) over a restricted set, known as restricted
strong convexity (RSC) and restricted strong smoothness
(RSS), respectively. Those two assumptions assume that
there exist a quadratic lower bound and a quadratic up-
per bound, respectively, on the remainder of the first or-
der Taylor expansion of Ln(·). The RSC condition has
been discussed extensively in previous work (Negahban
et al., 2012; Loh & Wainwright, 2013), which guarantees
the strong convexity of the loss function in the restricted
set and helps to control the estimation error k b⇥ �⇥⇤kF .
In particular, we define the following subset, which is a
cone of a restricted set of directions,

C =

�

� 2 Rm1⇥m2
�

�k⇧F?(�)k⇤  5k⇧F (�)k⇤
 

.

Assumption 3.1 (Restricted Strong Convexity). For opera-
tor X, there exists some (X) > 0 such that, for all � 2 C,

Ln(⇥+�) � Ln(⇥) + hrLn(⇥),�i+ (X)/2k�k2F .

Assumption 3.2 (Restricted Strong Smoothness). For op-
erator X, there exists some1 > ⇢(X) � (X) such that,
for all � 2 C,

Ln(⇥) + hrLn(⇥),�i+ ⇢(X)/2k�k2F � Ln(⇥+�).

Recall that Ln(⇥) = (2n)�1ky �X(⇥)k
2

. It can be veri-
fied that with high probability Ln(⇥) satisfies both RSC
and RSS conditions for different applications, including
matrix completion and matrix sensing. We will establish
the results for RSC and RSS conditions in Section 3.2.

Further, we impose several regularity conditions on the
nonconvex penalty P�(·), in terms of the univariate func-
tions p�(·) and q�(·).
Assumption 3.3.

(i) On the nonnegative real line, there exits a constant ⌫
that function p�(t) satisfies p0�(t) = 0, 8 t � ⌫ > 0.

(ii) On the nonnegative real line, q0�(t) is monotone and
Lipschitz continuous, i.e., for t0 � t, there exists a
constant ⇣� � 0 such that q0�(t

0
)� q0�(t) � �⇣�(t0 �

t).
(iii) Both function q�(t) and its derivative q0�(t) pass

through the origin, i.e., q�(0) = q0�(0) = 0.
(iv) On the nonnegative real line, |q0�(t)| is upper bounded

by �, i.e., |q0�(t)|  �.

Note that condition (ii) is a type of curvature property
which determines concavity level of q�(·), and the non-
convexity level of p�(·) consequently. These conditions
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are satisfied by many widely used nonconvex penalties,
such as SCAD and MCP. For instance, it is easy to ver-
ify that SCAD penalty satisfies the conditions in Assump-
tion 3.3 with ⌫ = b� and ⇣� = 1/(b � 1); while for
MCP, we have those conditions satisfied with ⌫ = b� and
⇣� = 1/b. Based on Assumption 3.2, if b is chosen such
that (X) > ⇣�, it can be shown that the Lipschitz con-
stant is L eLn,�

= ⇢(X) � ⇣�, and the parameter L
min

for
Algorithm 1 can be chosen such that L

min

 ⇢(X)� ⇣�.

3.1. Results for the Generic Observation Model

We first present a deterministic error bound of the estima-
tor for the generic observation model, as stated in Theo-
rem 3.4. In particular, our results implies that matrix com-
pletion via nonconvex penalty achieves a faster statistical
convergence rate than the convex penalty, by taking advan-
tage of large singular values.
Theorem 3.4 (Deterministic Bound for General Singu-
lar Values). Under Assumption 3.1, suppose that b� =

b⇥ � ⇥⇤ 2 C and the nonconvex penalty P�(⇥) =

Pm
i=1

p�
�

�i(⇥)

�

satisfies Assumption 3.3. Under the con-
dition that (X) > ⇣�, for any optimal solution b⇥ of (2.2)
with regularity parameter � � 2kX⇤

(✏)k
2

/n, it holds that,
for r

1

= |S
1

|, r
2

= |S
2

|,

k b⇥�⇥⇤kF  ⌧
p
r
1

(X)� ⇣�
| {z }

S1:�⇤
i �⌫

+

3�
p
r
2

(X)� ⇣�
| {z }

S2:⌫>�⇤
i >0

, (3.1)

where ⌧ =

�

�⇧FS1

�rLn(⇥
⇤
)

�

�

�

2

, where FS1 is a sub-
space of F associated with S

1

.

