Train faster, generalize better: Stability of stochastic gradient descent

Moritz Hardt
Benjamin Recht
Yoram Singer

Abstract

We show that parametric models trained by a
stochastic gradient method (SGM) with few it-
erations have vanishing generalization error. We
prove our results by arguing that SGM is algo-
rithmically stable in the sense of Bousquet and
Elisseeff. Our analysis only employs elemen-
tary tools from convex and continuous optimiza-
tion. We derive stability bounds for both con-
vex and non-convex optimization under standard
Lipschitz and smoothness assumptions.

Applying our results to the convex case, we pro-
vide new insights for why multiple epochs of
stochastic gradient methods generalize well in
practice. In the non-convex case, we give a
new interpretation of common practices in neural
networks, and formally show that popular tech-
niques for training large deep models are indeed
stability-promoting. Our findings conceptually
underscore the importance of reducing training
time beyond its obvious benefit.

1. Introduction

The most widely used optimization method in machine
learning practice is stochastic gradient method (SGM).
Stochastic gradient methods aim to minimize the empiri-
cal risk of a model by repeatedly computing the gradient of
a loss function on a single training example, or a batch of
few examples, and updating the model parameters accord-
ingly. SGM is scalable, robust, and performs well across
many different domains ranging from smooth and strongly
convex problems to complex non-convex objectives.

In a nutshell, our results establish that: Any model trained
with stochastic gradient method in a reasonable amount of
time attains small generalization error.

As training time is inevitably limited in practice, our re-

Proceedings of the 83" International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

MRTZ@GOOGLE.COM
BRECHT @BERKELEY.EDU
SINGER @ GOOGLE.COM

sults help to explain the strong generalization performance
of stochastic gradient methods observed in practice. More
concretely, we bound the generalization error of a model
in terms of the number of iterations that stochastic gradient
method took in order to train the model. Our main analy-
sis tool is to employ the notion of algorithmic stability due
to Bousquet and Elisseeff (2002). We demonstrate that the
stochastic gradient method is stable provided that the ob-
jective is relatively smooth and the number of steps taken
is sufficiently small.

It is common in practice to perform a linear number of steps
in the size of the sample and to access each data point mul-
tiple times. Our results show in a broad range of settings
that, provided the number of iterations is linear in the num-
ber of data points, the generalization error is bounded by
a vanishing function of the sample size. The results hold
true even for complex models with large number of param-
eters and no explicit regularization term in the objective.
Namely, fast training time by itself is sufficient to prevent
overfitting.

Our bounds are algorithm specific: Since the number of
iterations we allow can be larger than the sample size, an
arbitrary algorithm could easily achieve small training er-
ror by memorizing all training data with no generalization
ability whatsoever. In contrast, if the stochastic gradient
method manages to fit the training data in a reasonable
number of iterations, it is guaranteed to generalize.

Conceptually, we show that minimizing training time is not
only beneficial for obvious computational advantages, but
also has the important byproduct of decreasing generaliza-
tion error. Consequently, it may make sense for practition-
ers to focus on minimizing training time, for instance, by
designing model architectures for which stochastic gradi-
ent method converges fastest to a desired error level.

1.1. Our contributions

Our focus is on generating generalization bounds for mod-
els learned with stochastic gradient descent. Recall that the
generalization bound is the expected difference between
the error a model incurs on a training set versus the er-
ror incurred on a new data point, sampled from the same

Stability of stochastic gradient descent

distribution that generated the training data. Throughout,
we assume we are training models using n sampled data
points.

Our results build on a fundamental connection between the
generalization error of an algorithm and its stability proper-
ties. Roughly speaking, an algorithm is stable if the train-
ing error it achieves varies only slightly if we change any
single training data point. The precise notion of stability
we use is known as uniform stability due to (Bousquet &
Elisseeff, 2002). It states that a randomized algorithm A
is uniformly stable if for all data sets differing in only one
element, the learned models produce nearly the same pre-
dictions. We review this method in Section 2, and provide
a new adaptation of this theory to iterative algorithms.

In Section 3, we show that stochastic gradient is uniformly
stable, and our techniques mimic its convergence proofs.
For convex loss functions, we prove that the stability mea-
sure decreases as a function of the sum of the step sizes.
For strongly convex loss functions, we show that stochastic
gradient is stable, even if we train for an arbitrarily long
time. We can combine our bounds on the generalization er-
ror of stochastic gradient method with optimization bounds
quantifying the convergence of the empirical loss achieved
by SGM. In Section 5, we show that models trained for
multiple epochs match classic bounds for stochastic gradi-
ent (Nemirovski & Yudin, 1978; 1983).

More surprisingly, our results carry over to the case where
the loss-function is non-convex. In this case we show that
the method generalizes provided the steps are sufficiently
small and the number of iterations is not too large. More
specifically, we show the number of steps of stochastic
gradient can grow as n° for a small ¢ > 1. This pro-
vides some explanation as to why neural networks can be
trained for multiple epochs of stochastic gradient and still
exhibit excellent generalization. In Section 4, we further-
more show that various heuristics used in practice, espe-
cially in the deep learning community, help to increase the
stability of stochastic gradient method. For example, the
popular dropout scheme (Krizhevsky et al., 2012; Srivas-
tava et al., 2014) improves all of our bounds. Similarly,
{5-regularization improves the exponent of n in our non-
convex result. In fact, we can drive the exponent arbitrar-
ily close to 1/2 while preserving the non-convexity of the
problem.

