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1 Detailed Description of Expectation Propagation

In this section we describe in detail the specific steps of the EP algorithm that is required for the
evaluation of the proposed acquisition function, PESMO. More precisely, we show how to compute
the EP approximation to the conditional predictive distribution of each objective fr. From the
main manuscript we know that that this distribution is obtained by multiplying the GP posteriors
by the product of all the approximate factors. We also show how to implement the EP updates
to refine each approximate factor. In our implementation we assume independence among the K
objective functions.

We assume the reader is familiar with the steps of the expectation propagation algorithm, as
described in [8].

Recall from the main manuscript that all EP approximate factors 1/; are Gaussian and given
by:
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for some input location x; and for some xj extracted from the current sampled Pareto set X™.
Note that in (2), 9k, U}, G, jk, Mk and M7, are parameters fixed by EP.

1.1 Reconstruction of the Conditional Predictive Distribution

In this section we show how to obtain a conditional predictive distribution for each objective
function fi, given a sampled Pareto set X* = {x7},...,x%,} of size M, and a set of N input
locations X = {x1,...,xn}, with corresponding observations of the k-th objective y;. We also
assume that we are given the EP approximate factors 1[)



Define fr = (fi(x7), ..., fu(x3), fe(x1), ..., fr(xn))T. We are interested in computing

p(Fe| X%, X, yi) ~ q(fi) = Z7 ' p(f| X, yi) H H o1 (x, x* (3)
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for some normalization constant Z. In (3) we have only considered those approximate factors that
depend on the current objective function fi and ignored the rest. We note that p(fk|)e Vi) is
simply the posterior distribution of the Gaussian process, which is a multi-variate Gaussian over
N + M variables with natural parameters >* and fi*. Furthermore, all EP approximate factors
1) are Gaussian. Because the Gaussian distribution is closed under the product operation, ¢(fy) is
a multi-variate Gaussian distribution over N + M variables with natural parameters S* and m*
obtained as:
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From these natural parameters we can obtain, respectively, the covariance matrix X* and the
mean vector pu* by computing (S¥)~! and (S¥)~'m*. This has a total cost that is O((N + M)?)
since we have to invert a matrix of size (N + M) x (N + M). Importantly, this operations has to
be performed only once at each iteration of the optimization process, and the result can be reused
when evaluating the acquisition at different input locations.

1.2 The Conditional Predictive Distribution at a New Point

Consider now the computation of the conditional distribution for f; at a new candidate location
Xn+1. Assume that we have already obtained ¢(fy) from the previous section and that we have
already obtained the parameters of the required approximate factors by using EP. We are interested
in evaluating the conditional predictive variance for fi(xny1). For this, we need to evaluate:
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where Z is simply a normalization constant and q(fx, fx(Xn+1)) is a multivariate Gaussian dis-
tribution which results by extending ¢(f;) with one extra dimension for fx(xn41). Recall that
fo = (fe(xD)s - f(X3y), fr(X1), o, fe(xn))T. Again, in (5) we have only considered those ap-
proximate factors that depend on fi. The covariances between fj, and fi(xy4+1) are obtained from
the GP posterior for fj given the observed data. The mean and the variance of fi(xn+1) to be



used in q(fx, fx(xn+1)) can also be obtained in a similar way. Because all the factors in the r.h.s.
of (5) are Gaussian, the result of the integral is a univariate Gaussian distribution.

Define f, = (fr(x%), ..., fu(x3), fr(xn41))T. Because | | dr(xn41,x*) does not depend
on fr(x1),..., fe(Xn), we can marginalize these variables in the r.h.s. of (5) to get something
proportional to:
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where m® and S* are the natural parameters of the approximate conditional predictive distribution
for fi, which is Gaussian. Similarly, m, and o2 are the mean and variance of the Gaussian
approximation to p(fr(xn11|X, X*, xn41).

We are interested in the evaluation of o2, which is required for entropy computation. It is
clear that o2 is given by the last diagonal entry of (S*)~1. In consequence, we now show how to
compute S and (S””)]T/}H’MH. We do not give the details for computing m,, because only the
variance is required for the entropy computation.

Each entry in S* is given by:
Sf;=8F; for 1<i<M and 1<j<M, and i#j,
Si ;i =cov(fe(xnt1), f(X])) +éngrjn for 1<j<M and i=M+1,
S7,=57; for j#i, and 1<i,j<M,
Sy =S+ 0N k-for 1<i<M,
M

St = var(fe(xn41)) + > O 1k (7)
j=1

where Oy 41,i.k, @fv+17i,k, and €ny1,4,% are the parameters of each of the M factors (gk(XN+]_,X;),
for j = 1,..., M. Furthermore, var(fi(xny+1)) and cov(fr(xn+1) are the posterior variance of
fr(xn+1) and the posterior covariance between fi(xxn+1) and fi(x7).

