Variance-Reduced and Projection-Free Stochastic Optimization

Supplementary material for
‘“Variance-Reduced and Projection-Free Stochastic Optimization”

A. Proof of Property (1)

Proof. We drop the subscript i for conciseness. Define g(w) = f(w) — V f(v)"w, which is clearly also convex and
L-smooth on Q. Since Vg(v) = 0, v is one of the minimizers of g(w). Therefore we have

9(v) — g(w) < glw — 1 Vg(w)) ~ glw)

1 L 1
< Vg(w) " (w — ZVg('w) —w) + EHw - EVg(w) —w||? (by smoothness of g)

1 2o 1 2
= 5 IVa)|? = — 52V f(w) = Vf(v)]

Rearranging and plugging in the definition of g concludes the proof. O

B. Analysis for SFW

The concrete update of SFW is

vy = argmin V) v
veEN

wi = (1 — yp)Wwr—1 + Vs

where V}, is the average of my, iid samples of stochastic gradient V f; (wy—_1). The convergence rate of SFW is presented
below.

2
Theorem 3. If each f; is G-Lipschitz, then with vy, = 17 and my, = (G(Lk;l)> , SEFW ensures for any k,
4L D?
E — ] < .
flwe) = Fw)] < 1
Proof. Similar to the proof of Lemma 2, we first proceed as follows,
L
flwy) < flwi—1) + V(wi—1) " (wg — wg_1) + *Hwk —wp_1|)? (smoothness)
L~?
= flwi—1) + WV f(wr—1) " (vp —wi_1) + 7”’01@ -z (wy, — wi—1 = (Vg — Wi—1))
val = \T LDQ"YI%
< flwg—1) + 1V (v — wi—1) + v (V(wg—1) — Vi) (v —wr_1) + 2 (lve — wr—1] < D)
—— - T LD*~? I
< flwp—1) + 7V (W' —wi—1) + 7e(Vf(wr—1) — Vi) (v —wr—1) + 5 (by optimality of vy,)
T * = \T % LDz’y]%
= fwr—1) + %V f(wir—1) (0 —wi_1) +(Vf(wr_1) — Vi) (v —w") + 5

LDQ%

< f(wi—1) + 1 (f(w*) — fwy—1)) + %D Vi, — Vf(wi—1)| + 3

where the last step is by convexity and Cauchy-Schwarz inequality. Since f; is G-Lipschitz, with Jensen’s inequality, we

further have E[||V), — Vf(wy_1)|]] < \/E (Ve = Vf(wr_1)]?] < =, which is at most LD% with the choice of i
and my. So we arrive at E[f(wy) — f(w*)] < (1 — w)E[f(wi—1) — f(w*)] + LD?*43. It remains to use a simple
induction to conclude the proof. O
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Now it is clear that to achieve 1 — € accuracy, SFW needs O(££-) iterations, and in total O(755> (£2-)3) = O(<-52-)

stochastic gradients.



Variance-Reduced and Projection-Free Stochastic Optimization

C. Proof of Lemma 3
Proof. Letd,; = @S — Vf(zs). For any s < k, we proceed as follows:
L

Fy,) < F(2) +VF(2) (y, = 2) + 5 1y, — 2 (by smoothness)

=(1—7)(f(zs) + vf(ZS)T(ys—l —25)) +7s(f(zs) + vf(ZS)T(U’* —z5)) + %vf(zs)—r(ws —w")

2
i L;s s — ﬂfs—1||2 (by definition of y, and z)
LA? .
< (1= 30 es) 7 (0) + 73V (20) T (@ = 07) + 722 o, — 0 (by comvexity)
Ly?

|25 — 375—1”2 + ’755:(“’* —xy)

= (1= 7)f(Ys_1) + Vs f (W) + 7V (s — w*) + :

Ly?

2 |25 — m3—1||2 + ’7552—(“’* —xy)

(by Eq. (4))

< (]— - ’Ys)f(ysfl) + VSf(UJ*) + VsMt,s — 756s($s - ws—l)T(ms - 'w*) +

* BS’VS * *
= (L= ) f(Womn) + 7 (W) + 30 + =5 (lams = w”|” = [lzg —w|P)+

2 (@ = 8 s = et + 28] (2om1 — @) + 28] (w" — wo1))

S /s 6
< (=0 (1) + 7 007) 4 70+ P s =0 =)+ (ﬂsl L sl x>) ,
where the last inequality is by the fact 85 > L+, and thus
Al & |F_ _los)”
Lrys — B s — Lg— 2 2(5T s—1 — QZH‘i‘;_ «— L _ L s < s .
(Lys = Bs) [|lzs — @s—1” + 28, (25-1 — x) e~ L (8. Ys) [|Ts — Ts—1 -l SE-L.

L?D?  def o

Note that E[8] (w* — ,_1)] = 0. So with the condition E[[|d,]|*] < = o2 we arrive at

— N (s+1)2

L)~ (07)] £ (- Bl ()= (e G Bl = 0] Bl = w7 + 557 ).

Now define 'y = I';_1(1 — v5) when s > 1 and T'; = 1. By induction, one can verify 'y = 0 2

51y and the following:

k 0.2
Elf(y,) — flw)] <Tx > ;— (nt,s + %(E[Ilwsa —w* ||’ - E[|lz, — w*|?)) + 2(B—L7)> )

which is at most

LY o’ Y151 YsBs  Ys—1Bs—1 2
FkZﬁ (ns‘FM) +7 <F1E[ —w|] "’Z( ., >E[||w51 —w’| ]) :

s=1

Finally plugging in the parameters ~s, s, 1.5, L s and the bound E[||zo — w*||?] < D? concludes the proof:
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