1.2. Related work

There is a venerable line of work on stability and gener-
alization dating back more than thirty years (Devroye &
Wagner, 1979; Kearns & Ron, 1999; Bousquet & Elisseeff,
2002; Mukherjee et al., 2006; Shalev-Shwartz et al., 2010).
The landmark work by Bousquet and Elisseeff (Bousquet
& Elisseeff, 2002) introduced the notion of uniform stabil-

ity that we rely on. They showed that several important
classification techniques are uniformly stable. In particu-
lar, under certain regularity assumptions, it was shown that
the optimizer of a regularized empirical loss minimization
problem is uniformly stable. Previous work generally ap-
plies only to the exact minimizer of specific optimization
problems. It is not immediately evident on how to com-
pute a generalization bound for an approximate minimizer
such as one found by using stochastic gradient. Subsequent
work studied stability bounds for randomized algorithms
but focused on random perturbations of the cost function,
such as those induced by bootstrapping or bagging (Elis-
seeff et al., 2005). This manuscript differs from this foun-
dational work in that it derives stability bounds about the
learning procedure, analyzing algorithmic properties that
induce stability.

Classic results by Nemirovski and Yudin show that the
stochastic gradient method produces is nearly optimal for
empirical risk minimization of convex loss functions (Ne-
mirovski & Yudin, 1978; 1983; Nemirovski et al., 2009;
Frostig et al., 2015). These results have been extended
by many machine learning researchers, yielding tighter
bounds and probabilistic guarantees (Hazan et al., 2006;
Hazan & Kale, 2014; Rakhlin et al., 2012). However, there
is an important limitation of all of this prior art. The derived
generalization bounds only hold for single passes over the
data. That is, in order for the bounds to be valid, each train-
ing example must be used no more than once in a stochas-
tic gradient update. In practice, of course, one tends to
run multiple epochs of the stochastic gradient method. Our
results resolve this issue by combining stability with op-
timization error. We use the foundational results to esti-
mate the error on the empirical risk and then use stability
to derive a deviation from the true risk. This enables us to
study the risk incurred by multiple epochs and provide sim-
ple analyses of regularization methods for convex stochas-
tic gradient. We compare our results to this related work
in Section 5. We note that Rosasco and Villa obtain risk
bounds for least squares minimization with an incremental
gradient method in terms of the number of epochs (Rosasco
& Villa, 2014). These bounds are akin to our study in Sec-
tion 5, although our results are incomparable due to various
different assumptions.

Finally, we note that in the non-convex case, the stochastic
gradient method is remarkably successful for training large
neural networks (Bottou, 1998; Krizhevsky et al., 2012).
However, our theoretical understanding of this method is
limited. Several authors have shown that the stochastic
gradient method finds a stationary point of nonconvex cost
functions (Kushner & Yin, 2003; Ghadimi & Lan, 2013).
Beyond asymptotic convergence to stationary points, little
is known about finding models with low training or gener-
alization error in the nonconvex case. There have recently

Stability of stochastic gradient descent

been several important studies investigating optimal train-
ing of neural nets. For example Livni ef al. show that
networks with polynomial activations can be learned in a
greedy fashion (Livni et al., 2014). Janzamin et al. (Jan-
zamin et al., 2015) show that two layer neural networks
can be learned using tensor methods. Arora et al. (Arora
et al., 2015) show that two-layer sparse coding dictionar-
ies can be learned via stochastic gradient. Our work com-
plements these developments: rather than providing new
insights into mechanisms that yield low training error, we
provide insights into mechanisms that yield low generaliza-
tion error. If one can achieve low training error quickly on
a nonconvex problem with stochastic gradient, our results
guarantee that the resulting model generalizes well.

2. Stability of randomized iterative
algorithms

Consider the following general setting of supervised learn-
ing. There is an unknown distribution D over exam-
ples from some space Z. We receive a sample S =
(#1,...,2n) of n examples drawn i.i.d. from D. Our goal

is to find a model w with small population risk, defined

as: R[w] &t E.-p f(w; z) . Here, where f is a loss func-

tion and f(w; z) designates the loss of the model described
by w encountered on example z.

Since we cannot measure the objective R[w] directly, we
instead use a sample-averaged proxy, the empirical risk,

defined as Rg[w] & LS f(wsz),
The generalization error of a model w is the difference
Rgs|w] — R[w]. 2.1

When w = A(S) is chosen as a function of the data by a
potentially randomized algorithm A it makes sense to con-
sider the expected generalization error

def

€gen — ES,A[RS[A(S)] — R[A(S)]] s (22)

where the expectation is over the randomness of A and the
sample S.

In order to bound the generalization error of an algorithm,
we employ the following notion of uniform stability in
which we allow randomized algorithms as well.

