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Abstract
Although RNNs have been shown to be power-
ful tools for processing sequential data, finding
architectures or optimization strategies that al-
low them to model very long term dependencies
is still an active area of research. In this work,
we carefully analyze two synthetic datasets orig-
inally outlined in (Hochreiter & Schmidhuber,
1997) which are used to evaluate the ability of
RNNs to store information over many time steps.
We explicitly construct RNN solutions to these
problems, and using these constructions, illumi-
nate both the problems themselves and the way in
which RNNs store different types of information
in their hidden states. These constructions fur-
thermore explain the success of recent methods
that specify unitary initializations or constraints
on the transition matrices.

1. Introduction
Recurrent Neural Networks (RNNs) are powerful models
which are naturally suited to processing sequential data.
They can maintain a hidden state which encodes informa-
tion about previous elements in the sequence. For a classi-
cal version of RNN (Elman, 1990), at every timestep, the
hidden state is updated as a function of both the input and
the current hidden state. In theory, this recursive procedure
allows these models to store complex signals for arbitrarily
long timescales.

However, in practice RNNs are considered difficult to train
due to the so-called vanishing and exploding gradient prob-
lems (Bengio et al., 1994). These problems arise when the
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spectral norm of the transition matrix is significantly differ-
ent than 1, or due to the non-linear transition functions. If
the spectral norm of the transition matrix is greater than 1,
the gradients will grow exponentially in magnitude during
backpropagation, which is known as the exploding gradi-
ent problem. If the spectral norm is less than 1, the gradi-
ents will vanish exponentially quickly, which is known as
the vanishing gradient problem. Recently, a simple strat-
egy of clipping gradients has been introduced, and has
proved effective in addressing the exploding gradient prob-
lem (Mikolov, 2012). The problem of vanishing gradients
has shown itself to be more difficult, and various strategies
have been proposed over the years to address it. One very
successful approach, known as Long Short-Term Memory
(LSTM) units (Hochreiter & Schmidhuber, 1997), has been
to modify the architecture of the hidden units by introduc-
ing gates which explicitly control the flow of information
as a function of both the state and the input. Specifically,
the signal stored in a hidden unit must be explicitly erased
by a forget gate and is otherwise stored indefinitely. This
allows information to be carried over long periods of time.
LSTMs have become very successful in applications to lan-
guage modeling, machine translation, and speech recogni-
tion (Zaremba et al., 2014; Sutskever et al., 2014; Graves
et al., 2013). Other methods have been proposed to deal
with learning long-term dependencies, such as adding a
separate contextual memory (Mikolov et al., 2015), sta-
bilizing activations (Krueger & Mimesevic, 2015) or us-
ing more sophisticated optimization schemes (Martens &
Sutskever, 2011). Two recent methods propose to directly
address the vanishing gradient problem by either initializ-
ing or parameterizing the transition matrix with orthogonal
or unitary matrices (Arjovsky et al., 2015; Le et al., 2015).

These works have used a set of synthetic problems (orig-
inally outlined in (Hochreiter & Schmidhuber, 1997) or
variants thereof) for testing the ability of methods to learn
long-term dependencies. These synthetic problems are
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designed to be pathologically difficult, and require mod-
els to store information over very long timescales (hun-
dreds of timesteps). Different approaches have solved these
problems to varying degrees of success. In (Martens &
Sutskever, 2011), the authors report that their Hessian-
Free optimization based method solves the addition task for
T = 200 timesteps. The authors of (Krueger & Mimese-
vic, 2015) reported that their method beat the chance base-
line for the adding task in 8/9 cases for T = 400. In (Le
et al., 2015), the IRNN is reported to solve the addition task
for T = 300. The method proposed in (Arjovsky et al.,
2015) is able to solve the copy task for up to T = 500
timesteps, and is able to completely solve the addition task
for up to T = 400 timesteps, and partially solves it for
T = 750.