We note that S* has a block structure in which only the last row and column depend on xx41.
This allows to compute o2 = (ST/)X/}H’MH with cost O(M?3) using the formulas for block matrix
inversion. All these computations are carried out using the open-BLAS library for linear algebra
operations which is particularly optimized for each processor.

Given 02 we only have to add the variance of the additive Gaussian noise €%, to obtain
the final variance of the Gaussian approximation to the conditional predictive distribution of

Yo = fe(xnia) + oy

1.3 Update of an Approximate Factor

EP updates until convergence each of the approximate factors ¢. Given an exact factor (x4, X5),
in this section we show how to update the corresponding EP approximate factor z/;(xi, x;) For this,

we assume that we have already obtained the parameters u* and X¥ of each of the K conditional
predictive distributions, ¢(fx), as described in Section 1.1. The form of the exact factor is:

K
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Note that this factor only depends on fi(x;) and f(x}) for k = 1,..., K. This means that we
are only interested in the distribution of these variables under ¢(fy), for £ = 1,..., K, and can
ignore (marginalize in ¢) all other variables. Thus, in practice we will work with q(fx(x;), fr(x7)),
for Kk = 1,...,K. These are bi-variate Gaussian distributions. Let the means, variances and

covariance parameters of one of these distributions be respectively: m; j i, mj ; v, vi,jk, v; ;) and
Ci,jik-



1.3.1 Computation of the Cavity Distribution

The first step of the update is to compute and old distribution q°1d known as the cavity distri-
bution, which is obtained by removing the approximate factor w(x“ ) from the product of the
K approximations q(fi(x;), fx(x})), for k = 1,..., K. Recall that ¢(X17 5) = Hk 1 qﬁk(xz, )
This can be done by division. Namely, q"ld(fk(xi),fk( x3)) oc q(fe(xi), fe(x ))/qﬁk(x,, %) for

k=1,...,K. Because all the factors are Gaussian, the result is another bi- varlancete Gauss1an
dlstrlbutlon Let the corresponding old parameters be: mfljdk, mf}ﬁz, vzlﬁk, vOId* and c"ljdlc These

parameters are obtained by subtracting from the natural parameters of q( fi (XZ) fk(x})), the nat-

ural parameters of ng. The resulting natural parameters are then transformed into Standard mean
and covariance parameters to get the parameters of ¢°'(fx(x;), fx (x}))- This step is performed
as indicated in the last paragraph of Section 1.1, and it involves computing the inverse of a 2 x 2
matrix, which is something very easy and inexpensive to do in practice.

1.3.2 Computation of the Moments of the Tilted Distribution

Given each ¢°'4(fr(x:), fe(x3)), for k =1,..., K, the next step of the EP algorithm is to compute
the moments of a tilted distribution defined as:

~
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where Z is just a normalization constant that guarantees that p integrates up to one.
Importantly, the normalization constant Z can be computed in closed form and is given by:
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where ®(-) is the c.p.f. of a standard Gaussian distribution. The moments (mean vector and
covariance matrix) of p can be readily obtained from the derivatives of log Z with respect to the
parameters of ¢°'4(fr(x;), fx (x7)), as indicated in the Appendix of [5].

1.3.3 Computation of the Individual Approximate Factors

Given the moments of the tilted distribution p({fx(x:), fx(x ) 1), it is straight-forward to ob-
tain the parameters of the approximate factors (bk, for k =1,..., K, whose product approximates
¥(x;,x%). Theideais that the product of (%, xj) = Hlel dr(xi,x;) and Hszl P fr(xi), fr(x3))
should lead to a Gaussian distribution with the same moments as the tilted distribution p.

The detailed steps to find each ¢y, are: (i) Define a Gaussian distribution with the same

moments as p, denoted Hf 1V (fr(xi), fr(x})). Note that this distribution factorizes across

each objective k. Let the parameters of this dlstrlbutlon be miS, miShs, v, vpS and ¢,
for k =1,...,K. (ii) Transform these parameters to natural parameters, and subtract to them

the natural parameters of [Tr—, ¢°*(fr (%), fx (x3)). (iii) The resulting natural parameters are the
natural parameters of each updated (/Bk Note that this operation involves going from standard
parameters to natural parameters. Again, this can be done as indicated in the last paragraph of
Section 1.1. For this, the inverse of the corresponding 2 x 2 covariance matrix of each Gaussian
factor of Hszl q"" (fr(x:), fr(x})) is required. Because these are 2 x 2 matrices, this operation
is inexpensive and very fast to compute.

