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Learning Privately from Multiparty Data:
Supplementary Material

A. Proofs
A.1. Proof of Theorem 1

Theorem 1: The perturbed output wp = ws + η from Algo-
rithm 1 with p(η) ∝ e−λε2 ‖η‖ is ε-differentially private.

Proof. We will compute the sensitivity of the minimizer
ws of the regularized empirical risk with majority-voted
labels (8). Suppose D = (S(1), ..., S(M)) is the or-
dered set of private training data (5) for M parties, and
D′ = ((S′)(1), ..., S(M)) is a neighboring set which dif-
fers from D only at party 1’s data, without loss of gener-
ality. The local classifiers after training with D and D′ are
H = (h1, ..., hM ) and H ′ = (h′1, ..., hM ), respectively,
which are again different only for classifier 1. The majority
votes v(x) and v′(x) from D and D′ generates two auxil-
iary training sets S = {(xi, v(xi))} and S′ = {(xi, v′(xi)}
which have the same features but possibly different labels.

Let RλS(w) and RλS′(w) be the regularized empirical risks
for training sets S and S′, and let ws and ws′ be the min-
imizers of the respective risks. From Corollaries 7 and 8
(Chaudhuri et al., 2011), the L2 difference of ws and ws′ is
bounded by

‖ws − ws′‖ ≤
1

λ
max
w
‖∇g(w)‖, (26)

where g(w) is the risk difference RλS(w)−RλS′(w), which,
in our case, satisfies

‖∇g(w)‖ ≤ 1

N

N∑
i=1

‖v(xi)xil
′(v(xi)w

Txi)

−v′(xi)xil′(v′(xi)wTxi)‖.

≤ 1

N

N∑
i=1

‖xi‖ ×

|l′(wTxi) + l′(−wTxi)|. (27)

Recall that ‖x‖ ≤ 1 and |l′(·)| ≤ 1 by assumption. In
the worst case, v(xi) 6= v′(xi) for all i = 1, ..., N , and
therefore the RHS of (27) is bounded by 2. Consequently,
the L2 sensitivity of the minimizer ws is

max
S,S′
‖ws − ws′‖ ≤

2

λ
. (28)

ε-differential privacy follows from the sensitivity result (3).

A.2. Proof of Theorem 3

Theorem 3: The perturbed output wp = ws + η from Algo-
rithm 2 with p(η) ∝ e−Mλε2 ‖η‖ is ε-differentially private.

Proof. The proof parallels the proof of Theorem 1. We
again assume D = (S(1), ..., S(M)) is the ordered set
of private training data (5) for M parties, and D′ =
((S′)(1), ..., S(M)) is a neighboring set which differs from
D only at party 1’s data, without loss of generality. Let
S = {(xi, αi)} and S′ = {(xi, α′i)} be the two result-
ing datasets which have the same the features but possibly
different α’s. We first compute the sensitivity of the mini-
mizer of the weighted regularized empirical risk (19). Let
RλS(w) and RλS′(w) be the regularized empirical risks for
training sets S and S′, and let ws and ws′ be the minimiz-
ers of the respective risks. Also let g(w) be the difference
RλS(w)−RλS′(w) of two risks

g(w) =
1

N

N∑
i=1

[αil(w
Txi) + (1− αi)l(−wTxi)

−α′il(wTxi)− (1− α′i)l(−wTxi)]. (29)

The gradient of g(w) is bounded by

‖∇g(w)‖ ≤ 1

N

N∑
i=1

[|αi − α′i|‖xi‖|l′(wTxi)|

+|αi − α′i|‖xi‖|l′(−wTxi)|] (30)

≤ 1

N

N∑
i=1

2|αi − α′i|. (31)

In the worst case, αi 6= α′i for all i = 1, ..., N . Since αi
is the fraction of positive votes, |αi − α′i| ≤ 1/M holds
for all i = 1, ..., N . Therefore the L2 sensitivity of the
minimizer ws is at most 2

λM and the ε-differential privacy
follows.

A.3. Lemma 5

We use the following lemma.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Title Suppressed Due to Excessive Size

Lemma 5 (Lemma 17 of (Chaudhuri et al., 2011)). If X ∼
Γ(k, θ), where k is an integer, then with probability of at
least 1− δ,

X ≤ kθ log(k/δ).

A.4. Lemma 6

Lemma 6. If ws is the minimizer of (19) and wp is the ε-
differentially private version from Algorithm 2, then with
probability of at least 1− δp over the privacy mechanism,

RλS(wp) ≤ RλS(ws) +
2d2(c+ λ) log2(d/δ)

λ2M2ε2
(32)

Proof. A differentiable function f : Rd → R is called β-
smooth, if ∃β > 0 such that ‖∇f(v)−∇f(u)‖ ≤ β‖v−u‖
for all u, v. From the Mean Value Theorem, such a function
satisfies

f(v) ≤ f(u) +∇T f(u)(v − u) +
β

2
‖v − u‖2, ∀u, v.