In this work we analyze these “long-memory” tasks, and
construct explicit RNN solutions for them. The solutions
illuminate both the tasks, and provide a theoretical justifica-
tion for the success of recent approaches using orthogonal
initializations of, or unitary constraints on, the transition
matrix of the RNN. In particular, we show that a classical
Elman RNN with no transition non-linearity and random
orthogonal initialization is with high probability close to
our explicit RNN solution to the sequence memorization
task, and the same network architecture with identity ini-
tialization is close to the explicit solution to the addition
task. We verify experimentally that initializing correctly
(i.e. random orthogonal or identity) is critical for success
on these tasks. Finally, we show how l2 pooling can be used
to allow a model to “choose” between a random-orthogonal
or identity-like memory.

There are several other works which have studied the prop-
erties of orthogonal matrices in relation to neural networks.
The work of (Saxe et al., 2013) gives exact solutions to the
learning dynamics of deep linear networks, and based on
this analysis, suggests an orthogonal initialization scheme
to accelerate learning. The authors of (White et al., 2004)
and (Ganguli et al., 2008) study the ability of linear RNNs
(with orthogonal and generic transition matrices, respec-
tively) to store scalar sequences in their hidden state, and
show that the memory capacity scales with the number of
hidden units. Our work complements theirs by providing a
related analysis for discrete input sequences.

2. Architectures
We review some recurrent neural network (RNN) archi-
tectures for processing sequential data, and discuss the
modifications we use for the long memory problems. We
fix the following notation: input sequences are denoted
x0, x1, ..., xt, ..., and output sequences are denoted by
y0, y1, ..., yt, ... .

2.1. sRNN

An sRNN (Elman, 1990) consists of a d× d transition ma-
trix V , an M × d decoder matrix W (where M is the out-
put dimension), a d × N encoder matrix U (where N is
the input dimension), and a bias b. If either the output or
input is categorical, M (respectively N ) is the number of
classes, and we use a one-hot representation. As the sRNN
ingests a sequence, it keeps running updates to a hidden
state h, and using the hidden state and the decoder matrix,
produces outputs y:

ht = σ(Uxt + V ht−1 + b)

yt =Wht
(1)

where xt, yt, ht are the input, output and hidden state re-
spectively at time t. While there have been great improve-
ments in the training of sRNNs since their introduction, and
while they have been shown to be powerful models in tasks
such as language modeling (Mikolov, 2012), it can still be
difficult to train generic sRNNs to use information about
inputs from hundreds of timesteps previous for comput-
ing the current output (Bengio et al., 1994; Pascanu et al.,
2013).

In the following, we will use a simplification of the sRNNs
that makes them in some sense less powerful models, but
makes it easier to train them to solve simple long-memory
tasks. Namely, by placing the non-linearity between the
input and hidden state, rather than between the hidden state
and output, we obtain RNNs with linear transitions (or, in
the case of categorical inputs, not using a non-linearity at
all). We call these LT-RNNs. The update equations are
then:

ht = σ(Uxt + b) + V ht−1

yt =Wht
(2)

Finally, note that by appropriately scaling the weights and
biases, an sRNN can be made to approximate a LT-RNN,
but not the other way around (and of course the optimiza-
tion may never find this scaling).

2.2. LSTM

The LSTM of (Hochreiter & Schmidhuber, 1997) is an ar-
chitecture designed to improve upon the sRNN with the
introduction of simple memory cells with a gating archi-
tecture. In this work we use the architecture originally
proposed in (Hochreiter & Schmidhuber, 1997). For each
memory cell, the network computes the output of four
gates: an update gate, input gate, forget gate and output
gate. The outputs of these gates are:
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i = σ(Uixt + Viht−1)

f = σ(Ufxt + Vfht−1)

o = σ(Uoxt + Voht−1)

g = tanh(Ugxt + Vght−1)

(3)

The cell state is then updated as a function of the input and
the previous state:

ct = f � ct−1 + i� g (4)

Finally, the hidden state is computed as a function of the
cell state and the output gate:

ht = o� tanh(ct) (5)

A relatively common variation of the original LSTM
involves adding so-called “peephole connections” (Gers
et al., 2003) which allows information to flow from the cell
state to the various gates. This variant was originally de-
signed to measure or generate precise time intervals, and
has proven successful for speech recognition and sequence
generation (Graves, 2013; Graves et al., 2013).

