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Abstract
We estimate stochastic processes that govern the
dynamics of evolving populations such as cell
differentiation. The problem is challenging since
longitudinal trajectory measurements of individ-
uals in a population are rarely available due to
experimental cost and/or privacy. We show that
cross-sectional samples from an evolving popu-
lation suffice for recovery within a class of pro-
cesses even if samples are available only at a
few distinct time points. We provide a stratified
analysis of recoverability conditions, and estab-
lish that reversibility is sufficient for recoverabil-
ity. For estimation, we derive a natural loss and
regularization, and parameterize the processes as
diffusive recurrent neural networks. We demon-
strate the approach in the context of uncovering
complex cellular dynamics known as the ‘epige-
netic landscape’ from existing biological assays.

1. Motivation
Understanding the population dynamics of individuals over
time is a fundamental problem in a variety of areas, from
biology (gene expression of a cell population (Wadding-
ton et al., 1940)), ecology (spatial distribution of animals
(Tereshko, 2000)), to census data (life expectancy (Man-
ton et al., 2008) and racially segregated housing (Bejan &
Merkx, 2007)). In such areas, experimental cost or privacy
concerns often prevent measurements of complete trajecto-
ries of individuals over time, and instead we observe sam-
ples from an evolving population over time (Fig. 1).

For example, modeling the active life expectancy and dis-
abilities of an individual over time is an area of substantial
interest for healthcare statistics (Manton et al., 2008), but
the expense and difficulty of collecting longitudinal health
data has meant that much of the data is cross-sectional
(Robine & Michel, 2004). Our technique replaces longi-
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Figure 1. In population-level inference we observe samples (col-
ored points) drawn from the process at different times. The goal
is to infer the dynamics (blue vectors). In this toy dataset each
point can be thought of as a single cell and the x and y axes as
gene expression levels of two genes.

tudinal data with cross-sectional data for inferring the un-
derlying dynamics behind continuous time-series.

The framework we develop will be applicable to the gen-
eral cross-sectional population inference problem, but in
order to ground our discussion we will focus on a specific
application in computational biology, where we seek to un-
derstand the process by which embryonic stem cells differ-
entiate into mature cells. An individual cell’s tendency to
differentiate into a mature cell is thought to follow a ‘epige-
netic landscape’ much like a ball rolling down a hill. The
local minima of this landscape represents cell states and
the slope represents the rate of differentiation (Waddington
et al., 1940). While more recent work has established the
validity of modeling differentiation as a diffusion process
(Hanna et al., 2009; Morris et al., 2014), direct inference of
the epigenetic landscape has been limited to the dynamics
of single genes (Sisan et al., 2012) due to the difficulty of
longitudinally tracking single cells.

Our work establishes that no longitudinal tracking is nec-
essary and population data alone can be used to recover
the latent dynamics driving diffusions. This result allows
cheap, high-throughput assays such as single cell RNA-seq
to be used to infer the latent dynamics of tens to hundreds
of genes.

Analyzing the inference problem for population-level dif-
fusions, we utilize the connection between partial differ-
ential equations, diffusion processes, and recurrent neural
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networks (RNN) to derive a principled loss function and
estimation procedure.

Our contributions are the following

• First, we rigorously study whether the dynamics of a
diffusion can be recovered from cross-sectional obser-
vations, and establish the first identifiability results.

• Second, we show that a particular regularized recur-
rent neural network (RNN) with Wasserstein loss is
a natural model for this problem and use this to con-
struct a fast scalable initializer that exploits the con-
nection between diffusions and RNNs.

• Finally, our method is verified to recover known dy-
namics from simulated data in the high-dimensional
regime better than both parametric and local diffusion
models, as well as predict the differentiation time-
course on tens of genes for real RNA-seq data.

2. Prior work
Population level inference of dynamics consists of observ-
ing samples drawn from a diffusion stopped at various
times and inferring the forces driving the changes in the
population (Fig. 1) which contrasts with inferring dynam-
ics with trajectory data which tracks individuals longitu-
dinally. Our work is distinct from existing approaches in
that it considers sampled, multivariate, and non-stationary
(t <∞) observations.

2.1. Population level inference

Inferring dynamics from population appears in three areas:
In home-range estimation, one estimates the support of a
two-dimensional continuous time series from the station-
ary distribution (Fleming et al., 2015). Our work is distin-
guished by our focus on the high-dimensional (d > 2) and
non-stationary settings. The stationary case is discussed in
section 4.1.

Inverse problems in parabolic differential equations iden-
tify continuous, low-dimensional dynamics given noisy
but complete measurements (rather than samples) along
a known boundary (Tarantola, 2005). One-dimensional
methods using plug-in kernel density estimates exist (Lund
et al., 2014) but do not generalize to greater than one di-
mension.

Finally, estimation of discrete Markov chains using
‘macro’ data is the discrete time and space equivalent of
our problem. This is a classic problem in econometrics,
and recovery properties (Van Der Plas, 1983), estimation
algorithms (Kalbfleisch & Lawless, 1984), and the effect
of noise (Bernstein & Sheldon, 2016) are all well-known.
The discrete solutions above observe multiple populations

stopped at the same time points, which allows for the more
general solutions. Our problem cannot be solved triv-
ially via discretization: discretizing the space scales ex-
ponentially with dimension, and discretizing time results
in a solution which is conceptually equivalent to the time-
derivative model in section 4.2 and does not capture the
underlying geometry of the problem.

