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Abstract
The graduated optimization approach, also
known as the continuation method, is a pop-
ular heuristic to solving non-convex problems
that has received renewed interest over the last
decade. Despite being popular, very little is
known in terms of its theoretical convergence
analysis.

In this paper we describe a new first-order algo-
rithm based on graduated optimization and an-
alyze its performance. We characterize a fam-
ily of non-convex functions for which this al-
gorithm provably converges to a global opti-
mum. In particular, we prove that the algorithm
converges to an ε-approximate solution within
O(1/ε2) gradient-based steps. We extend our
algorithm and analysis to the setting of stochas-
tic non-convex optimization with noisy gradient
feedback, attaining the same convergence rate.
Additionally, we discuss the setting of “zero-
order optimization”, and devise a variant of our
algorithm which converges at rate of O(d2/ε4).

1. Introduction
Non-convex optimization programs are ubiquitous in ma-
chine learning and computer vision. Of particular interest
are non-convex optimization problem that arise in the train-
ing of deep neural networks (Bengio, 2009). Often, such
problems admit a multimodal structure, and therefore, the
use of convex optimization machinery may lead to poor lo-
cal optima.

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Graduated optimization (a.k.a. continuation), (Blake &
Zisserman, 1987), is a methodology that attempts to over-
come such numerous local optima. Initially, a simpler
coarse-grained version of the objective is generated and
minimized. Then, the method progresses in stages, grad-
ually refining the versions of the objective, and using the
solution of the previous stage as an initial point for the op-
timization in the next stage.

Despite its popularity, there are still many gaps concern-
ing both theoretical and practical aspects of graduated op-
timization, and in particular we are not aware of a rigorous
running time analysis to find a global optimum, or even
conditions in which a global optimum is reached. Nor are
we familiar with graduated optimization in the stochastic
setting, in which only a noisy gradient or value oracle to
the objective is given. Moreover, any practical application
of graduated optimization requires to efficiently construct
coarse-grained versions of the original objective. For some
special cases this construction can be made analytically
(Chapelle et al., 2006; Chaudhuri & Solar-Lezama, 2011) .
However, in the general case, it is commonly suggested in
the literature to convolve the original function with a gaus-
sian kernel (Wu, 1996). Yet, this operation is prohibitively
inefficient in high dimensions.

Here we take an algorithmic / analytic approach to gradu-
ated optimization and show the following:

• We characterise σ-niceness (Def. 3.2), a property
of non-convex multimodal functions which captures
non-convex structure that appears in challenging opti-
mization problems.

• We provide a stochastic algorithm inspired by gradu-
ated optimization, that performs only gradient updates
and is ensured to find an ε-optimal solution of σ-nice
functions within O(1/σ2ε2) iterations. Our algorithm
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does not require expensive convolutions and gains ac-
cess to the smoothed versions of any function using
random sampling. The algorithm only requires access
to the objective function through a noisy gradient ora-
cle.

• We extend our method to the “zero-order optimiza-
tion” model (a.k.a. “bandit feedback” model), where
the objective is only accessible through a noisy value
oracle. We devise a variant of our algorithm that ob-
tains an ε-optimal solution within O(d2/σ2ε4) itera-
tions.

Interestingly, the next question is raised in (Bengio, 2009)
which reviews recent developments in the field of deep
learning: “Can optimization strategies based on contin-
uation methods deliver significantly improved training
of deep architectures?”

As an initial attempt to establish the effectiveness of grad-
uated optimization, we examine the task of training a NN
(Neural Network) over the MNIST data set. Our experi-
ments support the theoretical guarantees, substantiating an
accelerated convergence in training the NN. Moreover, we
demonstrate a non-convex phenomena that exists in natural
data, and is captured by the σ-nice property.

1.1. Related Work

Among the machine vision community, the idea of grad-
uated optimization was known since the 80’s. The term
“Graduated Non-Convexity” (GNC) was coined by (Blake
& Zisserman, 1987), who were the first to establish this
idea explicitly. Similar attitudes in the machine vision lit-
erature appeared later in (Yuille, 1989; Yuille et al., 1990),
and (Terzopoulos, 1988). Concepts of the same nature ap-
peared in the optimization literature (Wu, 1996), and in the
field of numerical analysis (Allgower & Georg, 1990).