2.3. LT-RNN with l2 pooling

Below we will consider LT-RNNs initialized with either
random orthogonal transition matrices, or identity transi-
tions, and we will see that there is a large difference in
behavior between these initializations. However, we can
set up an architecture where a random orthogonal initial-
ization behaves much closer to an identity initialization by
using an l2 pooling layer at the output. If we feed both the
pooled and unpooled hidden layer to the decoder, the model
can choose whether it wants an identity-like or random-
orthogonal like representation. We fix a pool size k, and
then the update equations for this model are:

ht = σ(Uxt + b) + V ht−1

yt =WIht +WPPk(ht)
(6)

where if h is the kd dimensional vector h = [h1, ..., hkd]
T ,

then P (h) is the d dimensional vector defined by

P (h)i =

√√√√ ki∑
j=k(i−1)+1

h2j

3. Tasks
In this section we describe tasks from (Hochreiter &
Schmidhuber, 1997; Arjovsky et al., 2015; Le et al., 2015)
which involve dependencies over very long timescales
which are designed to be pathologically hard for the sRNN.

3.1. Copying Problem

This task tests the network’s ability to recall information
seen many time steps previously. We follow the same setup
as (Arjovsky et al., 2015), which we briefly outline here.
Let A = {ai}Ki=1 be a set of K symbols, and pick numbers
S and T . The input consists of a T + 2S length vector of
categories, starting with S entries sampled uniformly from
{ai}Ki=1 which are the sequence to be remembered. The
next T − 1 inputs are set to aK+1, which is a blank cate-
gory. The following (single) input is aK+2, which repre-
sents a delimiter indicating that the network should output
the initial S entries of the input. The last S inputs are set
to aK+1. The required output sequence consists of T + S
entries of aK+1, followed by the first S entries of the input
sequence in exactly the same order. The task is to mini-
mize the average cross-entropy of the predictions at each
time step, which amounts to remembering a categorical se-
quence of length S for T time steps.

3.1.1. A SOLUTION MECHANISM

We can write out an LT-RNN solution for this problem. We
will write out descriptions for U, V,W from equation (2).
Note that since the inputs are categorical, we assume that
no non-linearity is used. Fix a number d. For each j in
{1, ..., d}, pick a random integer lj drawn uniformly from
{1, ..., T + S}, and let

Qj =

(
cos(2ljπ/(T + S)) sin(2ljπ/(T + S))
− sin(2ljπ/(T + S)) cos(2ljπ/(T + S))

)
.

Now define Q, and then V from (2) by

Q =


Q1 0 · · · 0
0 Q2 · · · 0
...

. . . 0
0 0 Qd

 , V =

(
Q 0
0 1

)
.

So V is a (2d+1)× (2d+1) block diagonal matrix. Note
that iteratingQ “spins” each of theQi at different rates, but
they all synchronize at multiples of S+T . ThusQ acts as a
“clock” with period S+T . Now set Ũ to be a 2d×K matrix
with columns sampled uniformly from the unit sphere, and
form U by appending two zero columns to Ũ and then one
extra row, with −1/S for each entry between 1 and K, −1
for the K + 1 entry, and T + S + 1 for the K + 2 entry.
Schematically,

U =

[
Ũ 0 0
− 1

S −1 S + T + 1

]
.

Finally, set W = UT , except scale the K + 1 column by
S + 1, zero out the K + 2 column, and also zero out the
entries below Ũ .



Recurrent Orthogonal Networks and Long-Memory Tasks

This gives

W =

ŨT 0
0 −(S + 1)
0 0

 .
Now we will show how the RNN operates, starting with
a high-level overview. The last dimension of the hidden
state divides the state space into two regions, one where
the model outputs the blank symbol and the other where it
outputs one of the first K symbols in the dictionary. The
model begins in the first region and remains there until it
encounters the delimiter symbol, which sends it into the
second. Now, the symbols in the input sequence are all
encoded in the hidden state and a rotation is applied with
each timestep. A key result is that rotation by powers of Q
“hides” a symbol encoded in the hidden state, i.e. decor-
relates its current representation from its original one. Due
to the periodicity of Q, after T + S timesteps, the different
symbols in the input sequence will surface from the hidden
state one at a time, in the order in which they were seen,
while the other symbols in the sequence, whose represen-
tations have rotations applied to them, remain hidden. This
causes the output units of each of the symbols to fire in the
correct order.