2.2. Diffusive RNNs

Diffusive networks (Mineiro et al., 1998) connect diffusion
processes and RNNs much like our work. Our work fo-
cuses on the specific problem of population-level diffusions
(rather than full trajectory observations) and derives a new
pre-training scheme based on contrastive divergence. Our
work shows that the connection between recurrent network
and diffusions such as those in (Mineiro et al., 1998) can be
used to develop powerful inference techniques for general
diffusions.

2.3. Computational biology

Pseudo-time analysis (Trapnell et al., 2014) models the dif-
ferentiation of cells as measured by single-cell RNA-seq by
assigning each cell to a differentiation path via bifurcations
and a ‘pseudo-time’ indicating its level of differentiation.
Such analysis is driven by the desire to identify the cell-
states and relevant marker genes during differentiation. Re-
cent sophisticated methods can recover such bifurcations
quite effectively (Setty et al., 2016; Marco et al., 2014).

Our work complements such analyses by showing that it
is possible to recover quantitative parameters such as the
underlying epigenetic landscape from few population mea-
surements. Our results on identifiability of the epigenetic
landscape will become more valuable as the number of cap-
tured cells in a single-cell RNA-seq experiment grows from
hundreds (Klein et al., 2015) to tens of thousands.

Systems biology models of the epigenetic landscape have
focused on constructing landscapes which recapitulate the
qualitative properties of differentiation systems (Qiu et al.,
2012; Bhattacharya et al., 2011). Our work distinguished
by a focus on data-driven identification of the epigenetic
landscape. Existing data-driven models of the epigenetic
landscape are for a single gene and either rely on longitu-
dinal tracking (Sisan et al., 2012) or require assuming that
a particular cell population is stationary (Luo et al., 2013).

3. Population-level behavior of diffusions
We will begin with a short overview of our notation, obser-
vation model, and mathematical background.

A d-dimensional diffusion process X(t) represents the
state (such as gene expression) of an individual at time t.
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Formally we define X(t) as a stochastic differential equa-
tion (SDE):

dX(t) = µ(X(t))dt+
√

2σ2dW (t). (1)

Where W (t) is the unit Brownian motion. This can be
thought of as the continuous-time limit of the discrete
stochastic process Y (t) as ∆t→ 0:

Y (t+ ∆t) = Y (t) + µ(Y (t))∆t+
√

2σ2∆tZ(t) (2)

where Z(t) are i.i.d standard Gaussians. The function µ(x)
is called the drift and represents the force acting on an in-
dividual at a particular state x. In Fig. 1, the blue curves
are µ(x) which result in X(t) converging to one of four
terminal states. The probability of observing X(t) at any
point x at time t is called the marginal distribution and
corresponds to the colored points in Fig. 1.

We define the population-level inference task as finding the
drift function µ given distributions over the marginals.

Definition 1 (Population-level inference). Define the
marginal distribution ρ(t, x) = P (X(t) = x).

A population-level inference problem on X(t) given diffu-
sion constant σ, time points T = {0, t1 . . . tn}, and sam-
plesM = {m0 . . .mn} consists of identifying µ(x) from
samples {x(t)i ∼ ρ(t, x) | i ∈ {1 . . .mt}, t ∈ T }.

Fully general population level inference is impossible.
Consider a process with the unit disk in R2 as ρ(0, x), and
the drift µ is a clockwise rotation. From a population stand-
point, this would look identical to no drift at all.

This raises the question: what restrictions on µ(x) are nat-
ural, and allow for the recovery of the underlying drift?
Our paper considers gradient flows which are stochastic
processes with drift defined as µ(x) = −∇Ψ(x) 1. The
potential function Ψ(x) corresponds to the ‘epigenetic
landscape’ of our stochastic process. The force µ(x) =
−∇Ψ(x) drives the process X(t) toward regions of low
Ψ(x) much like a noisy gradient descent.

A remarkable result on these gradient flows is that
the marginal distribution ρ(t, x) evolves by per-
forming steepest descent on the relative entropy
D(ρ(t, x)|| exp(−Ψ(x)/σ2)) with respect to the 2-
Wasserstein metric W2. Formally, this is described by the
Jordan-Kinderlehrer-Otto theorem (Jordan et al., 1998):

Theorem 1 (The JKO theorem). Given a diffusion pro-
cess defined by equation 1 with µ(x) = −∇Ψ(x), then the
marginal distribution ρ(t, x) = P (X(t) = x) is approxi-
mated by the solution to the following recurrence equation

1For diffusion processes, the gradient flow condition is equiv-
alent to reversibility (Pavliotis, 2014, Section 4.6).

for ρ(t) with ρ(0) = ρ(0, x).

ρ(t+∆t) = argmin
ρ(t+∆t)

W2(ρ(t+∆t), ρ(t))2

+
∆t

σ2
D

(
ρ(t+∆t)|| exp

(
−Ψ(x)

σ2

))
. (3)

in the sense that lim∆t→0 ρ
(t)(x)→ ρ(t, x)

This theorem is the conceptual core of our approach: the
Wasserstein metric, which represents the probability of
transforming one distribution to another via purely Brown-
ian motion, will be our empirical loss (Adams et al., 2013);
and the relative entropyD(ρ|| exp(−Ψ(x)/σ2)) describing
the tendency of the system to maximize entropy, will be our
regularizer.

4. Recoverability of the potential Ψ
Before we discuss our model, we must first establish that
it is possible to asymptotically identify the true potential
Ψ(x) from sampled data. Otherwise the estimated Ψ(x)
will have limited value as a scientific and predictive tool.