Over the last two decades, this concept was successfully ap-
plied to numerous problems in computer vision; among are:
image deblurring (Boccuto et al., 2002) , image restora-
tion (Nikolova et al., 2010), and optical flow (Brox & Ma-
lik, 2011). The method was also adopted by the machine
learning community, demonstrating effective performance
in tasks such as semi-supervised learning (Chapelle et al.,
2006), graph matching (Zaslavskiy et al., 2009), and rank-
ing (Chapelle & Wu, 2010). In (Bengio, 2009), it is sug-
gested to consider some developments in deep belief archi-
tectures (Hinton et al., 2006; Erhan et al., 2009) as a kind
of continuation. These approaches, in the spirit of the con-
tinuation method, offer no guarantees on the quality of the
obtained solution, and are tailored to specific applications.
A comprehensive survey of the graduated optimization lit-
erature can be found in (Mobahi & Fisher III, 2015a).

A recent work (Mobahi & Fisher III, 2015b) advances our
theoretical understanding, by analyzing a continuation al-
gorithm in the general setting. Yet, they offer no way to
perform the smoothing efficiently, nor a way to optimize
the smoothed versions; but rather assume that these are
possible. Moreover, their guarantee is limited to a fixed
precision that depends on the objective function and does
not approach zero. In contrast, our approach can generate
arbitrarily precise solutions.

2. Setting and Background
Notation and Preliminaries: During this paper we use
B,S to denote the unit Euclidean ball/sphere in Rd, and also
Br(x),Sr(x) as the Euclidean r-ball/sphere in Rd centered
at x. For a set A ⊂ Rd , u ∼ A denotes a random variable
distributed uniformly over A.

Recall the definition of strongly-convex functions,
Definition 2.1. A function F : Rn → R is said to be σ-
strongly convex over a setK if for any x,y ∈ K the follow-
ing holds,

F (y) ≥ F (x) +∇F (x)>(y − x) +
σ

2
‖x− y‖2 .

Let F be a σ-strongly convex over convex setK, and let x∗

be a point in K where F is minimized, then the following
inequality is satisfied:

σ

2
‖x− x∗‖2 ≤ F (x)− F (x∗) (1)

This is immediate by the definition of strong convexity
combined with∇F (x∗)>(x− x∗) ≥ 0, ∀x ∈ K.

2.1. Stochastic Optimization with Gradient/Value
Feedback

We discuss an optimization of a loss function f : K 7→ R,
where K ⊆ Rd is a convex set. We assume that optimiza-
tion lasts for T rounds; on each round t = 1, . . . , T , we
may query a point xt ∈ K, and receive a feedback. After
the last round, we choose x̄T ∈ K, and our performance
measure is the excess loss, defined as,

f(x̄T )−min
x∈K

f(x) .

In Section 3.2 we characterize a family of non-convex func-
tions we denote by σ-nice. Given such a function, we are
interested in algorithms that obtain an ε-excess loss within
poly(1/ε) rounds.

We consider two kinds of feedback:

1. Noisy Gradient feedback: Upon querying xt we re-
ceive ∇f(xt) + ξt, where {ξτ}Tτ=1 are independent
zero mean and bounded random variables.
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Oracle 1: SGOG
Input: x ∈ Rd, smoothing parameter δ
Return: ∇f(x + δu), where u ∼ B

Figure 1. Smoothed gradient oracle given gradient feedback.

Oracle 2: SGOV
Input: x ∈ Rd, smoothing parameter δ
Return: dδ f(x + δv)v, where v ∼ S

Figure 2. Smoothed gradient oracle given value feedback.

2. Noisy Value feedback (Bandit feedback): Upon
querying xt we receive f(xt) + ξt, where {ξτ}Tτ=1

are independent zero mean and bounded random vari-
ables.

3. Smoothing and σ-Nice functions
Constructing finer and finer approximations to the original
objective function is at the heart of the continuation ap-
proach. In Section 3.1 we define the smoothed versions that
we employ. Next, in Section 3.1.1 we describe an efficient
way to implicitly access the smoothed versions, which will
enable us to perform optimization. In Section 3.2 we define
the class of σ-nice functions, and show in Section 3.2.1 that
it captures the “valley” phenomenon. “Valley” is a non-
convex structure that might prevent gradient descent meth-
ods from approaching the global minimum, and appears in
challenging optimization problems as we describe in Sec-
tion 7.