We now give a more precise description, for which we need
a little more notation. Denote by h̃ the first 2d coordinates
of h, and by h2d+1 the last coordinate, and denote by uj
the jth column of Ũ . Then the RNN works as follows,
initialized with hidden state 0:

• After the first S inputs, we have

h̃ =

S∑
j=1

QS−juij .

• For the next T inputs, only h2d+1 changes, increment-
ing by −1 at each step. Note that WK+1 has so far
been the best match to h because it has large negative
last component.

• At time T + S when the aK+2 token is seen, h2d+1 is
set positive, which ensures the blank symbol will not
be output.

• At time T + S + 1,

h̃ = ui1 +

S∑
j=2

Q1−juij .

We argue below that if d is large enough w.r.t. S and
K, with high probability, uTi1

∑S
j=2Q

1−juij is small,
and so multiplication with W has max value at i1.

Figure 1. Success percentage of the mechanism from 3.1.1 to the
copy problem for T = 500, computed over 500 trials with d =
128.

• The sum continues to cycle, giving ij as output for
each following j up to S.

We now briefly argue that uTi1
∑S

j=2Q
1−juij is small when

d is large enough w.r.t. S and K. We will repeatedly use
that the variance of a sum of independent, mean-zero ran-
dom variables grows as the sum of the variances. Denote
by uji the pair of coordinates of the jth column uj of Ũ
corresponding to the ith block; since u are uniform on the
sphere, we expect

||uji||2 ∼ 1/d.

Since for each fixed p ∈ {1, T + S}, over the choices of li
in the definition of Qi, the Qp

i are independent, uTjiQ
p
i uji

has mean zero, and since

uTj Q
puj =

d∑
i=1

uTjiQ
p
i uji

we expect
|uTj Qpuj |2 ∼ 1/d.

Moreover, since the Qpuj are uniform on the sphere,

|uTj Qpuj′ |2 ∼ 1/d

for j′ 6= j. Similarly, we expect∣∣∣∣∣∣uTi1
S∑

j=2

Q1−juij

∣∣∣∣∣∣
2

∼ (S − 1)/d.

Thus we can fix a small number ε, say ε = .1, and
choose d large enough so that with high probability
|wT

i1

∑S
j=2Q

j−Suij |2 < ε, even though wT
i ui = 1. Fi-

nally, there is a weak dependence on K here; for fixed ε
and K it is exponentially unlikely (in d) that the nearest
neighbor i′ 6= i1 is close enough to ui to interfere.
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This solution mechanism suggests that a random orthogo-
nal matrix (chosen, for example, via QR decomposition of
a Gaussian matrix) is a good starting point for solving this
task. The construction above is invariant to rotations; and
we can always find a basis so that a given orthogonal ma-
trix has the block form above in that basis. Thus all that is
necessary is for the descent to nudge the eigenvalues of the
orthogonal matrix to be S + T roots of unity, and then it
already has the basic form of the construction above. This
also gives a good explanation for the performance of the
models used for the copy problem in (Arjovsky et al., 2015)

Finally, note that although we used the setup of (Arjovsky
et al., 2015), the construction can be modified to solve
problems 2a and 2b in (Hochreiter & Schmidhuber, 1997)

3.1.2. SOLUTION MECHANISM EXPERIMENTS

Since the construction of the copy mechanism is random-
ized, we provide an experiment to show how the solution
degrades as a function ofK (the dictionary size) and S (the
length of the sequence to be remembered). There is not a
strong dependence on T (the length of time to remember
the sequence). Figure 1 shows the number of successes
over 500 runs with d = 128.