We consider recoverability in three regimes of increasing
difficulty. First, in section 4.1, we consider the stationary
case of observing ρ(∞, x) which results in a closed-form
estimator for Ψ, but requires unrealistic assumptions on our
model. Next, in section 4.2 we consider a large number of
observations across time, and show that exact identifiabil-
ity is possible. However, this case requires a prohibitively
large number of experiments to guarantee identifiability.
Finally, in section 4.3 we will consider the most realistic
case of observing a few observations across time, and dis-
cuss the conditions under which recovery of Ψ is possible.

4.1. Stationary observations

In the stationary observation model, we are given samples
from a fully mixed process ρ(∞, x). In this case, one time
observation is sufficient to exactly identify the potential.
This follows from representing the stochastic process in Eq.
1 as a parabolic partial differential equation (PDE).

Theorem 2 (Fokker-Planck (Jordan et al., 1998)). Given
the SDE in equation 1, with drift µ(x) = −∇Ψ(x), the
marginal distribution ρ(t, x) fulfills:

∂ρ

∂t
= div(ρ(t, x)∇Ψ(x)) + σ2∇2ρ(t, x) (4)

with given initial condition ρ(0, x).

Now in the stationary case, we can note that the ansatz
ρ(∞, x) = exp(−Ψ(x)/σ2) gives:

0 = div(∇Ψ(x)ρ(∞, x))/σ2 +∇2ρ(∞, x)
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implying that exp(−Ψ(x)/σ2) is the stationary distribu-
tion, and we can estimate the underlying drift as∇Ψ(x) =
−∇ log(ρ(∞, x))σ2. The quantity −∇ log(ρ(∞, x))σ2

can be estimated from samples via one step of the mean-
shift algorithm (Fukunaga & Hostetler, 1975, Eq. 41).

Although estimation of ∇Ψ(x) from the stationary distri-
bution is tractable, it has two substantial drawbacks. First,
it is difficult to collect samples from the exact stationary
distribution ρ(∞, x); we often collect marginal distribu-
tions that are close, but not exactly equal to, the station-
ary distribution. Second, our estimator −∇ log(ρ(∞, x))
is only accurate over regions of high density in ρ(∞, x)
which may be distinct from our region of interest. For dif-
ferentiation systems, this means we will only know the be-
havior of ∇Ψ(x) near the fully differentiated state, rather
than over the entire differentiation timecourse.

To make this drawback clear, consider the case where σ2 is
small. The stationary observations from exp(−Ψ(x)/σ2)
will concentrate around the global minimums of Ψ(x) and
will therefore only tell us about the local behavior of Ψ(x)
around the minima. On the other hand, observing a non-
stationary sequence of distributions ρ(0, x), ρ(t1, x) . . .
does not have this drawback, as ρ(0, x) may be initialized
far from the minima of Ψ(x) allowing us to observe how
the distribution ρ(0, x) converges to the minima of Ψ(x).

4.2. Many time observations

We show that sampling multiple nonstationary timepoints
is identifiable, and avoids the drawbacks of a single station-
ary observation. Consider a observation scheme where we
obtain ρ(0, x), ρ(t1, x) . . . up to some time tn = T such
that we can estimate one of two quantities reliably:

• Short-time: ∂ρ
∂t

∣∣∣∣
T

≈
∑n
i=1

ρ(ti,x)−ρ(t0,x)
ti−t0

• Time-integral:
∫ T

0
ρ(t, x)dt ≈

∑n
i=1 ρ(ti, x)/n

In both of these cases, we can show that the underlying
potential Ψ(x) is identifiable via direct inversion of the
Fokker-Planck operator. The time-integral model is partic-
ularly interesting, as it can be implemented in practice for
single cell RNA-seq by collecting cells at uniform times
across development (Klein et al., 2015).

Theorem 3 (Uniqueness of Fokker-Planck like operators).
Let Ψ(x) be a continuously differentiable solution to the
following elliptic PDE:

f(x) = ∇2Ψ(x)τ(x) +∇Ψ(x)∇τ(x) + σ2∇2τ(x) (5)

subject to the constraint
∫

exp(−Ψ(x)/σ2)dx = 1.

Equation 5 is fulfilled in the short-time case with, f = ∂ρ
∂t ,

τ = ρ and in the time-integral case, f(x) = ρ(t0, x) −
ρ(tn, x) and τ(x) =

∫ T
0
ρ(t, x)dt.

Additionally, the Fokker-Planck equation associated with
ρ(t, x) is constrained to domain Ω via a reflecting bound-
ary. Formally, there exists a compact domain Ω with
〈∇Ψ(x)τ(x) + σ2∇τ(x), nx〉 = 0 for any boundary nor-
mal vector nx with x ∈ ∂Ω. 2

Then Ψ(x) is unique up to sets of measure zero in τ(x).

Proof. Consider any Ψ1(x) and Ψ2(x), then by linearity of
the PDE, Ψ′(x) = Ψ1(x)−Ψ2(x) must be a solution to the
homogeneous elliptic PDE

0 = div(∇Ψ′(x)τ(x)) = ∇2Ψ′(x)τ(x) +∇Ψ′(x)∇τ(x).

Consider the set Rε = {x : x ∈ Ω,Ψ′(x) ≤ miny Ψ′(y) +
ε}. By smoothness of Ψ′ and compactness of Ω, for all
ε > εmin = miny Ψ′(y) the region Rε is compact.

By construction, ∂Rε can be decomposed into two parts:
the boundary of the level set Ψ′(x) = miny Ψ′(y) + ε
which we define as ∂R◦ε and a possibly empty subset of
the domain boundary ∂Ω defined as ∂Ω◦.