3.1. Smoothing

Smoothing by local averaging is formally defined next.

Definition 3.1. Given an L-Lipschitz function f : Rd 7→ R
define its δ-smooth version to be

f̂δ(x) = Eu∼B[f(x + δu)].

The next lemma bounds the bias between f̂δ and f .

Lemma 3.1. Let f̂δ be the δ-smoothed version of f , then,
∀x ∈ Rd, |f̂δ(x)− f(x)| ≤ δL .

3.1.1. IMPLICIT SMOOTHING USING SAMPLING

A direct way to optimize a smoothed version is by an ex-
plicit calculation of its gradients, nevertheless this might be
very costly in high dimensions. A much more efficient ap-
proach is to produce an unbiased estimate for the gradients

of the smoothed version by sampling the gradients/values
of the function. These estimates could then be used by a
stochastic optimization algorithms such as SGD (Stochas-
tic Gradient Descent). This sampling approach is outlined
in Figures 1,2.

The following two Lemmas state that the resulting esti-
mates are unbiased and bounded 1:
Lemma 3.2. Let x ∈ Rd, δ ≥ 0, and suppose that f is L-
Lipschitz, then the output of SGOG (Figure 1) is bounded
by L and is an unbiased estimate for ∇f̂δ(x).
Lemma 3.3. Let x ∈ K ⊆ Rd, δ ≥ 0, and suppose that
maxx |f(x)| ≤ C, then the output of SGOV (Figure 2) is
bounded by dC

δ and is an unbiased estimate for ∇f̂δ(x).

Extensions to the noisy feedback settings: Note that for
ease of notation, the oracles that appear in Figures 1, 2,
assume we can access exact gradients/values of f . Given
that we may only access noisy and bounded gradient/value
estimates of f (Sec. 2.1), we could use these instead of
the exact ones that appear in Figures 1,2, and still produce
unbiased and bounded estimates of∇f̂δ(x).

3.2. σ-Nice Functions

Following is our main definition
Definition 3.2 ((a, σ)-Nice). Let a, σ > 0. A function f :
K 7→ R is said to be (a, σ)-nice if the following holds:

1. Centering property: For every δ > 0, and ev-
ery x∗δ ∈ arg minx∈K f̂aδ(x), there exists x∗δ/2 ∈
arg minx∈K f̂aδ/2(x), such that ‖x∗δ − x∗δ/2‖ ≤ δ/2 .

2. Local strong convexity of the smoothed versions:
For every δ > 0, let rδ = 3δ, and denote x∗δ =

arg minx∈K f̂aδ(x), then over Brδ(x
∗
δ) the function

f̂aδ(x) is σ-strongly-convex.

In case that a = 1 we say that f is σ-nice.

Hence, (a, σ)-nice is a combination of two properties. Both
together imply that optimizing the smoothed version on a
scale aδ is a good start for optimizing a finer version on a
scale of aδ/2.

For simplicity we will only analyze the case of σ-nice func-
tions. The analysis for the case when a 6= 1 is similar. In
Section 3.2.1 we discuss a non-convex phenomenon that
admits the (a, σ)-nice property. In Section 7 we show this
phenomenon to arise naturally in data. An illustration of a
1-dim, σ-nice function appears in Fig. 3(a).

1Note that the oracles depicted in Figures 1,2 may require
sampling function gradients/values outside K, (specifically in
K+δB). We assume that this is possible, and that the bounds over
the function gradients/values inside K, also applies in K+ δB.
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Figure 3. Top: a 1-dim σ-nice function (δ = 0), and its smoothed
versions. Bottom: the valley phenomenon, green marker–global
optimum, red marker– a point inside the valley.

3.2.1. THE VALLEY PHENOMENON

In this section we discuss the valley, a non-convex phe-
nomenon in which a local minima is present. The valley
might “entrap” the gradient descent algorithm, preventing
it from approaching the global optimum. We show that a
quadratic function with a local valley admits the (a, σ)-nice
structure, implying that our graduated optimization algo-
rithm (Alg. 1), overcomes the non-convex pitfall and con-
verges to the global minima. Section 7 demonstrates this
phenomenon in a task of training a NN over the MNIST
dataset (Fig 4). We show that SGD stalls due to the valley,
however smoothing enables to escape the local hurdle and
reach a better solution.

