
Graduated Optimization for Non-Convex Problems

A. Proof of Lemma 3.4
Proof. For simplicity we discuss a gaussian smoothing, (Duchi et al., 2012), instead of the uniform ball smoothing as
discussed in Definition 3.1. The proof for the smoothing used in our paper is similar. Note that uniform ball smoothing
with parameter � is equivalent2 to (zero mean) gaussian smoothing with a covariance matrix of (�/

p
d)I

d

, where I
d

is the
d dimensional identity matrix. Thus the �-smoothed version with the gaussian kernel is defined as follows:

ˆf
�

(x) = E
u

[f(x + �u)], where u ⇠ N (0,
1p
d
I
d

) .

here N (0, I
d

) denotes a zero mean normal distribution with the identity covariance matrix. For ease of notation define ˜f
as follows:

˜f
�

(x) =

ˆfp
d�

(x) = E
u

[f(x + �u)], where u ⇠ N (0, I
d

) .

Since Lemma 3.4 states that f is (

p
d, 0.5)-nice, we need to prove the following:

1. Centering property: For every � > 0, and every x

⇤
�

2 arg min

x2K
˜f
�

(x), there exists x⇤
�/2 2 arg min

x2K ˜f
�/2(x),

such that kx⇤
�

� x

⇤
�/2k  �/2 .

2. Local strong convexity of the smoothed versions: For every � > 0, let r
�

= 3�, and denote x⇤
�

= arg min

x2K
˜f
�

(x),
then over B

r

�

(x

⇤
�

) the function ˜f
�

(x) is �-strongly-convex.

Remark: We will abuse notation for the rest of the proof and relate to ˜f
�

as the smoothed version.

In the case of the quadratic function with a valley, we may calculate the smoothed versions explicitly:

˜f
�

(x) = E
u

[

kx + �uk2
2

� ↵e�
(x1+�u1�1)2

2�2
]

=

1

2

E
u

[kxk2 + 2�hu,xi + �2kuk2] � ↵E
u

[e�
(x1+�u1�1)2

2�2
]

=

kxk2
2

� ↵E
u1 [e

� (x1+�u1�1)2

2�2
] + C

=

kxk2
2

� ↵

r

�2

�2
+ �2

e
� (x1�1)2

2(�2+�

2)
+ C ,

here C = E
u

[�2kuk2], and we used E
u

[u] = 0, we also used the fact that a convolution between two gaussian kernels
is a gaussian kernel with the sum of variances, see (Oppenheim & Willsky, 1997) (note that smoothing with gaussian
perturbation is equivalent to convolution with a gaussian kernel). It therefore follows that the smoothed version of a
quadratic function with a valley is the same quadratic function with a wider valley, and a smaller amplitude.

The last equation implies that it is sufficient to prove that the 1-dim function: f(x) =

x

2

2 � ↵e�
(x�1)2

2�2 , is �-nice, where
the smoothed versions are:

˜f
�

(x) =

x2

2

� ↵

s

�2

˜�2
e�

(x�1)2

2�̃2 , (4)

and we denote ˜�2 = �2 + �2. It is possible to validate that the hardest case is when ↵ is the largest possible. We therefore
assume from now on that ↵ = 1/200.

Step 0: Here we show that if � � 1/10 then f(x) is 1/2-strongly-convex and 3/2-smooth. Deriving f(x) twice we get:

f 00
(x) = 1 + g00(x) = 1 � 1

200�2
e�

(x�1)2

2�2

✓

(x � 1)

2

�2
� 1

◆

.

2Equivalence in the sense that in both cases the bias between the �-smoothed version and the original function is bounded by L�
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It can be shown that g00(x) has one global maxima at x = 1 and two global minima at x = 1 ±p
3�, and therefore 8x:

�2e�3/2

200�2
= g00(1 +

p
3�)  g00(x)  g00(1) =

1

200�2
,

Using � � 1/10 we conclude that:
1/2  f 00

(x)  3/2 ,

which establishes the strong-convexity and smoothness. From now on we assume that �  1/10, and establish the
“niceness” of f .

Step 1: Here we show the following to hold:

0  x⇤
�

 1

5

max{�, �} (5)

We will require the following lemma (see proof in Section A.1):

Lemma A.1. Let ✓ � 0, ↵ 2 (0, 1
25 ], and m(x) =

x

2

2 � ↵e�
(x�1)2

2✓2 . Denoting x⇤
= arg min

x2R m(x) then:

0  x⇤  2

p
↵✓

Applying the above lemma to the smoothed version appearing in Equation (4), we conclude that for x⇤
�

= arg min

x2R ˜f
�

(x)

the following applies:

0  x⇤
�

 2p
200

✓

�2

˜�2

◆1/4
p

˜�2 =

1

5

p
2

�

�2
(�2

+ �2)
�1/4

.