By the divergence theorem we can integrate the elliptic
PDE over any Rε:∫
x∈Rε

div(∇Ψ′(x)τ(x))dx =

∫
x∈∂Ω◦

〈∇Ψ′(x)τ(x), nx〉dx

+

∫
x∈∂R◦

ε

|∇Ψ′(x)|2τ(x)dx = 0

By the boundary condition, for any nx with
x ∈ ∂Ω, 〈∇Ψ1(x)τ + σ2∇τ, nx〉 = 0 which
implies that 〈∇Ψ′(x)τ, nx〉 = 0 and therefore∫
x∈∂R◦

ε
|∇Ψ′(x)|2τ(x)dx = 0.

By construction, τ(x) > 0 over Ω and therefore
|∇Ψ′(x)| = 0 for all x ∈ ∂R◦ε . The union of sets ∂R◦ε
contains all of Ω by construction, and therefore for x ∈ Ω,
|∇Ψ′(x)| = |∇Ψ1(x) − ∇Ψ2(x)| = 0. Combined with
the normalization constraint,

∫
exp(−Ψ(x)/σ2)dx = 1,

this implies Ψ1(x) = Ψ2(x).

The proof of Thm. 3 illustrates that the recoverability de-
pends critically on τ(x) > 0. Thus in the time-integral
case, the regions which can be clearly recovered are those
over which τ(x) =

∫ T
0
ρ(t, x)dt has large mass. Compared

to the stationary situation, this is substantially better; we
will get accurate estimates of Ψ over the entire timecourse
of ρ(0, x) . . . ρ(T, x).

2This boundary condition is only necessary to keep the proof
simple. We prove a relaxation in section S.2.
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Finally, we ask whether Ψ is recoverable when the time
observations ρ(0, x), ρ(t1, x) . . . are sufficiently few and
separated in time such that both the short-time and time-
integral assumptions are not valid.

4.3. Few time observations

In more realistic settings, we may get many samples, but
very few time observations such that the time-integral
uniqueness theorem does not hold. We analyze this case
and establish two results: first, we establish exact identifi-
ability in one dimension (Thm. 4) and give evidence for
the conjecture in multiple dimensions (Cor. 1). Next, we
establish that a sufficiently mixed final time observation is
sufficient for uniqueness (Thm. 5) and derive a model con-
straint based on this theorem (Eq. 6).

In one dimension, three time points are sufficient to recover
the underlying potential function3:

Theorem 4 (1-D identifiability). Assume there exists some
c such that σ > c > 0; boundaries a, b such that ρ(t, a) =
0 and ρ(t, b) = 0 for all t; and the marginal densities are
Holder continuous with ρ(t, x) ∈ H2+λ.

Given ρ(0, x), ρ(t1, x), ρ(t2, x) with 0 6= t1 6= t2 < ∞,
there exists a unique continuous potential Ψ(x) ∈ C1 ful-
filling the Fokker-Planck equation.

Proof. This is a special case of problem 1 considered in
(Goldman, 2010) once we set c(x, t, u) = 1, f(x, t) = 0,
d(x, t, u) = 0, b1(x, t, u) = 0, p(x) = d1(x, t, u) = 0.
The result follows from (Goldman, 2010, Theorem 1).

In the multivariate case, the adjoint technique used in
(Goldman, 2010) no longer applies, and the equivalent re-
sult is an open problem conjectured to be true (De Cezaro
& Johansson, 2012). We believe this conjecture is true
and show that for any finite number of candidate Ψ which
agrees at two marginals ρ(0, x) and ρ(t, x) we can identify
the true potential using a third measurement.

Corollary 1 (Finite identifiability of Ψ). Let Ψ0 and Ψ1

be candidate potentials such that given ρ0(0, x) = ρ1(0, x)
and

∂ρi
∂t

= div(∇Ψi(x)ρi(t, x)) + σ2∇2ρi(t, x)

such that ρ0(t, x) = ρ1(t, x). Define ρi(t3, x) where
t3 ∼ T is a draw from T defined as a random variable
absolutely continuous with respect to the Lebesgue mea-
sure, then ρ1(t3, x) = ρ0(t3, x) with probability one if and
only if ∀x, Ψ1(x) = Ψ0(x).

3The requirement of three marginal distributions is due to the
more general nature of (Goldman, 2010, Problem 1). We believe
only two marginals are necessary.

Proof. See Supp. section S.1. The statement reduces to
short-time uniqueness studied in section 4.2.

In the case that the final marginal distribution ρ(tn, x) is
sufficiently mixed, stationary identifiability allows us to de-
rive an identifiability result regardless of the conjecture.
Theorem 5 (Relative fisher information constraint). Let
ρ(0, x) and ρ(tn, x) be marginal distributions associated
with the potential Ψ. Then, if the final time ρ(tn, x) is suf-
ficiently mixed:

− ∂

∂t
D(ρ(tn, x)|| exp(−Ψ(x)/σ2)) ≤ ε,

all Ψ̂ which are consistent with ρ(0, x) and
ρ(tn, x) with similar mixing constraints:
− ∂
∂tD(ρ(tn, x)|| exp(−Ψ̂(x)/σ2)) ≤ ε must imply

similar drifts:∫
|∇Ψ(x)−∇Ψ̂(x)|2ρ(tn, x)dx ≤ 4ε.

Proof. This follows from a relative fisher information iden-
tity in (Markowich & Villani, 2000, Lemma 4.1). We repro-
duce an abbreviated proof for completeness. Since ρ is the
solution to the Fokker-Planck equation evolving according
to Ψ, we can write ht(x) = ρ(tn, x)/ exp(−Ψ(x)/σ2),
leading to

− ∂D(ρ(tn, x)|| exp(−Ψ(x)/σ2))

∂t

=

∫
exp(−Ψ(x)/σ2)

ht(x)
|∇ht(x)|2dx

=

∫
|∇Ψ(x)−∇ρ(tn, x)|2ρ(tn, x)dx ≤ ε.