Let x = (x1, . . . , xd) ∈ Rd. A quadratic function with a
one dimensional valley is defined by,

f(x) = 0.5‖x‖2 + g(x) = 0.5‖x‖2 − αe−
(x1−1)2

2λ2 , (2)

where we refer to g(x) = −αe−
(x1−1)2

2λ2 as the valley func-
tion. Note that the valley is centered around x1 = 1, and
that the width of valley is controlled by λ. In Figure 3(b) we
present a two dimensional graph of the function described
in Equation (2). The following Lemma states that the above
function is either strongly-convex or (a, σ)-nice:

Algorithm 1 GradOptG
Input: target error ε, maximal failure probability p, de-
cision set K
Choose x̄1 ∈ K uniformly at random.
Set δ1 = diam(K), p̃ = p/M , and M = log2

1
α0ε

where

α0 = min
{

1
2Ldiam(K) ,

4√
σdiam(K)

}
for m = 1 to M do

// Perform SGD over f̂δm
Set εm := σδ2m/32, and

TF =
12480L2

σεm
log
(2

p̃
+ 2 log

12480L2

σεm

)
Set shrinked decision set,

Km := K ∩B(x̄m, 1.5δm)

Set gradient oracle for f̂δm ,

GradOracle(·) = SGOG(·, δm)

Update:

x̄m+1 ← Suffix-SGD(TF ,Km, x̄m,GradOracle)

δm+1 = δm/2
end for
Return: x̄M+1

Lemma 3.4. Let f be the function described in Equa-
tion (2), and assume α ∈ [0, 1

200 ]. If λ ≤ 0.1 then f is
(
√
d, 0.5)-nice; Otherwise, f is 0.5-strongly-convex.

4. Graduated Optimization with a Gradient
Oracle

Here we assume that we may access a noisy gradient oracle
for f . Thus, given x ∈ Rd, δ ≥ 0 we can use SGOG
(Figure 1) to obtain an unbiased and bounded estimate for
∇f̂δ(x).

Algorithm 2 Suffix-SGD
Input: total time TF , decision set K, initial point x1 ∈
K, gradient oracle GradOracle(·)
for t = 1 to TF do

Set ηt = 1/σt
Query gt ← GradOracle(xt)
Update xt+1 ← ΠK(xt − ηtgt)

end for
Return: x̄TF := 2

TF

(
xTF /2+1 + . . .+ xTF

)

Following is our main Theorem:
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Theorem 4.1. Let ε ∈ (0, 1) and p ∈ (0, 1/e), also
let K be a convex set, and f be an L-Lipschitz σ-nice
function. Suppose that we apply Algorithm 1, then after
Õ(1/σ2ε2) optimization steps, Algorithm 1 outputs a point
x̄M+1 which is ε optimal with a probability greater than
1− p.

Remark: Note that for (a, σ)-nice functions, we can prove
a bound of Õ(a2/σ2ε2) on the number of steps required to
attain an ε-optimal solution. The proof is similar to the one
of Theorem 4.1 and we therefore omit the details.

Algorithm 1 is divided into epochs, at epoch m it uses
SGOG to obtain unbiased estimates for the gradients of f̂δm
which are then employed by Suffix-SGD (Algorithm 2), to
optimize this smoothed version. This optimization over
f̂δm is performed until we are ensured to reach a point
close enough to x∗m+1 := arg minx∈K f̂δm+1

(x), i.e., the
minimum of f̂δm+1

. Also note that at epoch m the opti-
mization over f̂δm is initialized at x̄m which is the point
reached at the previous epoch. Suffix-SGD (Algorithm 2),
is a stochastic optimization algorithm for strongly convex
functions. Its guarantees are presented in Section 4.1.

4.1. Analysis

First, note that Suffix-SGD performs projected gradient de-
scent using the gradients received by GradOracle(·). The
projection operator ΠK, is defined ∀y ∈ Rd as ΠK(y) :=
arg minx∈K ‖x− y‖ .