Note that the above means x⇤
�

 1
5 max{�, �}.

Step 2: Here we show that the smoothed versions are 0.5-strongly-convex in a 3� radius around the global minima. Note
that it suffices to show that 8x 2 x⇤

�

+ [�3�, 3�], the following holds:

�g00
�

(x) =

1

200

˜�2

s

�2

˜�2

✓

(x � 1)

2

˜�2
� 1

◆

e�
(x�1)2

2�̃2  0.5 .

In the previous paragraph we have shown that 0  x⇤
�

 1
5 max{�, �}, since max{�, �}  ˜� it suffices to prove that the

above holds 8x 2 (�1, �̃

2 + 3

˜�]. Now suppose that there exists x 2 (�1, �̃

2 + 3

˜�] such that (x� 1)

2  1
9 , then it follows

that ˜� � 4/21. In this case:

�g00
�

(x) =

1

200

˜�2

s

�2

˜�2

✓

(x � 1)

2

˜�2
� 1

◆

e�
(x�1)2

2�̃2

 1

200

˜�2
max

z2R
(z � 1) e�z/2

 1

200

˜�2
2e�3/2 < 0.5 .

where in the first inequality we used �2  ˜�2, in the second inequality we used max

z2R(z � 1)e�z/2
= 2e�3/2, later we

used used ˜� � 4/21.

Consider the other case, in which 8x 2 (�1, �̃

2 + 3

˜�] it holds that (x � 1)

2 � 1/9, then:

�g00
�

(x) =

1

200

˜�2

s

�2

˜�2

✓

(x � 1)

2

˜�2
� 1

◆

e�
(x�1)2

2�̃2

=

1

200

s

�2

˜�2
1

(x � 1)

2

(x � 1)

2

˜�2

✓

(x � 1)

2

˜�2
� 1

◆

e�
(x�1)2

2�̃2

 9

200

max

y�0
y(y � 1)e�y/2 < 0.5 .

where we used �2  ˜�2, also (x � 1)

2 � 1/9, and finally we used max

y�0 y(y � 1)e�y/2  1.665.
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Step 3: Letting x⇤
= arg min

x

f(x), we show here that 8�  �, |x⇤
�

� x⇤|  �

3 .

First note that we have already shown that ˜f
�

is 0.5-strongly convex in the section (�1, 3.5˜�) (see Step 2), this section
contains x⇤

�

and x⇤, since 8� < � then x⇤
�

 �/5  ˜�/5 (see Step 1). The strong convexity implies:

|x⇤ � x⇤
�

| 
r

2

0.5

q

˜f
�

(x⇤
) � ˜f

�

(x⇤
�

)

 2

r

f(x⇤
) � f(x⇤

�

) +

⇣

˜f
�

(x⇤
) � f(x⇤

)

⌘

�
⇣

˜f
�

(x⇤
�

) � f(x⇤
�

)

⌘

 2

r

max

x2[0,�/5]
| ˜f

�

(x) � f(x)| . (6)

in the second inequality we used x⇤
= arg min

x2R f(x). Now fix x 2 [0, �/5] and lets us denote b =

(x�1)2

�

2 , also denote
z =

�

2

�

2  1, using this notation we can write:

200(f(x) � ˜f
�

(x)) =

r

�2

�2
+ �2

e
� (x�1)2

2(�2+�

2) � e�
(x�1)2

2�2

=

r

1

1 + z
e�

b

2(1+z) � e�b/2
= h0

(z0)z . (7)

for some z0 2 [0, z] ✓ [0, 1], where we denote h(z) =

q

1
1+z

e�
b

2(1+z) , deriving h(z) we get:

|h0
(z)| = |1

2

(1 + z)

�5/2e�
b

2(1+z)
(b � z)|

 1

2

e�
b

2(1+z) b

 1

2

e�
(49/100)2

�

2
1

�2
.

where in the first inequality we 1 + z � 1, and also b � (1 + z) =

(x�1)2

�

2 � (1 + z) > 0; 8z 2 [0, 1], x  �

5  1
50 . This

is since (x�1)2

�

2 > (2�/5�1)2

�

2 � (49/50)2

0.52 > 2 � 1 + z. In the second inequality we used (49/50)

2  (x � 1)

2  1, and
1

1+z

� 1
2 . Plugging the above bound on |h0

(z)| into Equation (7) and substituting z = �2/�2, we get:

|f(x) � ˜f
�

(x)|  1

400

e�
(49/100)2

�

2
1

�4
�2  1

40

�2 .

where we used max

�

e�
(49/100)2

�

2 1
�

4 < 10. Plugging the above into Equation (6) we conclude:

|x⇤ � x⇤
�

|  �

3

, 8�  � (8)

Conclusion: In Step 2 we have shown that ˜f
�

is 0.5-strongly-convex a radius of 3� around x⇤
�

. We are left to show that
8� > 0, |x⇤

�

� x⇤
�/2|  �/2. According to Equation (5), 8� � � we have:

|x⇤
�

� x⇤
�/2|  �/5 .