Where the second equality follows via integration by parts
on the Fokker-Planck equation. Applying the Minkowski
inequality to the last line gives the desired identity.

Theorem 5 implies that if we are willing to as-
sume that ρ(tn, x) is close to mixed, and we can
ensure that our estimated Ψ̂ has a tight bound on
− ∂
∂tD(ρ(tn, x)|| exp(−Ψ̂(x)/σ2)), then we can recover a

good approximation to the true Ψ. In practice this assump-
tion and constraint is straightforward to fulfill: experimen-
tal designs often track cell populations until they do not
show substantial changes (ρ(tn, x) is close to mixed) and
we can fit Ψ̂ under the constraint that it is smooth with
bounded gradient and

D(ρ(tn, x)|| exp(−Ψ̂(x)/σ2)) ≤ η. (6)

Which implicitly bounds the mixedness in Thm. 5 by the
JKO theorem (Thm. 1). Thus we have established a con-
straint (Eq. 6) and experimental condition (Thm. 5) un-
der which we can reliably recover the underlying dynamics
even with few timepoints.
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5. Inference
We will show that a Wasserstein loss with an entropic reg-
ularization on a noisy RNN is natural for this model.

5.1. Loss function and regularization

To motivate the Wasserstein loss, consider the case where
we observe full trajectories of a single stochastic process
X(t). Then one natural loss function is to consider the ex-
pected squared loss between the observed value xt and the
predicted distribution of X(t) under the model.

The Wasserstein distance is exactly the analogous quantity
to the L2 distance when we switch from fully observed tra-
jectories to populations of indistinguishable particles in a
diffusion (Adams et al., 2013, Section 3). We outline the
intuition for this argument here: the squared loss for a dif-
fusion arises from the fact that given mt trajectories from
a diffusion with x(t) = {x(t)0, x(t)1 . . . x(t)mt}, then
limt̂→0−t̂ log(P (X(t̂ + t) = x(t̂ + t)|X(t) = x(t))) =
1
4

∑mt
i=1 |x(t + t̂)i − x(t)i|22. The squared loss thus arises

as the log-probability that Brownian motion transforms the
predicted valueX(t) into the true value x(t) in an infinites-
imal time t̂.

If we make the particles indistinguishable via a random per-
mutation σ ∈ Sm0

, the above limit becomes:

lim
t̂→0
−t̂ log(P (X(t+ t̂) = x(t+ t̂)|X(t) = x(t))) =

1

4
inf

σ∈Smn

mn∑
i=1

|x(t+ t̂)i − x(t)σ(i)|22. (7)

This is a special case of the Wasserstein metric, imply-
ing that for population inference, the natural analog to
empirical squared loss minimization is empirical Wasser-
stein loss minimization. Thus at time ti we penalize
W2(ρ̂(ti, x), ρΨ(ti, x))2 which is the Wasserstein distance
between the empirical distribution ρ̂ and the marginal dis-
tribution predicted by Ψ, ρΨ. This loss is approximated via
sampling and the Sinkhorn distance (Cuturi, 2013).

We regularize this loss function with an entropic regular-
izer. Thm. 5 states that if ∂

∂tD(ρ(tn, x)|| exp(−Ψ(x)/σ2))
is small then we can recover any mixed potential. We fulfill
this mixing constraint by controlling the relative entropy in
Eq. 6, which we write as

EX∼ρ(tn,x)[log(ρ(tn, X))] + EX∼ρ(ti,x)[Ψ(X)/σ2] ≤ η,

where ρ(tn, x) is the unknown, true marginal distribution at
time tn. Removing constant terms not involving Ψ(x) and
replacing ρ(tn, x) with samples xj ∼ ρ(tn, x) gives us the
regularizer:

∑mn
j=1 Ψ(xj)/σ

2. Converting this constraint
into a regularization term with parameter τ and assuming
that Ψ is contained in a family of models K, our objective

function is:

min
Ψ∈K

[
n∑
i=1

W2(ρ̂(ti, x), ρΨ(ti, x))2

]
+ τ

mn∑
j=1

Ψ(xj)

σ2
. (8)

The similarity of Eq. 8 to the JKO theorem (Thm. 1) is
not coincidental. One interpretation of the JKO theorem
is that W2 is the natural metric over marginal distributions
and likelihood is the natural measure of model fit over Ψ.

5.2. Diffusions as a recurrent network

Thus far we have abstractly considered all stochastic pro-
cesses of the form: dX(t) = −∇Ψ(x)dt+

√
2σ2dW (t).

A natural way to parametrize Ψ is to consider linearly sep-
arable potential functions, which we may write as:

Ψ(x) =
∑
k

h(wkx+ bk)gk,

such that h is some strictly increasing function. This rep-
resents Ψ as the sum of energy barriers h in the direction
of vectors wk, allowing us to fit our model via gradient de-
scent, while maintaining interpretability of the parameters.