The following lemma from (Rakhlin et al., 2011), states the
performance guarantees of Suffix-SGD (Algorithm 2):
Theorem 4.2. Let p ∈ (0, 1/e), and F be a σ-strongly
convex function. Suppose that GradOracle(·) produces
G-bounded, and unbiased estimates of ∇F . Then after
no more than TF rounds, the final point x̄TF returned by
Suffix-SGD (Algorithm 2 ) ensures that with a probability
≥ 1− p, we have:

F (x̄TF )−min
x∈K

F (x) ≤
6240 log

(
2 log(TF )/p

)
G2

σTF
.

Corollary 4.1. The latter means that for TF ≥
12480G2

σε log
(
2/p + 2 log(12480G2/σε)

)
we will have an

excess loss smaller than ε.

Notice that at each epoch, m, of GradOptG, it initiates
Suffix-SGD with a gradient oracle SGOG(·, δm) which
produces an unbiased and L-bounded estimates of f̂δm
(Lemma 3.2). Thus in the analysis of each epoch we can
use Theorem 4.2 for f̂δm , taking G = L.

Following is our key Lemma:
Lemma 4.1. Consider M , Km and x̄m+1 as defined in
Algorithm 1. Also denote by x∗m the minimizer of f̂δm inK.
Then the following holds for all 1 ≤ m ≤M w.p.≥ 1− p:

1. The smoothed version f̂δm is σ-strongly convex over
Km, and x∗m ∈ Km.

2. Also, f̂δm(x̄m+1)− f̂δm(x∗m) ≤ σδ2m+1/8 .

Proof. We prove by induction. Let us prove that the lemma
holds for m = 1. Note that δ1 = diam(K), therefore
K1 = K, and also x∗1 ∈ K1. Also recall that σ-niceness
of f implies that f̂δ1 is σ-strongly convex in K, thus by
Corollary 4.1, after less than TF = Õ( 12480L2

σ(σδ21/32)
) optimiza-

tion steps of Suffix-SGD with a probability greater than
1− p/M , we will have:

f̂δ1(x̄2)− f̂δ1(x∗1) ≤ σδ21/32 = σδ22/8 .

which establishes the case of m = 1. Now assume that
lemma holds form > 1. By this assumption, f̂δm(x̄m+1)−
f̂δm(x∗m) ≤ σδ2m+1/8, f̂δm is σ-strongly convex in Km,
and also x∗m ∈ Km. The σ-strong-convexity in Km im-
plies,

‖x̄m+1−x∗m‖ ≤
√

2

σ

√
f̂δm(x̄m+1)− f̂δm(x∗m) ≤ δm+1

2
.

Combining the latter with the centering property of σ-
niceness yields:

‖x̄m+1 − x∗m+1‖ ≤ ‖x̄m+1 − x∗m‖+ ‖x∗m − x∗m+1‖
≤ 1.5δm+1 ,

and it follows that,

x∗m+1 ∈ B(x̄m+1, 1.5δm+1) ⊂ B(x∗m+1, 3δm+1) .

Recalling that Km+1 := B(x̄m+1, 1.5δm+1), and the local
strong convexity property of f (which is σ-nice), then the
induction step for first part of the lemma holds. Now, by
Corollary 4.1, after less than TF = Õ( 12480L2

σ(σδ2m+1/32)
) opti-

mization steps of Suffix-SGD over f̂δm+1 , we will have:

f̂δm+1
(x̄m+2)− f̂δm+1

(x∗m+1) ≤ σδ2m+2/8 .

which establishes the induction step for the second part of
the lemma.

An analysis of fail probability: since we have M epochs
in total and at each epoch the fail probability is smaller
than p/M , then the total fail probability of our algorithm
is smaller than p.

We are now ready to prove Theorem 4.1

Proof of Theorem 4.1. Algorithm 1 terminates after M =
log2

1
α0ε

epochs meaning, δM = diam(K)α0ε. According
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to Lemma 4.1 the following holds w.p.≥ 1 − p , for every
x ∈ K,

f̂δM (x̄M+1)− f̂δM (x) ≤ σδ2M+1/8

=

(√
σdiam(K)α0ε

4
√

2

)2

.

Due to Lemma 3.1, f̂δM is LδM biased from f , using the
definition of α0, we conclude that ∀x ∈ K,

f(x̄M+1)− f(x) ≤ Ldiam(K)α0ε+

(√
σdiam(K)α0ε

4
√

2

)2

≤ ε .