3.1.3. VARIABLE LENGTH COPY PROBLEM

Note that the solution mechanism for the copy problem
above depends on having a fixed location for regurgitating
the input. In the experiments below, we also discuss a vari-
ant of the copy task, where the symbol to indicate that the
memorized sequence must be output is randomly located
in S + 1, S + T ; this can be considered a variant of task 2c
in (Hochreiter & Schmidhuber, 1997). We do not know a
bounded in T explicit LT-RNN or sRNN solution for this
variable length problem (although the above solution using
a multiplicative RNN instead of an sRNN, and keeping d2

extra hidden variables to track the power of V solves it).

3.2. Adding Problem

The adding problem requires the network to remember two
marked numbers in a long sequence and add them. Specif-
ically, the input consists of a two dimensional sequence
{x1, ..., xT }. The first coordinate xj [1] is uniformly sam-
pled between 0 and 1, and the second coordinate is 0 at each
j save two; in these two entries, xj [2] = 1. The required
output is xj1 [1] + xj2 [1], where xji [2] = 1.

3.2.1. A SOLUTION MECHANISM

This problem has a simple, explicit solution using a LT-
RNN with a ReLU non-linearity and a one dimensional
hidden state. Namely: set U = [11], b = −1, W = 1,
and V = 1. At each time step j, if xj [2] = 0 then nothing

is added to the hidden state, as xj [1] ≤ 1. On the other
hand, if xj [2] = 1, then exactly xj [2] is added to h.

This mechanism has been known (at least implicitly, al-
though we don’t know if it has been written down explicitly
before) at least since (Hochreiter & Schmidhuber, 1997),
and it can be seen as a very simple LSTM model, with the
following gates:

i = xj [1]

f = 1

o = 1

g = (xj [2]− 1)+

(7)

and no non-linearity in Equation (5).

3.3. Comparison between the tasks

Note that the 1 × 1 matrix V in the mechanism for the
adding problem is the “identity”. We can build a more re-
dundant solution by using a larger identity matrix. We can
describe the identity using the same block structure as the
matrix Q defined for the copy task; namely each lj = 0.
On the other hand, the Q for the copy task acts as a “clock”
that synchronizes after a fixed number of steps T + S. It
is important for the mechanism we described that the clock
looks random at any time between 1 and S+T . For exam-
ple, if we had instead used the same lj in each block Qj ,
the mechanism would not succeed. The transition matrices
for the addition task and the copy task are thus opposites
in the sense that for addition, all the lj are the same (i.e. a
δ mass on the unit circle), and for copy, the lj are as uni-
formly distributed on the unit circle as possible.

In the experiments below, we will show that it is hard for
an LT-RNN to learn the adding task when its transition ma-
trix is initialized as a random orthogonal matrix but easy
when initialized with the identity, and vice-versa for the
copy task. One way to get a “unified” solution is to use l2
pooling, as in 6. Then when initialized with a matrix with
lj distributed uniformly, the decoder can choose to use the
pooled hiddens (which through away the phase, and so ap-
pear identity-like) for the adding task, or use the raw hid-
dens, which are clock-like.

4. Experiments
4.1. Impact of Initialization

Based on the above analysis, we hypothesize that an LT-
RNN with random orthogonal initialization (denoted LT-
ORNN) should perform well on the sequence memoriza-
tion problem, and an LT-RNN with identity initialization
(denoted LT-IRNN) should perform well on the addition
task. To test this, we conducted the following experiment
on both the copy and addition task for different timescales.
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Figure 2. Results for the copy task.

0 200 400 600 800 1000 1200 1400 1600 1800
ite rations  (hundreds)

0.0

0.1

0.2

0.3

0.4

0.5

M
S

E

add task, T = 200

LSTM
LT-IRNN
LT-ORNN

0 200 400 600 800 1000 1200 1400 1600 1800
ite rations  (hundreds)

0.0

0.1

0.2

0.3

0.4

0.5

M
S

E

add task, T = 400

LSTM
LT-IRNN
LT-ORNN

0 200 400 600 800 1000 1200 1400 1600 1800
ite rations  (hundreds)

0.0

0.1

0.2

0.3

0.4

0.5

M
S

E

add task, T = 750

LSTM
LT-IRNN
LT-ORNN

Figure 3. Results for the addition task.