Definition 2.1. A randomized algorithm A is e-uniformly
stable if for all data sets S,S" € Z™ such that S and S’
differ in at most one example, we have

supE4 [f(A(S);2) — f(A(S);2)] < e. (23)
Here, the expectation is taken only over the internal ran-
domness of A. We will denote by €xa1, (A, n) the infimum
over all € for which (2.3) holds. We will omit the tuple
(A, n) when it is clear from the context.

We recall the important theorem that uniform stability im-
plies generalization in expectation. The proof is based on
an argument in Lemma 7 of (Bousquet & Elisseeff, 2002)
and very similar to Lemma 11 in (Shalev-Shwartz et al.,
2010).

Theorem 2.2. Let A be e-uniformly stable.
[Es.a [Rs[A(S)] — RIA(S)]]| < e.

Then,

Theorem 2.2 proves that if an algorithm is uniformly stable,
then its generalization error is small. We now turn to some
properties of iterative algorithms that control their uniform
stability.

2.1. Properties of update rules

We consider general update rules of the form G: Q — Q
which map a point w € 2 in the parameter space to another
point G(w). The most common update is the gradient up-
date rule G(w) = w — aVf(w), where o > 0 is a step
size and f: 2 — R is a function that we want to optimize.

The canonical update rule we will consider in this
manuscript is an incremental gradient update, where
G(w) = w — oV f(w) for some convex function f. We
will return to a detailed discussion of this specific update in
the sequel, but the reader should keep this particular exam-
ple in mind throughout the remainder of this section.

The following two definitions provide the foundation of our
analysis of how two different sequences of update rules di-
verge when iterated from the same starting point. These
definitions will ultimately be useful when analyzing the sta-
bility of stochastic gradient descent.

Definition 2.3. An update rule is n-expansive if for all
v,w € Q, |G(v) — G(w)]| < nl|lv—w]|. It is o-bounded if
[w—Gw)[<o.

With these two properties, we can establish the following
lemma of how a sequence of updates to a model diverge
when the training set is perturbed.

Lemma 2.4 (Growth recursion). Fix an arbitrary sequence
of updates G1, . .., G and another sequence G, . .., G/p.
Let wy = w)|, be a starting point in Q) and define 6; =
|lw; — we|| where wy, w; are defined recursively through

wir1 = Ge(wy) wy = Gy(wy). t>0)
Then, we have the recurrence relation 6y = 0,
Nt Gt = G is n-expansive

Ot41 < ¢ min(n, 1)0; + 201 Gy and G, are o-bounded,

G, is 1) expansive

3. Stability of Stochastic Gradient Method

Given n labeled examples S = (z1,...,2,) where z; €
Z, consider a decomposable objective function f(w) =

Stability of stochastic gradient descent

LS f(w;z;), where f(w;z;) denotes the loss of w
on the example z;. The stochastic gradient update for this
problem with learning rate oy > 0 is given by w41 =
wy — @y Vo f (wy; 2;,) - Stochastic gradient method (SGM)
is the algorithm resulting from performing stochastic gra-
dient updates 7' times where the indices 7; are randomly
chosen. There are two popular schemes for choosing the
examples’ indices. One is to pick ¢; uniformly at random
in {1,...,n} at each step. The other is to choose a random
permutation over {1,...,n} and cycle through the exam-
ples repeatedly in the order determined by the permutation.
Our results hold for both variants.

In parallel with the previous section the stochastic gradient
method is akin to applying the gradient update rule defined
as follows.

Definition 3.1. For a nonnegative step size o > 0 and
a function f: Q0 — R, we define the gradient update rule
GjaasGyo(w) =w—aVf(w).

3.1. Proof idea: Stability of stochastic gradient method

In order to prove that the stochastic gradient method is sta-
ble, we will analyze the output of the algorithm on two
data sets that differ in precisely one location. Note that if
the loss function is L-Lipschitz for every example z, we
have E | f(w;2) — f(w'; 2)| < LE ||w — w'| for all w and
w’. Hence, it suffices to analyze how w, and w; diverge
in the domain as a function of time ¢. Recalling that wy is
obtained from w;_; via a gradient update, our goal is to
bound §; = ||w; — w}]| recursively and in expectation as a
function of d;_1.

There are two cases to consider. In the first case, SGM
selects the index of an example at step ¢ on which is iden-
tical in S and S’. Unfortunately, it could still be the case
that &; grows, since w; and w, differ and so the gradients
at these two points may still differ. Below, we will show
how to control §; in terms of the convexity and smoothness
properties of the stochastic gradients.

The second case to consider is when SGM selects the one
example to update in which S and S’ differ. Note that
this happens only with probability 1/n if examples are se-
lected randomly. In this case, we simply bound the increase
in ¢; by the norm of the two gradient V f(w;_1;2) and
V f(w;_1;2"). The sum of the norms is bounded by 2c L
and we obtain §; < §; + 2a4 L. Combining the two cases,
we can then solve a simple recurrence relation to obtain a
bound on d7.