The series of smoothing parameters {δm}Mm=1 decays as
geometric series with a decay factor of 2, it is therefore
possible to show that the total number of optimization steps
made by Algorithm 1 is Õ(1/σ2ε2). Indeed, let Ttotal be the
total number of queries made by by Algorithm 1, then we
have:

Ttotal ≤
M∑
m=1

12480L2

σεm
log Γ

≤
M∑
m=1

12480L2

σ(σδ2m/32)
log Γ

≤ 4 · 105L2 log Γ

σ2

M∑
i=1

4i−1

δ21

≤ 14 · 104L2 log Γ

σ2

4M

δ21

≤ 14 · 104L2 log Γ

σ2
max{16L2, σ/2} 1

ε2
,

here we used the notation:

Γ :=
2M

p
+ 2 log(12480L2/σεM )

≤ 2M

p
+ 2 log(4 · 105L2 max{16L2,

σ

2
}/σ2ε2) .

5. Graduated Optimization with a Value
Oracle

In this section we assume that we can access a noisy value
oracle for f . Thus, given x ∈ Rd, δ ≥ 0 we can use
SGOV (Figure 2) as an oracle that outputs an unbiased and
bounded estimates for∇f̂δ(x), as ensured by Lemma 3.3.

Following is our main Theorem:

Theorem 5.1. Let ε > 0 and p ∈ (0, 1/e), also let K
be a convex set, and f be an L-Lipschitz σ-nice function.

Algorithm 3 GradOptV
Input: target error ε, maximal failure probability p, de-
cision set K
Choose x̄1 ∈ K uniformly at random.
Set δ1 = diam(K)/2, p̃ = p/M , and M = log2

1
α0ε

where α0 = min{ 1
2Ldiam(K) ,

2
√
2√

σdiam(K)}
for m = 1 to M do

// Perform SGD over f̂δm
Set εm := σδ2m/32, and

TF =
12480

σεm

d2C2

δ2m
log
(2

p̃
+ 2 log

12480d2C2

σεmδ2m

)
Set shrinked decision set,

Km := K ∩B(x̄m, 1.5δm)

Set gradient oracle for f̂δm ,

GradOracle(·) = SGOV (·, δm)

Update:

x̄m+1 ← Suffix-SGD(TF ,Km, x̄m,GradOracle)

δm+1 = δm/2
end for
Return: x̄M+1

Assume also that maxx |f(x)| ≤ C. Suppose that we ap-
ply Algorithm 3, then after after Õ(d2/σ2ε4) rounds Algo-
rithm 3 outputs a point x̄M+1 which is ε optimal with a
probability greater than 1− p.

Note that Algorithm 3 and its analysis are similar to the set-
ting presented in Section 4, where a gradient oracle is avail-
able. The key difference is the use of SGOV (Figure 2),
instead of SGOG, in order to obtain smoothed gradient es-
timates. We therefore defer the proofs to the full version of
the paper.

6. Omitted Proofs
6.1. Proof of Lemma 3.1

Proof.

|f̂δ(x)− f(x)| = |Eu∼B [f(x + δu)]− f(x)|
≤ Eu∼B [|f(x + δu)− f(x)|]
≤ Eu∼B [L‖δu‖]
≤ Lδ

in the first inequality we used Jensen’s inequality, and in
the last inequality we used ‖u‖ ≤ 1, since u ∈ B.
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Figure 4. The objective near a stall point. Left: δ = 0. Middle: δ = 3. Right: δ = 7.

6.2. Proof of Lemma 3.2

Proof. SGOG outputs∇f(x+ δu) for some u ∈ B, so the
first part is immediate by the Lipschitzness of f . Now, by
definition, f̂δ(x) = Eu∼B[f(x + δu)], deriving both sides
we get the second part of the Lemma.

6.3. Proof of Lemma 3.3

Proof. SGOV outputs d
δ f(x+ δv)v for some v ∈ S, since

f is C-Bounded overK the first part of the lemma is imme-
diate. In order to prove the second part, we can use Stokes
theorem to show that if v ∼ S, then:

∀x ∈ Rd . Ev∼S[f(x + δv)v] =
δ

d
∇f̂δ(x) (3)

A proof of Equation (3) is found in (Flaxman et al., 2005).