Setting h(x) = log(1 + exp(x)) parametrizes Ψ(x) as the
sum of nearly linear ramps and we obtain that the drift∇Ψ
is a one layer of a sigmoid neural network, where the linear
terms are tied together much like an autoencoder:∑

k

∇h(wkx+ bk)gk =
∑
k

h′(wkx+ bk)gkw
T
k

Applying this to the first order time discretization in Eq. 2,
a draw yti of our stochastic process can be simulated as:

yt+dti = yti+∆t
∑
k

h′(wky
t
i+bk)wkgk+

√
∆tσ2zit (9)

This can be interpreted as a type of RNN with noise based
regularization. The network is generative and as ∆t → 0
the draws from this recurrent net converge to trajectories of
the diffusion process X above. 4

5.3. Optimization

Optimizing the full objective function (Eq. 8) directly via
backpropagation across time is slow and sensitive to the
initialization. Exploiting the connection between RNNs
and the diffusion, we can pre-train the model by optimizing
the regularizer alone:

∑mn
j=1 Ψ(xj)/σ

2 under the constraint

4In practice, we set ∆t to be 0.1 which gives at least a ten
time-steps between observations in our experiments and find any-
where from five to hundred time-steps between observations to be
sufficient.
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(a) Stationary pre-training improves
both runtime and goodness of fit.

(b) RNN predictions are similar to
the true dynamics on 50D data.

(c) Example prediction of baselines
on same data

Figure 2. The pre-trained RNN captures the multimodal dynamics of the Styblinski flow even in 50-dimensions.

(a) Quadratic high dimensional flow (b) Styblinski flow in high dimensions (c) Gene expression (D4)

Figure 3. Held-out goodness of fit (lower is better), as measured by Wasserstein distance. ‘Oracle’ represents the error from Monte Carlo
sampling for the true gradient flow. The RNN parametrization performs best across a wide range of tasks.

that
∫

exp(−Ψ(x)/σ2)dx = 1. We solve this optimization
problem with contrastive divergence (Hinton, 2002) using
the first-order Euler scheme in Eq. 9 to generate negative
samples.

After this initialization, we perform backpropagation over
time on our objective function, with ρΨ approximated
via Monte Carlo samples using Eq. 9 and the Wasser-
stein error approximated using Sinkhorn distances. These
stochastic gradients are then used in Adagrad to optimize
Ψ(Duchi et al., 2011). We implement the entire method
in Theano, and code is available at https://github.
com/thashim/population-diffusions.

6. Results
We now demonstrate the effectiveness of both the pre-
training and RNN parametrization. 5

6.1. Effectiveness of the stationary pre-training

The stationary pre-training via contrastive divergence re-
sults in substantially better training log-likelihoods in less
than a third of the total time of the randomly initialized case
(Fig. 2(a)) for the Himmelblau flow (Fig. 1). We control
for initialization and runtime of both procedures by ensur-

5Step-size is selected by grid search (see section S.3 for other
parameter settings). σ is assumed known in the simulations, and
fixed to the observed marginal variance for the RNA-seq data.

ing that the initial parameters of the pre-training matches
that of the random initialization, and applying shared code
for both pre-training and backpropagation.

6.2. Learning high dimensional flows

One of the primary advantages of using recurrent networks
and sums-of-ramps as a potential is that they behave well
in high-dimensional estimation problems. We compare our
RNN model against a linear Ψ(x), the Orstein-Uhlenbeck
process (quadratic Ψ(x)), and a local sum-of-gaussian po-
tentials parametrization for Ψ(x) (details in Sec. S.4).

In the first task (Fig. 3(a)), we have a population evolu-
tion in Rd for d ∈ {2, 10, 50} according to a unit quadratic
potential Ψ(x) = |x|22. The initial measurement is 500
samples drawn from a normal distribution with 1/2 scale
centered at (5, 0, 0 . . . 0), and the final time measurement
is 500 samples at t = 1 with σ = 1.5. This tests whether
our model can recover a simple, high-dimensional potential
function. In this case, the simple dynamics mean that the
parametric models (Orstein-Uhlenbeck and Linear flows)
perform quite well. The RNN parametrization is compet-
itive with these models in as the dimensionality increases,
and substantially outperforms the local model (Fig. 3(a)).

In the second task (Fig. 3(b)), we consider a population
over d ∈ {2, 10, 50} with two of the dimensions evolv-
ing according to the Styblinski flow (Ψ(x) = ||3x3 −
32x+5||22), and the other dimensions set to zero. This tests

https://github.com/thashim/population-diffusions
https://github.com/thashim/population-diffusions
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(a) D0 and D7 distributions of Oct4 (y-axis)
and Krt8 (x-axis)

(b) Learned differentiation dynamics (c) Distributions of true Krt8 expression

Figure 4. Observed data and learned model for single-cell RNA-seq data

whether our model can identify a complex low-dimensional
potential embedded in a high-dimensional space. Exam-
ple outputs in Fig. 2(b) and 2(c) demonstrate that our
RNN model can model the multi-modal dynamics embed-
ded within a high-dimensional space. The quantitative er-
ror in Fig. 3(b) shows that the local and RNN methods per-
form best at low (2-10) dimensions, but the local method
rapidly degenerates in higher dimensions. In both cases,
our RNN approach produces substantially lower Wasser-
stein loss compared both parametric and local approaches.

6.3. Analysis of Single-cell RNA-seq

In (Klein et al., 2015) an initially stable embryonic stem
cell population (termed ‘D0’ for day 0) begins to differen-
tiate after removal of LIF (leukemia inhibitory factor) and
single-cell RNA-seq measurements are made at two, four,
and seven days after LIF removal. At each time point, the
expression of 24175 genes for several hundred cells (933
cells at D0, 303 at D2, 683 at D4, and 798 at D7) are mea-
sured. We apply standard normalization procedures (Hicks
et al., 2015) to correct for batch effects, and impute miss-
ing expression levels using nonnegative matrix factoriza-
tion. Our task is to predict the gene expression at D4 given
only the D0 and D7 expression values.