This simple approach suffices to obtain the desired result in
the convex case, but there are additional difficulties in the
non-convex case. Here, we need to use an intriguing sta-
bility property of stochastic gradient method. Specifically,
the first time step ¢y at which SGM even encounters the

example in which S and S’ differ is a random variable in
{1,...,n} which tends to be relatively large. Specifically,
for any m € {1,...,n}, the probability that t; < m is
upper bounded by m /n. This allows us to argue that SGM
has a long “burn-in period” where ¢; does not grow at all.
Once ¢; begins to grow, the step size has already decayed
allowing us to obtain a non-trivial bound.

We now turn to making this argument precise.

3.2. Expansion properties of stochastic gradients

Let us now record some of the core properties of the
stochastic gradient update. The gradient update rule is
bounded provided that the function f satisfies the following
common Lipschitz condition.

Definition 3.2. We say that f is L-Lipschitz if for all points
w in the domain of f we have ||V f(x)|| < L. This implies
that |f(u) — f(v)| < Ljju—wvl|.

Lemma 3.3. Assume that f is L-Lipschitz. Then, the gra-
dient update Gy q, is (a.L)-bounded.

We now turn to expansiveness. As we will see shortly, dif-
ferent expansion properties are achieved for non-convex,
convex, and strongly convex functions.

Definition 3.4. A function f: Q0 — R is y-strongly convex
if for all u,v € Q we have f(u) > f(v) + (Vf(v),u —
v) + 2w —v|?.

We say f is convex if it is O-strongly convex. The following
standard notion of smoothness leads to a bound on how
expansive the gradient update is.

Definition 3.5. A function f: Q — R is 8-smooth if for all
forallu,v € Qwe have ||V f(u) — V)| <Bllu—1].

In general, smoothness will imply that the gradient updates
cannot be overly expansive. When the function is also con-
vex and the step size is sufficiently small the gradient up-
date becomes non-expansive. When the function is addi-
tionally strongly convex, the gradient update becomes con-
tractive in the sense that 7 will be less than one and » and
v will actually shrink closer to one another. The majority
of the following results can be found in several textbooks
and monographs. Notable references are Polyak (Polyak,
1987) and Nesterov (Nesterov, 2004). We include proofs
in the appendix for completeness.

Lemma 3.6. Assume that [is f-smooth. Then, Gy is
(1+ apB)-expansive. If f is in addition convex, then for any
a < 2/0, the update G, is 1-expansive. If f is in addition
v-strongly convex, then for o < #, Gt is (- %)_
expansive.

Henceforth we will no longer mention which random se-

lection rule we use as the proofs are almost identical for
both rules.

Stability of stochastic gradient descent

3.3. Convex optimization

We begin with a simple stability bound for convex loss min-
imization via stochastic gradient method.

Theorem 3.7. Assume that the loss function f(-;z) is
B-smooth, convex and L-Lipschitz for every z. Suppose
that we run SGM with step sizes oy < 2/8 for T
steps. Then, SGM satisfies uniform stability with €gap <

2L2 T
n Zt:l Qg .

Proof. Let S and S’ be two samples of size n differing
in only a single example. Consider the gradient updates
G1,...,Gr and GY, ..., G induced by running SGM on
sample S and S’, respectively. Let wr and w/- denote the
corresponding outputs of SGM.

We now fix an example z € Z and apply the Lipschitz
condition on f(-;z) to get

E|f(wr;z) = f(wy;2)] < LE[or]

where 07 = ||wp — w||. Observe that at step ¢, with prob-
ability 1 — 1/n, the example selected by SGM is the same
in both S and S’. In this case we have that G; = G} and
we can use the 1-expansivity of the update rule G; which
follows from Lemma 3.6 using the fact that the objective
function is convex and that o; < 2/3. With probability
1/n the selected example is different in which case we use
that both G; and G, are a; L-bounded as a consequence of
Lemma 3.3. Hence, we can apply Lemma 2.4 and linear-
ity of expectation to conclude that for every ¢, E [§;11] <
(1-LE[5]+ 2 E 6] + 2L = E[5;] + 252+ . Unrav-

n n

@3.1)

eling the recursion gives E [07] < % Zthl oy . Plugging
this back into equation (3.1), gives the desired result. [

‘We refer the reader to the full version (?) for our results on
strongly convex optimization.

3.4. Non-convex optimization

In this section we prove stability results for stochastic gra-
dient methods that do not require convexity. We will still
assume that the objective function is smooth and Lipschitz
as defined previously.

The crux of the proof is to observe that SGM typically
makes several steps before it even encounters the one ex-
ample on which two data sets in the stability analysis dif-
fer.

Theorem 3.8. Assume that f(-;z) € [0,1] is an L-
Lipschitz and B-smooth loss function for every z. Suppose
that we run SGM for T steps with monotonically non-
increasing step sizes a; < c/t. Then, SGM has uniform
stability with

1+1/8c

—(2cL?) R T A
p—

€stab <

In particular, omitting constant factors that depend on 3,
T1-1/(Be+1)

¢, and L, we get €sap < —

4. Stability-inducing operations

In light of our results, it makes sense to analyse for op-
erations that increase the stability of the stochastic gradi-
ent method. We show in this section that pleasingly sev-
eral popular heuristics and methods indeed improve the
stability of SGM. Our rather straightforward analyses both
strengthen the bounds we previously obtained and help to
provide an explanation for the empirical success of these
methods.