Since |l′(·)| is c-Lipschitz, RλS(w) is (c+ λ)-smooth:

‖∇RλS(v)−∇RλS(u)‖

≤ 1

N

∑
i

∥∥αixil′(vTxi)− (1− αi)xil′(−vTxi)

−αixil′(uTxi) + (1− αi)xil′(−uTxi)
∥∥

+λ‖v − u‖

≤ 1

N

∑
i

[
αic‖(v − u)Txi‖+

(1− αi)c‖(u− v)Txi‖
]

+ λ‖v − u‖
≤ (c+ λ)‖u− v‖. (33)

By setting v = wp and u = ws and using the (c + λ)-
smoothness of RλS(w), we have

RλS(wp) ≤ RλS(ws) +∇TRλS(ws)(wp − ws)

+
(c+ λ)

2
‖wp − w∗s‖2

= RλS(ws) +
(c+ λ)

2
‖wp − ws‖2. (34)

Since

P

(
‖wp − w∗s‖ ≤

2d log(d/δ)

λMε

)
≥ 1− δp (35)

from Lemma 5 with k = d and θ = 2
λMε , we have the

desired result.

A.5. Proof of Theorem 4

Theorem 4: Let w0 be any reference hypothesis. Then with
probability of at least 1− δp − δs over the privacy mecha-
nism (δp) and over the choice of samples (δs),

R(wp) ≤ R(w0) +
4d2(c+ λ) log2(d/δp)

λ2M2ε2

+
16(32 + log(1/δs))

λN
+
λ

2
‖w0‖2. (36)

Proof. Let ws and w∗ be the minimizers of the regularized
empirical risk RλS and Rλ, respectively. The risk at wp
relative to a reference classifier w0 can be written as

R(wp)−R(w0) = Rλ(wp)−Rλ(w∗)

+Rλ(w∗)−Rλ(w0)

+
λ

2
‖w0‖2 −

λ

2
‖wp‖2

≤ Rλ(wp)−Rλ(w∗) +
λ

2
‖w0‖2.

(37)

The inequality above follows from Rλ(w∗) ≤ Rλ(w0) by
definition. Note that since ‖x‖ ≤ 1 and |l′| ≤ 1 by assump-
tion, the weighted loss α(x)l(wTx) + (1 − α(x))l(wTx)
is 1-Lipschitz in w. From Theorem 1 of (Sridharan et al.,
2009) with a = 1, we can also bound Rλ(wp) − Rλ(w∗)
as

Rλ(wp)−Rλ(w∗) ≤ 2(RλS(wp)−RλS(w∗s))

+
16(32 + log(1/δs))

λN
(38)

with probability of 1 − δs over the choice of samples. By
combining this inequality with Lemma 6 using the union
bound, we have

Rλ(wp)−Rλ(w∗) ≤ 4d2(c+ λ) log2(d/δp)

λ2M2ε2

+
16(32 + log(1/δs))

λN
. (39)

The theorem follows from (37).

B. Differentially private multiclass logistic
regression

We extend our methods to multiclass classification prob-
lems and provide a sketch of ε-differential privacy proofs
for multiclass logistic regression loss.
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B.1. Standard ERM

Suppose y ∈ 1, ...,K, and let w = [w1; ... ;wK ] be a
stacked (d K)× 1 vector. The multiclass logistic loss (i.e.
softmax) is

l(h(x), y) = −wTy x+ log(
∑
l

ew
T
l x), (40)

and the regularized empirical risk is

RλS(w) = − 1

N

∑
i

[wTyixi − log(
∑
l

ew
T
l xi)] +

λ

2
‖w‖2.

(41)
Note that RλS(w) is λ-strongly convex in w.

The sensitivity of ws which minimizes (41) can be com-
puted as follows. Suppose S and S′ are two differ-
ent datasets which are not necessarily neighbors: S =
{(xi, yi))} and S′ = {(x′i, y′i)}. Let g(w) be the differ-
ence RλS(w) − RλS′(w) of the two risks. Then the partial
gradient w.r.t. wk is

∇wkRλS(w) = − 1

N

∑
i

xi∆k(xi, yi, w) + λwk, (42)

where

∆k(xi, yi, w) = I[yi = k]− ew
T
k xi∑

l e
wTl xi

= I[yi = k]−Pk(xi).

(43)
Since I[yi = k] can be non-zero (i.e. 1) for only one k, and∑
k Pk(xi) = 1 with 0 ≤ Pk(xi) ≤ 1, we have∑
k

∆2
k =

∑
k

(Ik − Pk)2 ≤
∑
k

(I2k + P 2
k ) ≤ 2, (44)

Let ∆(xi, yi, w) = [∆1(xi, yi, w), ...,∆K(xi, yi, w)] be a
K×1 vector (which depends on xi, yi, w.) The gradient of
the risk difference g(w) is then

∇g(w) = − 1

N

∑
i

∆(xi, yi, w)⊗ xi−∆(x′i, y
′
i, w)⊗ x′i,

(45)
where ⊗ is a Kronecker product of two vectors. Note that

‖∆⊗x‖2 =
∑
k

‖∆kx‖2 ≤ ‖x‖2
∑
k

∆2
k ≤ 2‖x‖2. (46)