Fitting our RNN model across the top five and ten most dif-
ferential genes (as determined by the Wassertein distance
between D0 and D7 distributions for each gene), our RNN
method performs best compared to baselines (Fig3(c)), and
is the only one to perform better than the trivial baseline of
predicting the D4 gene expression using D7 data. We find
that ten genes is the limit for accurate prediction with a few
hundred cells; in higher dimensions the RNN begins to be-
have much like the linear model. As the number of captured
cells in single-cell RNA-seq grows, our RNN model will be
capable of modeling more complex multivariate potentials.

We now focus on whether our model captures the quali-
tative dynamics of differentiation for the two main differ-
entiation markers studied in (Klein et al., 2015): Keratin
8 (Krt8) which is an epithelial marker and Oct 4 (Pou5f1)

Figure 5. D4 predictions of Krt8 recapitulate bimodality

which is a embryonic marker. Krt8 in particular shows two
sub-populations at day 4 (Fig. 4(c)) suggesting that epige-
netic landscape may have multiple minima.

Fitting our RNN on this two dimensional problem shown in
Fig. 4(a) we obtain a potential function with a single min-
imum (Fig. 4(b)) demonstrating that differentiation is con-
centrated around a linear path connecting the D0 and D7
distributions. Surprisingly, this simple unimodal potential
predicts a bimodal distribution for the D4 Krt8 distribution
shown in Fig. 5 despite the lack of bimodality in either the
input data (Fig 4(a)) or the potential (Fig 4(b)). 6

The bimodality arises from modeling the quantitative dy-
namics from D0 to D7, and provides evidence that even
with as few as two time measurments, complex dynamics
can be recovered from population level observations.

7. Discussion
Our work establishes the problem of recovering an under-
lying potential function using samples from the population
distribution. Using a variational interpretation of diffu-
sions, we derive natural and scalable losses and regular-
izers. Finally, we demonstrate through multiple synthetic
datasets and a real single cell RNA-seq dataset that our
model performs well in a high-dimensional setting.

6Similar qualitative results hold for D4 Krt8 expression under
five and ten-dimensional versions (Supp. Fig. S.1, S.2, S.3, S.4).
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S. Supplemental results
S.1. Hypothesis test proof

Corollary 2 (Hypothesis test for Ψ). Let Ψ0 and Ψ1 be candidate potentials such that given ρ0(0, x) = ρ1(0, x) and

∂ρi
∂t

= div(∇Ψi(x)ρi(t, x)) + σ2∇2ρi(t, x)

fulfill ρ0(t, x) = ρ1(t, x). Define ρi(t3, x) where t3 ∼ T is a draw from T defined as a random variable absolutely
continuous with respect to the Lebesgue measure, then either

P (ρ1(t3, x) = ρ0(t3, x)) = 1

if ∀x, Ψ1(x) = Ψ0(x), or
P (ρ1(t3, x) = ρ0(t3, x)) = 0

otherwise.

Proof. By theorem 3, we know that if both ∂ρ1

∂t = ∂ρ0

∂t and ρ1(t, x) = ρ0(t, x) for any t, then Ψ1(x) = Ψ0(x). Therefore
if Ψ1(x) 6= Ψ0(x), any t such that ρ1(t, x) = ρ0(t, x) must have distinct time derivatives.

Now by Bolzano Weierstrass, if ρ1(t, x) = ρ0(t, x) an infinite times over any finite time interval [0, T ], then there must be
some accumulation point such that ρ1(t, x) = ρ0(t, x) has a convergent subsequence. By differentiability of ρ with respect
to time, this implies ∂ρ0

∂t at some ρ1(t, x) = ρ0(t, x). Therefore, if Ψ1(x) 6= Ψ0(x) there can only be a finite number of
times such that ρ1(t, x) = ρ0(t, x). This has measure zero over with respect to the Lebesgue measure, thus any random
stopping time t3 implies

P (ρ1(t3, x) = ρ0(t3, x)) = 0.

The other direction occurs by uniqueness of the solution to the Fokker Planck equation.

S.2. Boundary conditions for identifiability

We prove the non-compact boundary condition, which replaces the boundary with some sequence of compact sets such
that the probability of leaving the set limits to zero.

Theorem 6 (Uniqueness of Fokker-Planck like operators). Let Ψ(x) be a C1 solution to the following elliptic PDE:

f(x) = ∇2Ψ(x)τ(x) +∇Ψ(x)∇τ(x) + σ2∇2τ(x) (10)

subject to the constraint
∫

exp(−Ψ(x)/σ2)dx = 1,
∫
τ(x)dx <∞.

Equation 10 is fulfilled in the short-time case with, f = ∂ρ
∂t , τ = ρ and in the time-integral case, f(x) = ρ(t0, x)−ρ(tn, x)

and τ(x) =
∫ T

0
ρ(t, x)dt.

In both cases, assume that the underlying Fokker-Planck boundary condition allows us to construct a sequence of compact
sets Ωn such that limn→∞

∫
x∈Ωn

τ(x)dx =
∫
x∈Rd τ(x)dx <∞ and limn→∞

∫
x∈ω f(x)→ 0.

Then Ψ(x) is unique up to sets of measure zero of τ(x).

Proof. Consider any Ψ1(x) and Ψ2(x), then by linearity of the PDE Ψ′(x) = Ψ1(x) − Ψ2(x) must be a solution to the
homogeneous elliptic PDE

0 = div(∇Ψ′(x)τ(x)) = ∇2Ψ′(x)τ(x) +∇Ψ′(x)∇τ(x)

Construct Rε,n = {x : x ∈ Ωn,Ψ
′(x) ≤ ε}, which is the intersection of the level set of Ψ′ with Ωn.