Weight Decay and Regularization. Weight decay is a
simple and effective method that often improves general-
ization (Krogh & Hertz, 1992).

Definition 4.1. Let f: Q) — Q, be a differentiable function.
We define the gradient update with weight decay at rate p
as Gy po(w) =1 —ap)w —aVf(w).

It is easy to verify that the above update rule is equivalent
to performing a gradient update on the ¢5-regularized ob-
jective g(w) = f(w) + &]juw].

Lemma 4.2. Assume that f is 3-smooth. Then, Gy, o is
(1+ (B — u))-expansive.

The above lemma shows as that a regularization parame-
ter 44 counters a smoothness parameter 3. Once r > f3, the
gradient update with decay becomes contractive. Any the-
orem we proved in previous sections that has a dependence
on (3 leads to a corresponding theorem for stochastic gradi-
ent with weight decay in which £ is replaced with 5 — p.

Gradient Clipping. It is common when training deep
neural networks to enforce bounds on the norm of the gra-
dients encountered by SGD. This is often done by either
truncation, scaling, or dropping of examples that cause an
exceptionally large value of the gradient norm.

Consider for example gradient clipping. In this pro-
cedure, a stochastic gradient V f(w;z) is replaced with
Vf(w;z) = clip(V f(w; z)) where clip(z) = z if ||z <
B and B/||z|| otherwise.

Lemma 4.3. If f is -smooth, then |V f(w; z)|| < B and
[Vef(v;2) = Vef(w; 2)|| < Bllv —wl.

Similar arguments would apply to the different variants of
gradient warping. Any such heuristic where the warping
operation is Lipschitz directly leads to a bound on the Lip-
schitz parameter L that appears in our bounds. It is also
easy to introduce a varying Lipschitz parameter L; to ac-
count for possibly different values.

Stability of stochastic gradient descent

Dropout. Dropout (Srivastava et al., 2014) is a popular
and effective heuristic for preventing large neural networks
from overfitting. Here we prove that, indeed, dropout im-
proves all of our stability bounds generically.

At each iteration of dropout SGD, we sample a random di-
agonal matrix P with precisely s diagonal entries equal to
1 and the rest equal to 0. Instead of taking a stochastic gra-
dient step V f(w; z) we instead update with the perturbed
gradient V4 f(w;2) := PV f(Pw;z). The dropout up-
date is both more bounded and smoother than the standard
stochastic gradient update.

Lemma 4.4. Assume that f is L-Lipschitz and [3-smooth.
Then, the dropout gradient V4 f(w; z) with dropout rate
s has norm bounded by L and satisfies Ep ||V qf (v; z) —

Vaf(w;2)|| < (Vs/d)Blv —wll.

5. Convex risk minimization

We now outline how our generalization bounds lead to
bounds on the population risk achieved by SGM in the con-
vex setting. We restrict our attention to the convex case
where we can contrast against known results. The main
feature of our results is that we show that one can achieve
bounds comparable or perhaps better than known results
on stochastic gradient for risk minimization by running for
multiple passes over the data set.

The key to the analysis in this section is to decompose the
risk estimates into an optimization error term and a stabil-
ity term. The optimization error designates how closely we
optimize the empirical risk or a proxy of the empirical risk.
By optimizing with stochastic gradient, we will be able
to balance this optimization accuracy against how well we
generalize. These results are inspired by the work of Bous-
quet and Bottou who provided similar analyses for SGM
based on uniform convergence (Bottou & Bousquet, 2008).
However, our stability results will yield sharper bounds.

Throughout this section, our risk decomposition works as
follows. We define the optimization error to be the gap
between the empirical risk and minimum empirical risk
in expectation: €gp¢(w) R [Rs[w] — Rg[w?]] where
w? = argmin, Rg[w]. By Theorem 2.2, the expected
risk of a w output by SGM is bounded as E[R[w]] <
]E[RS [w” + €stab <]E[RS [U)f]] + €opt (w) + €stap- In
general, the optimization error decreases with the number
of SGM iterations while the stability increases. Balancing
these two terms will thus provide a reasonable excess risk
against the empirical risk minimizer. Note that our analysis
involves the expected minimum empirical risk which could
be considerably smaller than the minimum risk. However,
as we now show, it can never be larger.

Lemma 5.1. Let w, denote the minimizer of the popula-
tion risk and w? denote the minimizer of the empirical risk

given a sampled data set S. Then E[Rs[w?]] < R[w,].

To analyze the optimization error, we will make use of a
classical result due to Nemirovski and Yudin (Nemirovski
& Yudin, 1983).

Theorem 5.2. Assume we run stochastic gradient descent
with constant stepsize o on a convex function Rlw] =
E.[f(w;z)]. Assume further that ||V f(w;2)| < L and
|lwo — wy|| < D for some minimizer w, of R. Let wr de-
note the average of the T iterates of the algorithm. Then
we have R[wr]| < R[w,] + %?—; + i L%a.

The upper bound stated in the previous theorem is known
to be tight even if the function is S-smooth (Nemirovski &
Yudin, 1983).