1.4 Parallel EP Updates and Damping

In our EP implementation we updated in parallel each of the approximate factors 1;, as indicated in
[4]. That is, we computed the corresponding cavity distribution for each factor ¢ and updated the



corresponding approximate factor 1; afterwards. Next, the EP approximation was reconstructed
as indicated in Section 1.1.

We also employed damped EP updates in our implementation [9]. That is, the parameters
of each updated factor are set to be a linear combination of the old parameters and the new
parameters. The use of damped updates prevents very large changes in the parameter values. It is
hence very useful to improve the convergence properties of the algorithm. Finally, damping does
not change the convergence points of EP.

2 Finding a Small and Accurate Ensemble of Decision Trees

In this section we evaluate each of the methods from the main manuscript in the task of finding
an ensemble of decision trees of small size that has low prediction error. We measure the ensemble
size in terms of the sum of the total number of nodes in each of trees of the ensemble. Note that the
objectives considered are conflicting because it is expected that an ensemble of small size has higher
prediction error than an ensemble of larger size. The dataset considered is the German Credit
dataset, which is extracted from the UCI repository [6]. This is a binary classification dataset with
1,000 instances and 9 attributes. The prediction error is measured using a 10-fold-cross validation
procedure that is repeated 5 times to reduce the variance of the estimates.

Critically, to get ensembles of decision trees with good prediction properties one must encourage
diversity in the ensemble [3]. In particular, if all the decision trees are equal, there is no gain from
aggregating them in an ensemble. However, too much diversity can also lead to ensembles of poor
prediction performance. For example, if the predictions made are completely random, one cannot
obtain improved results by aggregating the individual classifiers. In consequence, we consider here
several mechanisms to encourage diversity in the ensemble, and let the amount of diversity be
specified in terms of adjustable parameters.

To build the ensemble we employed decision trees in which the data is split at each node, and
the best split is chosen by considering each time a random set of attributes —we use the Decision-
Tree implementation provided in the python package scikit-learn for this, and the number of
random attributes is an adjustable parameter. This is the approach followed in Random Forest [1]
to generate the ensemble classifiers. Each tree is trained on a random subset of the training data of
a particular size, which is another adjustable parameter. This approach is known in the literature
as subbagging [2], and has been shown to lead to classification ensembles with good prediction
properties. We consider also an extra method to introduce diversity known as class-switching [7].
In class-switching, the labels of a random fraction of the training data are changed to a different
class. The final ensemble prediction is computed by majority voting.

In summary, the adjustable parameters are: the number of decision trees built (between 1 and
1,000), the number of random features considered at each split in the building process of each
tree (between 1 and 9), the minimum number of samples required to split a node (between 2 and
200), the fraction of randomly selected training data used to build each tree, and the fraction of
training instances whose labels are changed (after doing the sub-sampling process).

Finally, we note that this setting is suited to the decoupled version of PESMO since both
objectives can be evaluated separately. In particular, the total number of nodes is estimated by
building only once the ensemble without leaving any data aside for validation, as opposed to the
cross-validation approach used to estimate the ensemble error, which requires to build several
ensembles on subsets of the data, to then estimate the prediction error on the data left out for
validation.

We run each method for 200 evaluations of the objectives and report results after 100 and 200
evaluations. That is, after 100 and 200 evaluations, we optimize the posterior means of the GPs
and provide a recommendation in the form of a Pareto set. As in the experiments reported in
the main manuscript with neural networks, we re-estimate three times the objectives associated
to each Pareto point from the recommendation made by each method, and average results. The
goal of this averaging process is to reduce the noise in the final evaluation of the objectives. These
final evaluations are used to estimate the performance of each method using the hyper-volume.



We repeat these experiments 50 times and report the average results across repetitions.

Table 1: Avg. hyper-volume after 100 and 200 evaluations of the objectives.