Equation (8) implies that 8�  �:

|x⇤
�

� x⇤
�/2|  |x⇤ � x⇤

�

| + |x⇤ � x⇤
�/2|  �/3 + (�/2)/3 = �/2 .

Thus f(x) is (

p
d, 0.5)-nice.



Graduated Optimization for Non-Convex Problems

A.1. Proof of Lemma A.1

Proof. It is can be noticed that x⇤ must be positive (using the symmetry of the quadratic function around 0, and the “valley”
function around 1). Now, note that the optimality of x⇤ means:

(x⇤
)

2

2

� ↵  (x⇤
)

2

2

� ↵e�
(x⇤�1)2

2✓2
= m(x)  m(0)  0 .

and therefore, we always have:

x⇤  2

p
↵

this establishes the lemma for ✓ � 1.

Now let ✓  1, suppose by contradiction that |x⇤ � 1|  ✓
p

2 max{0, log 1/2✓2}, it therefore follows that:

m(x⇤
) =

(x⇤
)

2

2

� ↵e�
(x⇤�1)2

2✓2 � (1 � ✓
p

2 max{0, log 1/2✓2})2
2

� ↵ � (1 � 0.65)

2 � 1

25

� 0 > m(0) .

which is a contradiction since x⇤ is the global optimum. Note that we used ↵  1/25,
max

✓2[0,1] ✓
p

2 max{0, log 1/2✓2}  0.65, and m(0) < 0. It therefore follows that for ✓  1, we always have
|x⇤ � 1| � ✓

p

2 max{0, log 1/2✓2}, thus:

0 > m(0) � m(x⇤
) =

(x⇤
)

2

2

� ↵e�
(x⇤�1)2

2✓2 � (x⇤
)

2

2

� ↵2✓2 ,

and therefore x⇤  2

p
↵✓ for ✓ 2 [0, 1], which establishes the lemma.

B. Proof of Theorem 5.1
Notice that at each epoch m of GradOpt

V

, it initiates Suffix-SGD with a gradient oracle SGO
V

(·, �
m

). According to
Lemma 3.3, SGO

V

(·, �
m

) produces an unbiased and dC/�
m

-bounded estimates for the gradients of ˆf
�

m

, thus in the
analysis of each epoch we can use Corollary 4.1 for ˆf

�

m

, taking G = dC/�
m

.

Following is our key Lemma:

Lemma B.1. Consider M , K
m

and ¯

x

m+1 as defined in Algorithm 3. Also denote by x

⇤
m

the minimizer of ˆf
�

m

in K. Then
the following holds for all 1  m  M w.p.� 1 � p:

1. The smoothed version ˆf
�

m

is �-strongly convex over K
m

, and x

⇤
m

2 K
m

.

2. Also, ˆf
�

m

(

¯

x

m+1) � ˆf
�

m

(x

⇤
m

)  ��2
m+1/8

The proof of Lemma B.1 is similar to the proof of Lemma 4.1 given in Section 4.1, we therefore omit the details.

We are now ready to prove Theorem 5.1:

Proof of Theorem 5.1. Let ¯

x

M+1 be the output of Algorithm 3. Similarly to the proof of Theorem 4.1, we can show that
for every x 2 K:

f(

¯

x

M+1) � f(x)  "
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Let Ttotal, be the total number of queries made by Algorithm 3, then we have:

Ttotal 
M

X

m=1

12480d2C2

�"
m

�2
m

log �


M

X

m=1

12480d2C2

�(��2
m

/32)�2
m

log �

 4 · 10

5d2C2
log �

�2

M

X

i=1

8

i�1

�41

 6 · 10

4d2C2
log �

�2

8

M

�41

 6 · 10

4d2C2
log �

�2
max{256L4, �2/4} 1

"4

here we used the notation:

� :=

2M

p
+ 2 log(12480d2C2/�"

M

�2
M

)

 2M

p
+ 2 log(4 · 10

5d2C2
max{256L4,

�2

4

}/�2"4)