Theorem 5.2 directly provides a generalization bound for
SGM that holds when we make a single pass over the data.
The theorem requires fresh samples from the distribution in
each update step of SGM. Hence, given n data points, we
cannot make more than n steps, and each sample must not
be used more than once.

Corollary 5.3. Let f be a convex loss function satisfying
IV f(w, 2)|| < L and let w, be a minimizer of the popu-
lation risk Rlw] = E, f(w;z). Suppose we make a single
pass of SGM over the sample S = (z1,. .., z,) with fixed
step size o = LL\;R starting from a point wy that satis-
fies ||wo — wy|| < D. Then, the average 1w, of the iterates
satisfies E[R[w,]] < Rlw.] + D—\/% .

We now contrast this bound with what follows from our
results.

Proposition 5.4. Let S = (z1,...,2,) be a sample of
size n. Let f be a B-smooth convex loss function satisfy-
ing |[Vf(w,2)| < L and let w? be a minimizer of the
empirical risk Rg[w] = L Y"1 | f(w; z;). Suppose we run

T steps of SGM with step size

o= oo (3)

from a starting point wq that satisfies |wy — w?| <
D. Then, the average wr over the iterates satisfies

E[R[wr]] < E[Rs[wy]] + BE/252L .

Note that the bound from our stability analysis is not di-
rectly comparable to Corollary 5.3 as we are comparing
against the expected minimum empirical risk rather than
the minimum risk. Lemma 5.1 implies that the excess risk
in our bound is at most worse by a factor of v/3 compared
with Corollary 5.3 when T' = n. Moreover, the excess risk
in our bound tends to a factor merely /2 larger than the
Nemirovski-Yudin bound as 7" goes to infinity. In contrast,
the classical bound does not apply when T > n.

Stability of stochastic gradient descent

6. Experimental Evaluation

The goal of our experiments is to isolate the effect of train-
ing time, measured in number of steps, on the stability of
SGM. We evaluated broadly a variety of neural network ar-
chitectures and varying step sizes on a number of different
datasets.

To measure algorithmic stability we consider two proxies.
The first is the Euclidean distance between the parameters
of two identical models trained on the datasets which dif-
fer by a single example. In all of our proofs, we use slow
growth of this parameter distance as a way to prove stabil-
ity. Note that it is not necessary for this parameter distance
to grow slowly in order for our models to be algorithmi-
cally stable. This is a strictly stronger notion. Our second
weaker proxy is to measure the generalization error directly
in terms of the absolute different between the test error and
training error of the model.

We analyzed four standard machine learning datasets each
with their own corresponding deep architecture. We stud-
ied the LeNet architecture for MNIST, the cuda-convnet
architecture for CIFAR-10, the AlexNet model for Ima-
geNet, and the LSTM model for the Penn Treebank Lan-
guage Model (PTB). Full details of our architectures and
training procedures can be found below.

In all cases, we ran the following experiment. We choose a
random example from the training set and remove it. The
remaining examples constitute our set .S. Then we create a
set S’ by replacing a random element of .S with the element
we deleted. We train stochastic gradient descent with the
same random seed on datasets .S and S’. We record the Eu-
clidean distance between the individual layers in the neural
network after every 100 SGM updates. We also record the
training and testing errors once per epoch.

Our experiments show four primary findings:

Step size dependence. Doubling the step size no more
than doubles the generalization error (see Figure 1). This
behavior is fairly consistent for both generalization error
defined with respect to classification accuracy and cross en-
tropy (the loss function used for training). It thus suggests
that there is at most a linear dependence on the step size in
the generalization error.

Parameter distance. =~ We evaluate the normalized Eu-
clidean distance \/||w —w'|[2/([[w[]? + [Jw’[|?) between
the parameters w and w’ of two models trained on two
copies of the data differing in a random substitution. We
observe that the parameter distance grows sub-linearly even
in cases where our theory currently uses an exponential
bound. This shows that our bounds are pessimistic.

Parameter distance verus generalization. There is a
close correspondence between the parameter distance and

generalization error. A priori, it could have been the case
that the generalization error is small even though the pa-
rameter distance is large. Our experiments show that these
two quantities often move in tandem and seem to be closely
related.

Late substitution. When measuring parameter distance
it is indeed important that SGM does not immediately
encounter the random substitution, but only after some
progress in training has occurred. If we artificially place the
corrupted data point at the first step of SGM, the parameter
distance can grow significantly faster subsequently. This
effect is most pronounced in the ImageNet experiments, as
displayed in Figure 2.

Experiments. We evaluated convolutional neural net-
works for image classification on three datasets: MNIST,
Cifar10 and ImageNet. Starting with Cifar10, we chose
a standard model consisting of three convolutional lay-
ers each followed by a pooling operation. This model
roughly corresponds to that proposed by Krizhevsky et
al. (Krizhevsky et al., 2012) and available in the “cuda-
convnet” code!. However, to make the experiments more
interpretable, we avoid all forms of regularization such
as weight decay or dropout. The learning rate was fixed
at 0.01. We also do not employ data augmentation even
though this would greatly improve the ultimate test accu-
racy of the model. Additionally, we use only constant step
sizes in our experiments. With these restrictions the model
we use converges to below 20% test error. While this is
not state of the art on Cifar10, our goal is not to optimize
test accuracy but rather a simple, interpretable experimen-
tal setup.