It is important to note that the upper bound on the Frobe-
nius norm-based estimation error includes two parts cor-
responding to different magnitudes of the singular values
of the true matrix, i.e., �⇤

i : (i) S
1

corresponds to the set
of singular values with larger magnitudes; and (ii) S

2

cor-
responds to the set of singular values with smaller magni-
tudes. By setting ⇣� = (X)/2, we have

k b⇥�⇥⇤kF  2⌧
p
r
1

/(X) + 6�
p
r
2

/(X).

We can see that provided that r
1

> 0, the rate of the
proposed estimator is faster than the nuclear norm based
one, i.e, O��pr/(X)�(Negahban & Wainwright, 2011),
in light of the fact that ⌧ =

�

�⇧FS1

�rLn(⇥
⇤
)

�

�

�

2

is order
of magnitude smaller than

�

�rLn(⇥
⇤
)

�

�

2

= �. This would
be demonstrated in more detail for specific examples, i.e.,
matrix completion and matrix sensing, in Section 3.2. In
particular, if �⇤

r � ⌫, meaning that all the nonzero singular
values are larger than ⌫, the proposed estimator attains the
best-case convergence rate of 2⌧

p
r/(X).

In Theorem 3.4, we have shown that the convergence rate
of nonconvex penalty based estimator is faster than the nu-

clear norm based one. In the following, we show that un-
der certain assumptions on the magnitudes of the singular
values, the estimator in (2.2) enjoys the oracle properties,
namely, the obtained M-estimator performs as well as if
the underlying model were known beforehand. Before pre-
senting the results on the oracle property, we first formally
introduce the oracle estimator,

b⇥O = argmin

⇥2F(U⇤,V⇤
)

Ln(⇥). (3.2)

Remark that the objective function in (3.2) only includes
the empirical loss term because the optimization program
is constrained in the rank-r subspace F(U⇤,V⇤

). Since
it is impossible to get U⇤,V⇤ and the rank r in practice,
i.e., F(U⇤,V⇤

) is unknown, the oracle estimator defined
above is not a practical estimator. We analyze the esti-
mator in (2.2) when (X) > ⇣�, under which condition
eLn,�(⇥) = Ln(⇥) + P�(⇥) is strongly convex over the
restricted set C and b⇥ is the unique global optimal solu-
tion for the optimization problem. Moreover, the following
theorem shows that under suitable conditions, the estimator
in (2.2) is identical to the oracle estimator.

Theorem 3.5 (Oracle Property). Under Assumption 3.1
and 3.2, suppose that b� =

b⇥ � ⇥⇤ 2 C and P�(⇥) =

Pr
i=1

p�(�i(⇥)) satisfies regularity condition (i), (ii), (iii)
in Assumption 3.3. If (X) > ⇣� and �⇤ satisfies the con-
dition that

min

i2S

�

�

(�⇤
)i

�

� � ⌫ + 2

p
rkX⇤

(✏)k
2

n(X)
, (3.3)

where S = supp(�⇤
). For the estimator in (2.2) with

choice of regularization parameter � � 2n�1

�

�X⇤
(✏)

�

�

2

+

2n�1

p
r⇢(X)

�

�X⇤
(✏)

�

�

2

/(X), we have that b⇥ =

b⇥O, in-
dicating rank( b⇥) = rank( b⇥O) = rank(⇥⇤

) = r. More-
over, we have,

k b⇥�⇥⇤kF  2

p
r⌧/(X), (3.4)

where ⌧ =

�

�

⇧F
�rLn(⇥

⇤
)

�

�

�

2

.