For each task and timescale, we trained 8 LT-ORNNs and
8 LT-IRNNs with different random seeds. The transforma-
tion matrices for all models were intialized using a Gaus-
sian distribution with mean 0 and variance 1/

√
n (where

n is the number of incoming connections to each hidden
unit). For LT-ORNNs, we then projected the transition ma-
trix to its nearest orthogonal matrix by setting its singular
values to 1.

In all experiments, we used RMSProp to train our net-
works with a fixed learning rate and a decay rate of 0.9.
In preliminary experiments we tried different learning rates
in {1, 10−1, 10−2, 10−3, 10−4, 10−5} and chose the largest
one for which the loss did not diverge, for the LT-RNN’s we
used 10−4.

We also included LSTMs in all our experiments as a base-
line. We used the same method as for LT-RNN to pick the
learning rate, and ended up with 10−3.

For all experiments, we normalized the gradients with re-
spect to hidden activations by 1/T , where T denotes the
number of timesteps. In preliminary experiments, we also
found that for LT-RNN models the activations frequently

exploded whenever the largest singular value of the tran-
sition matrix became much greater than 1. Therefore,
we adopted a simple activation clipping strategy where
we rescaled activations to to have magnitude l whenever
their magnitude exceeded l. In our experiments we chose
l = 1000.

Figure 2 shows the results on the copy task for the LSTM,
LT-ORNN and LT-IRNN. All networks are trained with 80
hidden units. We see that the LSTM has difficulty beat-
ing the baseline performance of only outputting the empty
symbol; however it does eventually converge to the solution
(this is not shown in the figure). However, the LT-ORNN
solves the task almost immediately. We note that this be-
havior is similar to that of the uRNN in (Arjovsky et al.,
2015), which is paramaterized in a way that makes it easy
to recover the explicit solution described above. The LT-
IRNN is never able to find the solution.

Figure 3 shows the results of the addition task for T =
200, 400 and 750 timesteps. All networks are trained with
128 hidden units. For T = 750, we trained a single LT-
ORNN and LT-IRNN due to time constraints. In contrast to
the copy task, here the LT-IRNN is able to efficiently solve



Recurrent Orthogonal Networks and Long-Memory Tasks

0 200 400 600 800 1000 1200 1400 1600 1800
ite rations  (hundreds)

0.0

0.1

0.2

0.3

0.4

0.5

M
S

E

add task, T = 400

LSTM
LT-IRNN
LT-ORNN
LT-ORNN-POOL

0 500 1000 1500 2000
ite rations  (hundreds)

0.0

0.1

0.2

0.3

0.4

0.5

M
S

E

add task, T = 750

LSTM
LT-IRNN
LT-ORNN
LT-ORNN-POOL

0 200 400 600 800 1000
ite rations  (hundreds)

0.00

0.05

0.10

0.15

0.20

cr
o

ss
 e

n
tr

o
p

y

copy task, T = 200

LSTM
LT-IRNN
LT-ORNN
LT-ORNN-POOL

0 200 400 600 800 1000
ite rations  (hundreds)

0.00

0.05

0.10

0.15

0.20

cr
o

ss
 e

n
tr

o
p

y

copy task, T = 500

LSTM
LT-IRNN
LT-ORNN
LT-ORNN-POOL

Figure 4. Results for copy and addition task with pooling architectures. Note that the LSTM will eventually solve the copy task, but the
LT-IRNN will not.

the problem whereas the LT-ORNN is only able to solve it
after a very long time, or not at all. The LSTM is also able
to easily solve the task, which is consistent with the origi-
nal work of (Hochreiter & Schmidhuber, 1997) where the
authors report solving the task for up to 1000 timesteps. We
note that this LSTM baseline differs from that of (Arjovsky
et al., 2015; Le et al., 2015) where it is reported to have
more difficulty solving the addition task. We hypothesize
that this difference is due to the use of different variants of
the LSTM architecture such as peephole connections.