The situation on MNIST is largely analogous to what we
saw on Cifarl0. We trained a LeNet inspired model with
two convolutional layers and one fully-connected layer.
The first and second convolutional layers have 20 and 50
hidden units respectively. This model is much smaller and
converges significantly faster than the Cifar10 models, typ-
ically achieving best test error in five epochs. We trained
with minibatch size 60. As a result, the amount of overfit-
ting is smaller. In the case of MNIST, we also repeated
our experiments after replacing the usual cross entropy ob-
jective with a squared loss objective. The results are in the
full version on arxiv. It turned out that this does not harm
convergence at all, while leading to somewhat smaller gen-
eralization error and parameter divergence.

On ImageNet, we trained the standard AlexNet architec-
ture (Krizhevsky et al., 2012) using data augmentation, reg-
ularization, and dropout. Unlike in the case of CifarlO,
we were unable to find a setting of hyperparameters that
yielded reasonable performance without using these tech-

"https://code.google.com/archive/p/cuda-convnet

Stability of stochastic gradient descent

Generalization error
:

016
0.14 1
0.12
0.10
0.08
0.06
0.04
0.02
0.00
0

abs(train error - test error,

Parameter distance

0.5 T

layer R 2R XIIXZZ R IXITSRATITXZ 2T

0.4H& & convi I‘FHH?IHETH:_T.ﬂ,,.,rmmrmrmfm:
@ @ conv2 e kAR

03H¥ ¥ conva (£ E

4 al ol

0.2

0.1

Normalized euclidean distance

0.0 L
(30 40 50 60

epoch

Train vs test vs parameter distance

0.6
A—4A norm diff
0.5 4 train error I
04k & & testerror 1
& -4 abs(train error - test error) H

0.3} d
0.2} AR S RRRBE

0.1} R
0‘00 10 20 30 40 50 60

epoch

Figure 1. Experimental results on Cifar. Top: Generalization er-
ror. Middle: Parameter divergence. Bottom: Comparison of train,
test, and generalization eror with parameter divergence.

niques. However, for Figure 2 (bottom), we did not use
data-augmentation to exaggerate the effects of overfitting
and demonstrate the impact scaling the model-size. This
figure demonstrates that the model-size appears to be a
second-order effect with regards to generalization error,
and step-size has a considerably stronger impact.

6.1. Recurrent neural networks with LSTM

We also examined the stability of recurrent neural net-
works. Specifically, we looked at an LSTM architecture
for language modeling (Zaremba et al., 2014). We focused
on word-level prediction experiments using the Penn Tree
Bank (PTB) (Marcus et al., 1993), consisting of 929,000
training words, 73,000 validation words, and 82,000 test
words. PTB has 10,000 words in its Vocabularyz. Follow-

Data source: http://www.fit.vutbr.cz/
~imikolov/rnnlm/simple—-examples.tgz

Early substitution Late substitution

0.45 0.018

[0 (o]

Q o T T T

C =4

S 040 £ 0.016 layer

© 0.35 B 0.014H9 © convi

& 0.30 & 0.012|

(5} [

2 0.25 S 0.010f

o o

2 0.20 2 0.008

5 0.15 5 0.006

[0} [

N 0.10}¢ N 0.004

£ 0.05¢ £ 0.002f © 1
S S i L
p4 b4

0.00 — 0.000
0 0

0.25 ; T

Generalization error

Figure 2. Experiments on ImageNet. Top left: Parameter diver-
gence with early substitution. Top right: Late substitution. Bot-
tom: Generalization error for varying model size.

ing Zaremba et al., we trained regularized LSTMs with two
layers that were unrolled for 20 steps. We initialize the hid-
den states to zero. We trained with minibatch size 20. The
LSTM has 200 units per layer and its parameters are initial-
ized to have mean zero and standard deviation of 0.1. We
did not use dropout to enhance reproducibility. Dropout
would only increase the stability of our models. The re-
sults are displayed in Figure 3.

.. Training, test error o Parameter distance
250 T T T Q 0.5 T T T
&9 train s Layer
200 A test H 2 04HF3F LsT™ 4
+3 abs(train-test) g e al
2 150 | g 03f
2 S
= 100} 3 02} ,
hel
I
50 - R S 01t R
£
0 e eeems s
0 5 0 15 20 z
epoch epoch

Figure 3. Training on PTB dataset with LSTM architecture.

Acknowledgements

The authors would like to thank Martin Abadi, Samy Ben-
gio, Thomas Breuel, John Duchi, Vineet Gupta, Kevin
Jamieson, Kenneth Marino, Giorgio Patrini, John Platt,
Eric Price, Ludwig Schmidt, Nati Srebro, Ilya Sutskever,
and Oriol Vinyals for their valuable feedback.

Stability of stochastic gradient descent

References

Arora, Sanjeev, Ge, Rong, Ma, Tengyu, and Moitra, Ankur.
Simple, efficient, and neural algorithms for sparse cod-
ing. In Proceedings of the Conference on Learning The-
ory (COLT), 2015.