Theorem 3.5 implies that, with a suitable choice of reg-
ularization parameter �, if the magnitude of the smallest
nonzero singular value is sufficiently large, i.e., satisfy-
ing (3.3), the proposed estimator in (2.2) is identical to the
oracle estimator. This is a very strong result because we do
not even know the subspace F . The direct consequence is
that the M-estimator exactly recovers the rank of the true
matrix, ⇥⇤. Moreover, as Theorem 3.5 is a specific case
of Theorem 3.4 with r

1

= r, we immediately have that the
convergence rate in Theorem 3.5 corresponds to the best-
case convergence rate in (3.1), which is identical to the sta-
tistical rate of the oracle estimator.
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3.2. Results for Specific Examples

The deterministic results in Theorem 3.4 and Theorem 3.5
are fairly abstract in nature. In what follows, we consider
the two specific examples of low-rank matrix estimation
as in Section 2.2, and show how the results obtained so
far yield concrete and interpretable results. More impor-
tantly, we rigorously demonstrate the improvement of the
proposed estimator on statistical convergence rate over the
traditional one with nuclear norm penalty. More results on
oracle property can be found in Appendix, Section E.

3.2.1. MATRIX COMPLETION

We first analyze the example of matrix completion, as dis-
cussed earlier in Example 2.1. It is worth noting that under
a suitable condition on spikiness ratio1, we can establish the
restricted strongly convexity, as stated in Assumption 3.1.
Corollary 3.6. Suppose that b� =

b⇥�⇥⇤ 2 C, the non-
convex penalty P�(⇥) satisfies Assumption 3.3, and ⇥⇤

satisfies spikiness assumption, i.e., k⇥⇤k1  ↵⇤, then for
any optimal solution b⇥ to the slight modification of (2.2),
i.e.,

b⇥ = argmin

⇥2Rm1⇥m2

1

2n

�

�y � X(⇥)

�

�

2

2

+ P�(⇥),

subject to k⇥k1  ↵⇤,

there are universal constants C
1

, . . . , C
5

, with regu-
larity parameter � � C

3

�
p

logM/(nm) and  =

C
4

/(m
1

m
2

) > ⇣�, it holds with probability at least
1� C

5

/M that

1p
m

1

m
2

k b⇥�⇥⇤kF

 max{↵⇤,�}


C
1

r
1

r

logM

n
+ C

2

r

r
2

M logM

n

�

.

Remark 3.7. Corollary 3.6 is a direct result of Theo-
rem 3.4. Recall the convergence rate2 of matrix comple-
tion with nuclear norm penalty due to Koltchinskii et al.
(2011a); Gunasekar et al. (2014), which is as follows

k b⇥�⇥⇤kFp
m

1

m
2

= O
✓

max{↵⇤,�}
r

rM logM

n

◆

. (3.5)

It is evident that if r
1

> 0, i.e., we have r
1

singular val-
ues that are larger than ⌫, the convergence rate obtained by
a nonconvex penalty is faster than the one obtained with

1It is insufficient to recover the low-rank matrices due to its in-
feasibility of recovering overly “spiky” matrices which has very
few large entries. Additional assumption on spikiness ratio is
needed. Details on spikiness are given in Appendix, Section E.1.

2Similar statistical convergence rate was obtained in Negah-
ban & Wainwright (2012) for nonuniform sampling schema.

the convex penalty. In the worst case, when all the singu-
lar values are smaller than ⌫, our result reduced to (3.5)
with r

2

= r. Meanwhile, if the magnitude of singular
values satisfies the condition that mini2S �

⇤
i � v, i.e.,

r
1

= r (S
1

= S), the convergence rate of our results is
O�pr2 logM/n

�

. In Koltchinskii et al. (2011a); Negah-
ban & Wainwright (2012), the authors proved a minimax
lower bound for matrix completion, which is O(

p

rM/n).
Our result is not contradictory to the minimax lower bound,
because the lower bound is proved for the general class of
low rank matrices, while our result takes advantage of the
large singular values. In other words, we consider a spe-
cific (potentially smaller) class of low rank matrices with
both large and small singular values.