Without loss of generality, we assume that only (x1, y1)
and (x′1, y

′
1) are possibly different and (xi, yi) = (x′i, y

′
i)

for all i = 2, ..., N . In this case we have

‖∇g(w)‖ ≤ 1

N
‖∆(x1, y1, w)⊗ x1‖

+
1

N
‖∆(x′1, y

′
1, w)⊗ x′1‖

≤
√

2

N
(‖x1‖+ ‖x′1‖) ≤

2
√

2

N
, (47)

and the therefore the L2 sensitive of the minimizer of a
multiclass logistic regression is

2
√

2

Nλ
(48)

from Corollaries 7 and 8 (Chaudhuri et al., 2011). Note that
the sensitivity does not depend on the number of classesK.

B.2. Majority-voted ERM

Let S = {(xi, vi)} and S′ = {(xi, v′i)} be two datasets
with the same features but with possibly different labels
for all i = 1, ..., N . Then the partial gradient of the risk
difference g(w) is

∇wkg(w) = − 1

N

∑
i

xi[I[vi = k]− I[v′i = k]]

= − 1

N

∑
i

xiak(vi, v
′
i), (49)

where ak(vi, v
′
i) is

ak(vi, v
′
i) = I[vi = k]− I[v′i = k] ∈ {−1, 0, 1}. (50)

Let a = [a1, ..., aK ] be a K × 1 vector (which depends
on vi, v

′
i.) Note that at most two elements of a can be

nonzero (i.e. ±1.) The gradient can be rewritten using the
Kronecker product ⊗ as

∇g(w) = − 1

N

∑
i

a(vi, v
′
i)⊗ xi, (51)

and its norm is bounded by

‖∇g(w)‖ ≤ 1

N

∑
i

√
2‖xi‖ ≤

√
2. (52)

Therefore the L2 sensitivity of the minimizer of majority-
labeled multiclass logistic regression is

√
2

λ
. (53)

B.3. Weighted ERM

A natural multiclass extension of the weighted loss (14) is

lα(w) =
∑
k

αk(x)l(wTk x), (54)

where αk(x) is the unbiased estimate of the probability
P (v = k|x). The corresponding weighted regularized em-
pirical risk is

RλS(w) =
1

N

∑
i

∑
k

αk(xi)l(w
T
k x) +

λ

2
‖w‖2
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=
1

N

∑
i

∑
k

αk(xi)[log(
∑
l

ew
T
l xi)− wTk xi]

+
λ

2
‖w‖2

= − 1

N

∑
i

[
∑
k

αk(xi)w
T
k xi − log(

∑
l

ew
T
l xi)]

+
λ

2
‖w‖2, (55)

and its partial gradient is

∇wkRλS(w) = − 1

N

∑
i

xi

[
αk(xi)−

ew
T
k xi∑

l e
wTl xi

]
+ λwk.

(56)

Let S = {(xi, αi)} and S′ = {(xi, α′i)} be two datasets
with the same features but with possibly different labels
for all i = 1, ..., N . Then the partial gradient of the risk
difference g(w) is

∇wkg(w) = − 1

N

∑
i

xi[α
k(xi)− (α′)k(xi)]

= − 1

N

∑
i

xibk(αki , (α
′)ki ), (57)

where bk(αki , (α
′)ki ) = αk(xi) − (α′)k(xi). Let b =

[b1, ..., bK ] be aK×1 vector (which depends αi, α′i.) Note
that at most two elements of b can be nonzero (i.e.,±1/M .)
The gradient can then be rewritten as

∇g(w) = − 1

N

∑
i

b(αi, α
′
i)⊗ xi, (58)

and its norm is bounded by

‖∇g(w)‖ ≤ 1

N

∑
i

√
2

M
‖xi‖ ≤

√
2

M
. (59)

Therefore the L2 sensitivity of the minimizer of the
weighted multiclass logistic regression is

√
2

Mλ
. (60)

B.4. Parameter averaging

For the purposes of comparison, we also derive the sensi-
tivity of parameter averaging (Pathak et al., 2010) for mul-
ticlass logistic regression. Let the two neighboring datasets
be W = (w1, w2, ..., wM ) and W ′ = (w′1, w

′
2, ..., w

′
M ),

which are collections of parameters from M parties. The
corresponding averages for the two sets are w̄ = 1

M

∑
i wi

and w̄′ = 1
M

∑
i w
′
i. Without loss of generality, we as-

sume the parameters w1 and w′1 differ only for party 1 and
wi = w′i for others i = 2, ...,M . Since ‖w̄ − w̄′‖ =

1
M ‖w1−w′1‖, the L2 sensitivity is 1/M times the sensitiv-
ity of the minimizer of the minimizer of a single classifier,
when all training samples of party 1 are allowed to change.
Therefore the L2 sensitivity of the average parameters for
multiclass logistic regression is 2

√
2

Mλ .
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