# Eval. PESMO PESMOge. ParEGO SMSego EHI SUR
100 8.742+.006 8.755+.009 8.662+.019  8.719+.012 8.731+.009 8.7394.007
200 8.764+.007 8.758+.007  8.705£.008  8.742+.006 8.727£.008 8.756=£.006

Table 1 shows the average hyper-volume of the recommendations made by each method, after
100 and 200 evaluations of the objective functions. The table also shows the corresponding error
bars. In this case the observed differences among the different methods are smaller than in the
experiments with neural networks. Nevertheless, we observe that the decoupled version of PESMO
obtains the best results after 100 evaluations. After this, PESMO in the coupled setting performs
best, closely followed by SUR. After 200 evaluations, the best method is the coupled version of
PESMO, closely followed by its decoupled version and by SUR. SMSego and EHI give worse results
than these methods, in general. Finally, as in the experiments with neural networks reported in
the main manuscript, ParEGO is the worst performing method. In summary, the best methods
are PESMO in either setting (coupled or decoupled) and SUR. All other methods perform worse.
Furthermore, the decoupled version of PESMO gives slightly better results at the beginning, i.e.,
after 100 evaluations.

Figure 1 shows the average Pareto front (this is simply the values in functional space associated
to the Pareto set) corresponding to the recommendations made by each method after 100 (top)
and 200 evaluations of the objectives (bottom). We observe that PESMO finds ensembles with
better properties than the ones found by EHI, SMSego and ParEGO. Namely, ensembles of smaller
size for a similar or even better prediction error. The most accurate ensembles are found by SUR.
Nevertheless, they have a very similar error to the one of the most accurate ensembles found by
PESMO. Finally, we note that in some cases, PESMO is able to find ensembles of intermediate
size with better prediction error than the ones found by SUR.

Figure 2 shows the average number of times that the decoupled version of PESMO evaluates
each objective. We observe that in this case the objective that measures the number of nodes in
the ensemble is evaluated more times. However, the difference between the number of evaluations
of each objective is smaller than the difference observed in the case of the experiments with neural
networks. Namely, 135 evaluations of one objective versus 65 evaluations of the other, in this
case, compared to 175 evaluations versus 25 evaluations, in the case of the experiments with
neural networks. This may explain why in this case the differences between the coupled and the
decoupled version of PESMO are not as big as in the experiments reported in the main manuscript.

3 Accuracy of the Acquisition in the Decoupled Setting

One question to be experimentally addressed is whether the proposed approximations for the
individual acquisition functions ay(+), for k =1,..., K, with K the total number of objectives are
sufficiently accurate in the decoupled case of PESMO. For this, we extend the experiment carried
out in the main manuscript, and compare in a one-dimensional problem with two objectives
the acquisition functions «;(-) and aq(-) computed by PESMO, with a more accurate estimate
obtained via expensive Monte Carlo sampling and a non-parametric estimator of the entropy [10].
This estimate measures the expected decrease in the entropy of the predictive distribution of one
of the objectives, at a given location of the input space, after conditioning to the Pareto set.
Importantly, in the decoupled case, the observations corresponding to each objective need not be
located at the same input locations.

Figure 3 (top) shows at a given step of the optimization process, the observed data and the
posterior mean and the standard deviation of each of the two objectives. The figure on the middle
shows the corresponding acquisition function corresponding to the first objective, a1 (), computed



Average Pareto Front After 100 Evaluations

8 Methods
S = EHI
21e+05; ParEGO
o == SMSego
K= == SUR
£ i = PESMO
ile+04 = PESMO_decoupled
n
©
5 1le+03+
Qo
e
>
Z1e+02+
0.23 0.24 0.25 0.26 027 028
Prediction Error

Average Pareto Front After 200 Evaluations
0 Methods
]
S1e+05- = ParEGo
P
o == SMSego
c = SUR
£ - = PESMO
ile+04 = PESMO_decoupled
n
©
« 1e+03+
3 N
e
>
Z1le+02+

0.23 0.24 0.25 0.26 027 028
Prediction Error

Figure 1: Avg. Pareto fronts obtained by each method after 100 (top) and 200 (bottom) evaluations of
the objectives. Best seen in color.

by PESMO and by the Monte Carlo method (Exact). The figure on the bottom shows the same
results for the acquisition function corresponding to the second objective, aa(-). We observe that
both functions look very similar, including the location of the global maximizer. This indicates that
the approximation obtained by expectation propagation is potentially good also in the decoupled
setting.
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Figure 3: (top) Observations of each objective and posterior mean and standard deviations of each
GP model. (middle) Estimates of the acquisition function corresponding to the first objective, al(j,
by PESMO, and by a Monte Carlo method combined with a non-parametric estimator of the entropy.
(bottom) Same results for the acquisition function corresponding to the second objective a2(-). Best seen

in color.