3.2.2. MATRIX SENSING WITH DEPENDENT SAMPLING

In the example of matrix sensing, a more general model
with dependence among the entries of Xi is considered.
Denote vec(Xi) 2 Rm1m2 as the vectorization of Xi. For
a symmetric positive definite matrix ⌃ 2 Rm1m2⇥m1m2 ,
it is called ⌃-Ensemble (Negahban & Wainwright, 2011)
if the elements of observation matrices Xi’s are sam-
pled from vec(Xi) ⇠ N(0,⌃). Define ⇡2

(⌃) =

supkuk2=1,kvk2=1

Var(u>Xv), where X 2 Rm1⇥m2 is
a random matrix sampled from the ⌃-Ensemble. Specif-
ically, when ⌃ = I, it can be verified that ⇡(I) = 1, cor-
responding to the classical matrix sensing model where the
entries of Xi are independent from each other.
Corollary 3.8. Suppose that b� =

b⇥ � ⇥⇤ 2 C and the
nonconvex penalty P�(⇥) satisfies Assumption 3.3, if the
random design matrix Xi 2 Rm1⇥m2 is sampled from
the ⌃-ensemble and �

min

(⌃) is the minimal eigenvalue
of ⌃, there are universal constants C

1

, . . . , C
6

, such that,
if (X) = C

3

�
min

(⌃) > ⇣� for any optimal solution b⇥
of (2.2) with � � C

4

�⇡(⌃)

�

p

m
1

/n+

p

m
2

/n
�

, it holds
with probability at least 1�C

5

exp

��C
6

(m
1

+m
2

)

�

that

k b⇥�⇥⇤kF  �⇡(⌃)

�
min

(⌃)

p
n

⇥

C
1

r
1

+ C
2

p

r
2

M
⇤

.

Remark 3.9. Similarly, Corollary 3.8 is a direct conse-
quence of Theorem 3.4. The problem has been studied
by (Negahban & Wainwright, 2011) via convex relaxation,
with the following estimator error bound

k b⇥�⇥⇤kF = O
✓

�⇡(⌃)

p
r
2

M

�
min

(⌃)

p
n

◆

. (3.6)

When there are r
1

> 0 singular values that are larger than
⌫, the result obtained in Corollary 3.8 implies that the con-
vergence rate of the proposed estimator is faster than (3.6).
When r

1

= r, we obtain the best-case convergence rate of
k b⇥ �⇥⇤kF = O��⇡(⌃)r/(

p
n�

min

(⌃))

�

. In the worst
case, when r

1

= 0 and r
2

= r, the results in Corollary 3.8
reduce to (3.6).
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Figure 1. Simulation Results for Matrix Completion and Matrix Sensing with SCAD penalty. The size of matrix is m⇥m. Figure 1(a)-
1(c) correspond to matrix completion, with the rank r = blog2 mc, where the rescaled sample size is N = n/(rm logm). Figure 1(d)-
1(f) correspond to matrix sensing, with the rank r = 10, where the rescaled sample size is N = n/(rm).

4. Numerical Experiments
In this section, we study the performance of the pro-

posed estimator by various simulations and numerical ex-
periments on real-word datasets. It it worth noting that
we study the proposed estimator with ⇣� < (X), which
can be attained by setting b = 1 + 2/(X) for the SCAD
penalty. Similarly, the parameter for MCP penalty can be
set that b = 2/(X).

4.1. Simulations

The simulation results demonstrate the close agreement be-
tween theoretical upper bound and the numerical behavior
of the M-estimator. Simulations are performed for both
matrix completion and matrix sensing. In both cases, we
solved instances of optimization problem (2.2) for a square
matrix ⇥⇤ 2 Rm⇥m. For ⇥⇤ with rank r, we generate
⇥⇤

= ABC>, where A,C 2 Rm⇥m are the left and right
singular vectors of a random matrix, and set B to be a di-
agonal matrix with r nonzero entries, and the magnitude of
each nonzero entries is above ⌫ = �b, i.e., r

1

= r. The
regularization parameter � is chosen based on theoretical
results with �2 assumed to be known.