4.2. Pooling Experiments

We next ran a series of experiments to examine the effect
of feeding pooled outputs to the decoder, to see if we could
obtain good performance on both the copy and addition
tasks with a single architecture and initialization. In these
experiments, we added a soft penalty on the transition ma-
trix V to keep it orthogonal throughout training. Specifi-

cally, at every iteration we applied one step of stochastic
gradient descent to minimize the loss ||V TV − I||, eval-
uated at m random points on the unit sphere. Note that
this requires O(md2) operations and a regular update re-
quires O(Tmd2) operations, so adding this soft constraint
has negligible computational overhead. In our experiments
we set m = 50, which was the same at the minibatch size.

In all pooling experiments we used a pool size and stride
of 2. The results are shown in Figure 4. The LT-ORNN
with pooling is easily able to solve the copy task for both
timescales, and approximately solves the addition task for
both timescales as well, even though convergence is slower
than the LT-IRNN. Its success on the copy task is not sur-
prising, since by zeroing out the matrix WP in Equation 6
it can solve the problem with the same solution as the reg-
ular LT-ORNN. The good performance on the adding task
is somewhat more interesting. To gain insight into how the
network stores information in a stable manner while having
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Figure 5. Results for the variable length copy task.
Figure 6. Activation patterns of pooling network. The two marked
numbers to be added occur at positions 264 and 463.

an (approximately) orthogonal transition matrix, we plotted
the activations of its hidden states over time as it processes
an input sequence. This is displayed in Figure 6. We ob-
serve relatively constant activations until the first marked
number is encountered, which triggers oscillatory patterns
along certain dimensions. When the second marked num-
ber is seen, existing oscillations are amplified and new ones
emerge. This suggests that the network stores informa-
tion stably through the radius of its hidden state’s rotations
along different 2-dimensional subspaces. The information
is then recovered as the phase is discarded though the pool-
ing operation. Thus the model can have “uniform” clock-
like oscillations that are perceived as δ-like after the pool-
ing.

4.3. Variable Length Copy Task

Having seen the stark impact of initialization on the per-
formance of LT-IRNNs and LT-ORNNs for the copy and
addition task, and its mitigation through the addition of a
pooling layer, we then tested all the models on a problem
for which we did not have a (roughly fixed size) solution
mechanism, namely the variable length copy task. Fig-
ure 5 shows the performance of an LT-IRNN, LT-ORNN,
LT-ORNN with l2 pooling, and LSTM (each with 80 hid-
den units) on the variable length copy task with T = 100
timesteps. Even though the number of timesteps is signif-
icantly less than in other tasks, none of the LT-RNNs are
able to beat the chance baseline, whereas the LSTM is able
to solve the task even though its convergence is slow. This
experiment is a classic example of how a detail of construc-
tion of a synthetic benchmark can favor a model in a way
that fails to generalize to other tasks.

5. Conclusion
In this work, we analyzed two standard synthetic long-term
memory problems and provided explicit RNN solutions for
them. We found that the (fixed length T ) copy problem can
be solved using an RNN with a transition matrix that is a
T + S root of the identity matrix I , and whose eigenvalues
are well distributed on the unit circle, and we remarked that
random orthogonal matrices almost satisfy this description.
We also saw that the addition problem can be solved with
I as a transition matrix. We showed that correspondingly,
initializing with I allows a linear-transition RNN to easily
be optimized for solving the addition task, and initializing
with a random orthogonal matrix allows easy optimization
for the copy task; but that flipping these leads to poor re-
sults. This suggests an optimization difficulty in transition-
ing between oscillatory and steady dynamics, which can
be mitigated by adding an l2 pooling layer that allows the
model to easily choose between the two regimes. Finally,
our experiment with the variable length copy task illustrates
that although synthetic benchmarks can be useful for eval-
uating specific capabilities of a given model, success does
not necessarily generalize across different tasks, and novel
model architectures should be evaluated on a broad set of
benchmarks as well as natural data.
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