Bottou, Léon. Online algorithms and stochastic approxima-
tions. In Saad, David (ed.), Online Learning and Neural
Networks. Cambridge University Press, Cambridge, UK,
1998.

Bottou, Léon and Bousquet, Olivier. The tradeoffs of large
scale learning. In Neural Information Processing Sys-
tems, 2008.

Bousquet, Olivier and Elisseeff, André. Stability and gen-
eralization. Journal of Machine Learning Research, 2:

499-526, 2002.

Devroye, Luc P. and Wagner, T.J. Distribution-free per-
formance bounds for potential function rules. Informa-
tion Theory, IEEE Transactions on, 25(5):601-604, Sep
1979. ISSN 0018-9448.

Elisseeff, Andre, Evgeniou, Theodoros, and Pontil, Mas-
similiano. Stability of randomized learning algorithms.
Journal of Machine Learning Research, 6:55-79, 2005.

Frostig, R., Ge, R., Kakade, S. M., and Sidford, A. Com-
peting with the empirical risk minimizer in a single pass.
In Conference on Learning Theory (COLT), 2015.

Ghadimi, Saeed and Lan, Guanghui. Stochastic first-and
zeroth-order methods for nonconvex stochastic program-
ming. SIAM Journal on Optimization, 23(4):2341-2368,
2013.

Hazan, Elad and Kale, Satyen. Beyond the regret
minimization barrier: optimal algorithms for stochas-
tic strongly-convex optimization. Journal of Machine
Learning Research, 15(1):2489-2512, 2014.

Hazan, Elad, Kalai, Adam, Kale, Satyen, and Agarwal,
Amit. Logarithmic regret algorithms for online convex
optimization. In Proceedings of the 19th Annual Confer-
ence on Learning Theory, 2006.

Janzamin, Majid, Sedghi, Hanie, and Anandkumar, Anima.
Generalization bounds for neural networks through ten-
sor factorization. Preprint available at arXiv:1506.
08473, 2015.

Kearns, Michael J. and Ron, Dana. Algorithmic stabil-
ity and sanity-check bounds for leave-one-out cross-
validation. Neural Computation, 11(6):1427-1453,
1999.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Proc. NIPS, pp. 1097-1105, 2012.

Krogh, A. and Hertz, J. A. A simple weight decay can im-
prove generalization. In Proc. NIPS, pp. 950-957, 1992.

Kushner, Harold J. and Yin, G. George. Stochastic Ap-
proximation and Recursive Algorithms and Applications.
Springer-Verlag, New York, second edition, 2003.

Livni, Roi, Shalev-Shwartz, Shai, and Shamir, Ohad. On
the computational efficiency of training neural networks.
In Advances in Neural Information Processing Systems,
pp. 855-863, 2014.

Marcus, Mitchell P, Marcinkiewicz, Mary Ann, and San-
torini, Beatrice. Building a large annotated corpus of
English: The Penn Treebank. Computational linguistics,
19(2):313-330, 1993.

Mukherjee, Sayan, Niyogi, Partha, Poggio, Tomaso, and
Rifkin, Ryan M. Learning theory: stability is sufficient
for generalization and necessary and sufficient for con-
sistency of empirical risk minimization. Adv. Comput.
Math., 25(1-3):161-193, 2006.

Nemirovski, A, Juditsky, A, Lan, G, and Shapiro, A.
Robust stochastic approximation approach to stochastic
programming. SIAM Journal on Optimization, 19(4):
1574-1609, 2009.

Nemirovski, Arkadi and Yudin, David B. On Cezari’s con-
vergence of the steepest descent method for approximat-
ing saddle point of convex-concave functions. In Soviet
Mathetmatics Doklady, volume 19, 1978.

Nemirovski, Arkadi and Yudin, David B. Problem com-
plexity and method efficiency in optimization. Wiley In-
terscience, 1983.

Nesterov, Y. Introductory lectures on convex optimization,
volume 87 of Applied Optimization. Kluwer Academic
Publishers, Boston, MA, 2004. ISBN 1-4020-7553-7. A
basic course.

Polyak, B. T. Introduction to optimization. Optimization
Software, Inc., 1987.

Rakhlin, Alexander, Shamir, Ohad, and Sridharan, Karthik.
Making gradient descent optimal for strongly convex
stochastic optimization. In Proceedings of the 29th In-
ternational Conference on Machine Learning, 2012. Ex-
tended version at arxiv:1109.5647.

Rosasco, Lorenzo and Villa, Silvia. Learning with in-
cremental iterative regularization. Preprint available at
arXiv:1405.0042v2,2014.

Stability of stochastic gradient descent

Shalev-Shwartz, Shai, Shamir, Ohad, Srebro, Nathan, and
Sridharan, Karthik. Learnability, stability and uniform

convergence. Journal of Machine Learning Research,
11:2635-2670, 2010.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
A simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):
1929-1958, 2014.

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol.
Recurrent neural network regularization. Technical re-
port, 2014. Preprint available at arxiv:1409.2329.