Expanding the limit boundary constraint on f and taking the difference we obtain:

lim
n→∞

∫
x∈∂Ωn

〈∇Ψ′(x)τ(x), nx〉dx = 0.
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Analogously to the reflecting boundary condition, define ∂R◦ε,n as the boundary of the sublevel set and ∂Ω◦ε,n as the
boundary of Ωn such that the union of the two sets forms the boundary of Rε,n.

Applying the divergence theorem over the decomposition of the boundary analogously to the other boundary condition:

lim
n→∞

∫
x∈Rε,n

div(∇Ψ′(x)τ(x))dx (11)

= lim
n→∞

∫
x∈∂Ω◦

n

〈∇Ψ′(x)τ(x), nx〉dx (12)

+ lim
n→∞

∫
x∈∂R◦

ε,n

|∇Ψ′(x)|2τ(x)dx = 0. (13)

which implies via our boundary constraint

lim
n→∞

∫
x∈∂R◦

ε,n

|∇Ψ′(x)|2τ(x)dx = 0.

This limit occurs uniformly in ε, since the first line of Eq 11 is exactly zero and Eq 12 is uniformly bounded as

lim
n→∞

∫
x∈∂Ω◦

n

〈∇Ψ′(x)τ(x), nx〉dx

≤ lim
n→∞

∫
x∈∂Ωn

〈∇Ψ′(x)τ(x), nx〉dx.

Now assume that there exists some compact set S of nonzero measure such that for all x ∈ S, |∇Ψ(x)| 6= 0. Since Ψ
is continuous the extreme value theorem implies the existence of some εmin = minx∈S Ψ(x) and εmax = maxx∈S Ψ(x).
Using the fact that any x with |∇Ψ′(x)| 6= 0 must be a part of ∂R◦ε,n for sufficient large n and uniformity of our limit with
respect to ε we obtain:

lim
n→∞

∫
x∈S
|∇Ψ′(x)|2τ(x)dx

= lim
n→∞

∫ εmax

εmin

∫
x∈{∂R◦

ε,n∩S}
||∇Ψ′(x)||2τ(x)dxdε

≤ lim
n→∞

∫ εmax

εmin

∫
x∈∂R◦

ε,n

||∇Ψ′(x)||2τ(x)dxdε = 0.

Which is a contradiction, as this implies limn→∞ |∇Ψ(x)| = 0 from the fact that τ(x) has a lower bound strictly greater
than zero over S.

Equicontinuity of∇Ψ′(x) then implies |∇Ψ′(x)| = 0 for all x, and therefore

|∇Ψ′(x)| = |∇Ψ1(x)−∇Ψ2(x)| = 0.

Combined with the normalization constraint,
∫

exp(−Ψ(x)/σ2)dx = 1, this implies Ψ1(x) = Ψ2(x).

S.3. Details on parameters and methods

The following are the ‘free’ hyperparameters of the model:

• K: The number of hidden layers (200 for simulated data, 500 for RNA-seq data)

• ∆t: simulation timestep (0.01 for simulations, 0.1 for RNA-seq)

• τ : regularization constant (0.7 for all data)

• ε: step size of adagrad (Grid searched from starting with 0.1 for 10 steps with decaying powers of 2)



Learning Population-Level Diffusions with Generative Recurrent Networks

• γ: adagrad squared gradient decay rate (0.01, all experiments)

• NS: number of samples to draw from simulations (Fixed to be the same as the number of points at the first time point)

• burnin: number of steps of the first-order Euler scheme to burn-in for contrastive divergence (set to 50)

For initializing the contrastive divergence, W is set to be i.i.d unit Gaussians, b to draws from the [−1, 1] uniform, and g to
zero.

S.4. Alternative methods

We fit the following baseline models:

• Orstein-Uhlenbeck: Quadratic potential with one parameter µ, Ψ(x) = (x− µ)2

• Linear: Linear potential with one parameter w, Ψ(x) = xwT .

• Local: Sum of Gaussian potentials with three parameters µ, g and b, Ψ(x) = g exp(−(x− µ)2/b2).

S.5. High-dim gene expression

Applying our RNN model to the top 5 or 10 differentiating genes as measured by the Wasserstein distance between the
marginal day 0 and 7 distributions results in qualitatively similar results. In order to fit the higher-complexity multivariate
model, we modified a few hyperparameters (K = 2000, initialization of b as bi = ||wixi||22, increasing NS to 1000,
σ =
√

2 and using continuous contrastive divergence) and included all (non-heldout) data for pre-training. The parameter
changes result in producing a similar goodness-of-fit to the higher dimensional versions of the problem with only a few
hundred points.

For example, the D4 nonstationary dynamics of Krt8 are re-capitulated

Figure S.1. 5-gene model prediction of Krt8 also reproduces the underlying bimodality of the data

Plotting the predicted marginal distribution for all 5 genes, we find that the RNN based model substantially outperforms
other, parametric approaches to the same problem:

This same trend holds as we increase the number of genes from 5 to 10 where the RNN performs best compared to
alternatives. We find that as we increase the dimensionality, the learned dynamics begin to become unimodal, as all models
struggle to identify the true dynamics from sparse, high-dimensional data.

Even in this setting where we have a few hundred examples in 10 dimensions, we can still effectively identify correlations
and other relationships between genes at this non-equilibrium state.
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Figure S.2. Predicted marginal distributions of the top 5 differentiating genes at day 4
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Figure S.3. Predicted marginal distributions of the top 10 differentiating genes at day 4



Learning Population-Level Diffusions with Generative Recurrent Networks

Figure S.4. Predicted against actual pairwise gene expression distributions at the D4 timepoint. The RNN models the correlational
structure of the true dynamics.


