Learning Privately from Multiparty Data:
Supplementary Material

A. Proofs
A.1. Proof of Theorem 1

Theorem 1: The perturbed output w, = ws + 1 from Algo-
rithm 1 with p(n) o< e~ = 11l is e-differentially private.

Proof. We will compute the sensitivity of the minimizer
w, of the regularized empirical risk with majority-voted
labels (8). Suppose D = (SM, ..., SM)) is the or-
dered set of private training data (5) for M parties, and
D' = ((8")W,...,SM)) is a neighboring set which dif-
fers from D only at party 1’s data, without loss of gener-
ality. The local classifiers after training with D and D’ are
H = (hy,...,hpy) and H' = (h,..., har), respectively,
which are again different only for classifier 1. The majority
votes v(x) and v'(x) from D and D’ generates two auxil-
iary training sets S = {(z;, v(x;))} and S’ = {(a;,v'(x;)}
which have the same features but possibly different labels.

Let R (w) and R3, (w) be the regularized empirical risks
for training sets S and S’, and let w, and wg be the min-
imizers of the respective risks. From Corollaries 7 and 8
(Chaudhuri et al., 2011), the Lo difference of w, and wy/ is
bounded by
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where g(w) is the risk difference R%(w) — R, (w), which,
in our case, satisfies
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Recall that ||z]] < 1 and |I’(-)] < 1 by assumption. In
the worst case, v(x;) # v'(x;) forall ¢ = 1,..., N, and
therefore the RHS of (27) is bounded by 2. Consequently,
the Lo sensitivity of the minimizer wy is

2
s — Wg/ <. 28
rgg%lIw wyll < 5 (28)

e-differential privacy follows from the sensitivity result (3).
O

A.2. Proof of Theorem 3

Theorem 3: The perturbed output w, = ws + 1 from Algo-

rithm 2 with p(n) x e 2=l js e-differentially private.
Proof. The proof parallels the proof of Theorem 1. We
again assume D = (SM, ..., S(M)) is the ordered set
of private training data (5) for M parties, and D' =
((S"M, ..., SM) is a neighboring set which differs from
D only at party 1’s data, without loss of generality. Let
S = {(z;,;)} and 8" = {(z;,0a})} be the two result-
ing datasets which have the same the features but possibly
different o’s. We first compute the sensitivity of the mini-
mizer of the weighted regularized empirical risk (19). Let
R3(w) and R, (w) be the regularized empirical risks for
training sets S and S’, and let w, and w, be the minimiz-
ers of the respective risks. Also let g(w) be the difference
R3(w) — Ry, (w) of two risks
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The gradient of g(w) is bounded by
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In the worst case, o; # o forall i = 1,..., N. Since «;
is the fraction of positive votes, |«o; — o} < 1/M holds
for all ¢ = 1,...,N. Therefore the Ly sensitivity of the
minimizer wy is at most ﬁ and the e-differential privacy
follows. O

A.3. Lemma 5

We use the following lemma.
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Lemma S (Lemma 17 of (Chaudhuri et al., 2011)). If X ~
T'(k, ), where k is an integer, then with probability of at
least 1 — 0,

X < kBlog(k/9).

A.4. Lemma 6

Lemma 6. If w, is the minimizer of (19) and wy, is the e-
differentially private version from Algorithm 2, then with
probability of at least 1 — 6,, over the privacy mechanism,

2d%(c 4 \) log®(d/9)

Ry (wp) < Rg(ws) + N2 2e2

(32)

Proof. A differentiable function f : R® — R is called 3-
smooth, if 35 > 0 such that ||V f(v) =V f(u)|| < Bllv—u]|
for all u, v. From the Mean Value Theorem, such a function
satisfies
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Since |I'(+)] is c-Lipschitz, R (w) is (¢ + A)-smooth:
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By setting v = wp, and v = w, and using the (¢ + A)-
smoothness of R} (w), we have

Rg(wp) < Rg‘(u%) + VTRg(wS)(wp — ws)
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Since
. 2dlog(d/9)
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from Lemma 5 with ¥k = d and 0 = ﬁ, we have the
desired result. O

A.5. Proof of Theorem 4

Theorem 4. Let wq be any reference hypothesis. Then with
probability of at least 1 — 6, — 65 over the privacy mecha-
nism (3,) and over the choice of samples (J5),
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Proof. Let ws and w* be the minimizers of the regularized
empirical risk Rg and R*, respectively. The risk at wy,
relative to a reference classifier wg can be written as
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The inequality above follows from R*(w*) < R*(wp) by
definition. Note that since ||z|| < 1and |I'| < 1 by assump-
tion, the weighted loss a(x)l(w”z) + (1 — a(z))l(w”z)
is 1-Lipschitz in w. From Theorem 1 of (Sridharan et al.,
2009) with a = 1, we can also bound R*(w,,) — R*(w*)
as

RMwp) — RMw*) < 2(Rg(wp) — Rg(w}))
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with probability of 1 — J, over the choice of samples. By
combining this inequality with Lemma 6 using the union
bound, we have
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The theorem follows from (37).