In the following, we report detailed results on the estima-
tion errors of the obtained estimators and the probability
of exactly recovering the true rank (oracle property). Due
to space limitation, we include the simulation results using

MCP in the appendix.

Matrix Completion. We study the performance of es-
timators with both convex and nonconvex penalties for
m 2 {40, 60, 80}, and the rank r = blog2 mc. Xi’s are
uniformed sampled over X , with the variance of observa-
tion noise �2

= 0.25. For every configuration, we repeat
100 trials and compute the averaged mean squared Frobe-
nius norm error k b⇥�⇥⇤k2F /m2 over all trials.

Figure 1(a)-1(c) summarize the results for matrix com-
pletion. Particularly, Figure 1(a) plots the mean-squared
Frobenius norm error versus the raw sample size, which
shows the consistency that estimation error decreases when
sample size increases, while Figure 1(b) plots the MSE
against the rescaled sample size N = n/(rm logm). It
is clearly shown in Figure 1(b) that, in terms of estimation
error, the proposed estimator with SCAD penalty outper-
forms the one with nuclear norm, which aligns with our
theoretical analysis. Finally, the probability of exactly re-
covering the rank of underlying matrix is plotted in Fig-
ure 1(c), which indicates that with high probability the rank
of underlying matrix can be exactly recovered.

Matrix Sensing. For matrix sensing, we set the rank r =

10 for all m 2 {20, 40, 80}. ⇥⇤ is generated similarly as in
matrix completion. We set the observation noise variance
�2

= 1 and ⌃ = I, i.e., the entries of Xi are independent.
Each setting is repeated for 100 times.
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Table 1. Results on image recovery in terms of RMSE (⇥10

�2, mean ± std).
IMAGE SVP SOFTIMPUTE ALTMIN TNC R1MP NUCLEAR SCAD MCP

LENNA 3.84 ± 0.02 4.58 ± 0.02 4.43 ± 0.11 5.49 ± 0.62 3.91 ± 0.03 5.05 ± 0.17 2.79 ± 0.02 2.81 ± 0.04
BARBARA 4.49 ± 0.04 5.23 ± 0.03 5.05 ± 0.05 6.57 ± 0.92 4.71 ± 0.06 6.48 ± 0.53 4.74 ± 0.02 4.73 ± 0.03

CLOWN 3.75 ± 0.03 4.43 ± 0.05 5.44 ± 0.41 6.92 ± 1.89 3.89 ± 0.05 3.70 ± 0.24 2.77 ± 0.01 2.81 ± 0.01
CROWD 4.49 ± 0.04 5.35 ± 0.07 4.78 ± 0.09 7.44 ± 1.23 4.88 ± 0.06 4.44 ± 0.18 3.64 ± 0.07 3.68 ± 0.09

GIRL 3.35 ± 0.03 4.12 ± 0.03 5.01 ± 0.66 4.51 ± 0.52 3.06 ± 0.02 4.77 ± 0.34 2.06 ± 0.01 2.05 ± 0.02
MAN 4.42 ± 0.04 5.17 ± 0.03 5.17 ± 0.17 6.01 ± 0.62 4.61 ± 0.03 5.44 ± 0.45 3.42 ± 0.04 3.40 ± 0.02

Table 2. Recommendation results measured in term of the averaged RMSE.
DATASET SVP SOFTIMPUTE ALTMIN TNC R1MP NUCLEAR SCAD MCP

JESTER1 4.7318 5.1211 4.8562 4.4803 4.3401 4.6910 4.1721 4.1719
JESTER2 4.7712 5.1523 4.8712 4.4511 4.3721 4.5597 4.2002 4.1987
JESTER3 8.7439 5.4532 9.5230 4.6712 4.9803 5.1231 4.6729 4.6740

Figure 1(d)-1(f) correspond to results of matrix sensing.
The Frobenius norm k b⇥ �⇥⇤kF is reported in log scale.
Figure 1(d) demonstrate how the estimation errors scale
with m and n, which aligns well with our theoretical find-
ings. Also, as observed in Figure 1(e), the estimator with
SCAD penalty has lower error bounds compared with the
one of nuclear norm penalty. At last, it shows in Figure 1(f)
that, empirically, the underlying rank is perfectly recovered
by the nonconvex estimator when n is sufficiently large
(n � 3rm).