7. Experiments
In the last two decades, performing complex learning tasks
using Neural-Network (NN) architectures has become an
active and promising line of research. Since learning
NN architectures essentially requires to solve a hard non-
convex program, we have decided to focus our empirical
study on this type of tasks. As a test case, we train a NN
with a single hidden layer of 30 units over the MNIST data
set. We adopt the experimental setup of (Dauphin et al.,
2014) and train over a down-scaled version of the data, i.e.,
the original 28×28 images of MNIST were down-sampled
to the size of 10× 10. We use a ReLU activation function,
and minimize the square loss.

7.1. Smoothing the NN

At first, we were interested in exploring the non-convex
structure of the above NN learning task, and check whether
our definition of σ-nice complies with this structure. We
started by running MSGD (Minibatch Stochastic Gradient
Descent) on the problem, using a batch size of 100, and

a step size rule of ηt = η0(1 + γt)−3/4, where η0 =
0.01, γ = 10−4. This choice of step size rule was the
most effective among a grid of rules that we examined. We
have found out that MSGD frequently “stalls” in areas with
a relatively high loss, here we relate to points at the end of
such run as stall-points.

Later, we examined the objective values along two direc-
tions around stall-points. The first direction was the gra-
dient at the stall point, and the second direction was the
line connecting the stall-point to x∗, where x∗ is the best
weights configuration of the NN that we were able to find.
An illustration depicting typical results appears in Fig-
ure 4(a). The stall-point appears in red, and x∗ in green;
also the axis marked asX is the gradient direction, and one
marked Y is the direction between stall-point and x∗. Note
that the stall-point is inside a narrow “valley”, which pre-
vents MSGD from “perceiving” x∗, and so it seems that
MSGD slowly progresses downstream. Note that this re-
sembles the phenomenon depicted in Section 3.2.1.

In Figure 4(b), we present the δ = 3 smoothed version
of the same objective that appears in Figure 4(a). We can
see that the “valley” has not vanished, but the gradient of
the smoothed version leads us slightly towards x∗ and out
of the original “valley”. Figure 4(c) presents the δ = 7
smoothed version of the objective. We can see that due to
the coarse smoothing, the “valley” in which MSGD was
stalled, has completely dissolved, and the gradient of this
version leads us towards x∗.

7.2. Graduated Optimization of NN

Here we present experiments that demonstrate the effec-
tiveness of GradOptG (Algorithm 1) in training the NN
mentioned above. First, we wanted to learn if smoothing
can help us escape points where MSGD stalls. We used
MSGD (δ = 0) to train the NN, and as before we found
that its progress slows down, yielding relatively high error.
We then took the point that MSGD reached after 5 · 104
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Figure 5. Left: running optimization with fixed smoothing values, starting at the point where MSGD stuck after 5 · 104 iterations. Right:
comparison between MSGD and GradOptG.

iteration and initialized an optimization over the smoothed
versions of the loss; this was done using smoothing values
of {1, 3, 5, 7}. In Figure 5(a) we present the results of the
above experiment.

As seen in Figure 5(a), small δ’s converge slower than
large δ’s, but produce a much better solution. Furthermore,
the initial optimization progresses in leaps, for large δ’s
the leaps are sharper, and lower δ’s demonstrate smaller
leaps. We believe that these leaps are associated with the
advance of the optimization from one local “valley” to an-
other; Larger values of δ dissolve the “valleys” much eas-
ily, but converge to points with higher errors, due to the
increase of the bias with smoothing.

In Figure 5(b) we compare our complete graduated opti-
mization algorithm, namely GradOptG (Alg. 1) to MSGD.
We started with an initial smoothing of δ = 7, which de-
cayed according to GradOptG. Note that GradOptG pro-
gresses very fast and yields a much better solution than
MSGD.

8. Discussion
We have described a family of non-convex functions which
admit efficient optimization via the graduated optimization
methodology, and gave the first rigorous analysis of a first-
order algorithm in the stochastic setting.

We view it as only a first glimpse of the potential of grad-
uated optimization to provable non-convex optimization,
and amongst the interesting questions that remain we find

• Is σ-niceness necessary for convergence of first-order
methods to a global optimum? Is there a more lenient
property that better captures the power of graduated
optimization?

• Can second-order/other methods give rise to better
convergence rates / faster algorithms for stochastic or
offline σ-nice non-convex optimization?
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