B. Differentially private multiclass logistic
regression

We extend our methods to multiclass classification prob-
lems and provide a sketch of e-differential privacy proofs
for multiclass logistic regression loss.
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B.1. Standard ERM

Suppose y € 1,..., K, and let w = [wy; ... ;wk] be a
stacked (d K') x 1 vector. The multiclass logistic loss (i.e.
softmax) is

I(h(z),y) = —wlz+log(d_e"®),  (40)
l

and the regularized empirical risk is

1 'U) €T
R (w) = N w x; — log Ze LTy f||w||2

(41)
Note that R} (w) is A-strongly convex in w.

The sensitivity of ws which minimizes (41) can be com-
puted as follows. Suppose S and S’ are two differ-
ent datasets which are not necessarily neighbors: S =
{(zs,y:))} and S" = {(=},vy})}. Let g(w) be the differ-
ence RY(w) — Ry (w) of the two risks. Then the partial
gradient w.r.t. wy, is

Vi, RS (w ZzzAk i, Yinw) + Awg,  (42)
where
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Since I[y; = k] can be non-zero (i.e. 1) for only one k, and

>k Pr(z;) = 1 with 0 < Py(z;) < 1, we have
DAT=D (k=R <Y R+ P <2, (44)
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Let A(z, yi, w) = [Ar(@s, yi, ),y ooy Axc (24, y;, w)] be a
K x 1 vector (which depends on z;, y;, w.) The gradient of
the risk difference g(w) is then
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where ® is a Kronecker product of two vectors. Note that
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Without loss of generality, we assume that only (z1,¥y1)
and (z},y]) are possibly different and (z;,v;) = (2}, y})
forall+ = 2, ..., N. In this case we have
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and the therefore the Lo sensitive of the minimizer of a
multiclass logistic regression is

2V2
N

from Corollaries 7 and 8 (Chaudhuri et al., 2011). Note that
the sensitivity does not depend on the number of classes K.

(48)

B.2. Majority-voted ERM

Let S = {(z;,v;)} and S" = {(x;,v})} be two datasets
with the same features but with possibly different labels
for all ¢ = 1,..., N. Then the partial gradient of the risk
difference g(w) is
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where ay (v;, v]) is
ap(vi,vi) = Iv; = k] — I'v; = k] € {—1,0,1}. (50)

Let a = [ai,...,ax] be a K x 1 vector (which depends
on v;,v,.) Note that at most two elements of a can be
nonzero (i.e. £1.) The gradient can be rewritten using the
Kronecker product ® as

a(vi, v}) @ x;, (51

and its norm is bounded by

IVg(w)] < —Zﬂlxlll <V2. (52)

Therefore the Ly sensitivity of the minimizer of majority-
labeled multiclass logistic regression is

V2
-~ (53)

B.3. Weighted ERM

A natural multiclass extension of the weighted loss (14) is
=2 o

where o (z) is the unbiased estimate of the probability
P(v = k|z). The corresponding weighted regularized em-
pirical risk is

l(w}lz) (54)
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and its partial gradient is
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Let S = {(z;,;)} and S = {(z;,¢})} be two datasets
with the same features but with possibly different labels

for all t = 1,..., N. Then the partial gradient of the risk
difference g(w) is
Vag) =~ alate) (o))
= Yl @), 6D
i
where by (af, (@)F) = oF(z;) — (o/)F(xi). Let b =

[b1, ..., bi] be a K x 1 vector (which depends «;, o}.) Note
that at most two elements of b can be nonzero (i.e., +1/M.)
The gradient can then be rewritten as

1

Vg(w) = N b(ou, o) @ xi, (58)

and its norm is bounded by
3
IVg(w)|| < = qu <3 69

Therefore the Lo sensitivity of the minimizer of the
weighted multiclass logistic regression is

V2
U (60)

B.4. Parameter averaging

For the purposes of comparison, we also derive the sensi-
tivity of parameter averaging (Pathak et al., 2010) for mul-
ticlass logistic regression. Let the two neighboring datasets
be W = (w1, ws,...,wp) and W' = (wi,wh, ..., wh,),
which are collections of parameters from M parties. The
corresponding averages for the two sets are w = ﬁ Do wi
and W' = 4 >, wl. Without loss of generality, we as-
sume the parameters w; and w} differ only for party 1 and
w; = w; for others ¢ = 2,..., M. Since |0 — @'| =

1

a7 llwr —w
ity of the minimizer of the minimizer of a single classifier,
when all training samples of party 1 are allowed to change.

Therefore the Lo sensitivity of the average parameters for

242
multiclass logistic regression is .
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