4.2. Experiments on Real World Datasets

In this section, we apply our proposed matrix comple-
tion estimator to two real-world applications, image in-
painting and collaborative filtering, and compare it with
some existing methods, including singular value projec-
tion (SVP) (Jain et al., 2010), Trace Norm Constraint
(TNC) (Jaggi & Sulovský, 2010), alternating minimization
(AltMin) (Jain et al., 2013), spectral regularization algo-
rithm (SoftImpute) (Mazumder et al., 2010), rank-one ma-
trix pursuit (R1MP) (Wang et al., 2014), and nuclear norm
penalty (Negahban & Wainwright, 2011).

Image Inpainting We select 6 images 3 to test the perfor-
mance of different algorithms. The matrices corresponding
to selected images are of the size 512 ⇥ 512. We project
the underlying matrices into the corresponding subspaces
associated with the top r = 200 singular values of each
matrix, by which we can guarantee that the problem being
solved is a low-rank one. In addition, we randomly select
50% of the entries as observations. Each trial is repeated 10
times. The performance is measured by root mean square
error (RMSE) (Jaggi & Sulovský, 2010; Shalev-Shwartz
et al., 2011), summarized in Table 1. As shown in Ta-
ble 1, the estimators obtained with nonconvex penalties,
including SCAD penalty and MCP, achieve the best perfor-
mance, and significantly outperform the other algorithms
on all pictures, except for Barbara. It is worth noting that
due to the similar properties of MCP and SCAD, the re-

3The images can be downloaded from http://www.

utdallas.edu/

˜

cxc123730/mh_bcs_spl.html.

sults of SCAD and MCP are comparable. Moreover, the
estimators with nonconvex penalties have smaller RMSE
for all pictures, compared with the nuclear norm based es-
timator, which backs up our theoretical analysis, and the
improvement is significant compared with some specific al-
gorithms.

Collaborative Filtering Considering the matrix comple-
tion algorithms for recommendations, we demonstrate us-
ing three datasets: Jester14, Jester2 and Jester3, which con-
tain rating data of users on jokes, with real-valued rating
scores ranging from �10.0 to 10.0. The sizes of these ma-
trices are {24983, 23500, 24983} ⇥ 100, containing 10

6,
10

6, 6⇥10

5 ratings, respectively. We randomly select 50%
of the ratings as observations, and make predictions over
the remaining 50%. Each run is repeated for 10 times. Ac-
cording to the numerical results summarized in Table 2,
we observe that the proposed estimators (SCAD, MCP)
have the best performance among all existing algorithms.
In particular, the estimator with nonconvex penalties (i.e.,
MCP, SCAD) is better than the estimator with nuclear norm
penalty, which agrees well with the results obtained. Com-
parable results of MCP and SCAD are observed.

5. Conclusions
In this paper, we proposed a unified framework for

low-rank matrix estimation with nonconvex penalty for a
generic observation model. Our work serves as the bridge
to connect practical applications of nonconvex penalty and
theoretical analysis. Our theoretical results indicate that
the convergence rate of estimators with nonconvex penal-
ties is faster than the one with the convex penalty by tak-
ing advantage of the large singular values. In addition, we
showed that the proposed estimator enjoys the oracle prop-
erty when a mild condition on the magnitude of singular
values is imposed. Extensive experiments demonstrate the
close agreement between theoretical analysis and numeri-
cal behavior of the proposed estimator.

4The Jester dataset can be downloaded from http://

eigentaste.berkeley.edu/dataset/.
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