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A The Min-Max Problem of EP

This section revisits the original EP algorithm as a min-max optimization problem. Recall in the main
text that we approximate the true posterior distribution p(θ|D) with a distribution in exponential family
form given by q(θ) ∝ exp{s(θ)Tλq}. Now we define a set of unnormalized cavity distributions q\n(θ) =
exp{s(θ)Tλ\n} for every data point xn. Then according to [Minka, 2001], the EP energy function is

E(λq, {λ\n}) = logZ(λ0) + (N − 1) logZ(λq)−
∑N
n=1 log

∫
p(xn|θ)q\n(θ)dθ . (1)

In practice EP finds a stationary solution to the constrained optimization problem

minλq max{λn} E(λ, {λn}) subject to (N − 1)λq + λ0 =
∑N
n=1 λ\n , (2)

where the constraint in (2) guarantees that the {λ\n} are valid cavity parameters that are consistent with
the approximate posterior. Similarly for power EP the energy function has the following form:

E(λq, {λ\n}) = logZ(λ0) +
(
N
α − 1

)
logZ(λq)− 1

α

∑N
n=1 log

∫
p(xn|θ)αq\n(θ)dθ, (3)

where the constraint of the optimization problem changes to (N − α)λq + αλ0 =
∑N
n=1 λ\n.

The optimization problem in (2) can be solved using a double-loop algorithm [Heskes and Zoeter, 2002,
Opper and Winther, 2005]. This algorithm alternates between an optimization of the cavity parameters
{λ\n} in the inner loop and an optimization of the parameters of the posterior approximation λq in the outer
loop. Each iteration of the double-loop algorithm is guaranteed to minimize the energy in (1). However, the
alternating optimization of λq and {λ\n} is very inefficient to be useful in practice.

B Linear regression example

In this section we demonstrate several properties of BB-α on a toy linear regression problem; in particular,
we compare the BB-α optimal distribution to the true posterior in the cases where the true posterior lies in
the variational family considered, and in the mean-field case where the variational family is Gaussian with
diagonal covariance matrix.
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More specifically, we consider a linear regression model of the form

yn = θ>xn + σεn ,

where yn ∈ R, xn ∈ R2 for n = 1, . . . , N , θ ∈ R2, σ ∈ R+, and (εn)Nn=1
iid∼ N(0, 1). This model is

simple enough to analytically optimize the BB-α energy function, and provides intuition for BB-α in more
general contexts. We specify a prior p0(θ) ∝ exp(−θ>θ/2) on the model weights; in this case, the posterior
distribution for the model weights θ is given by

p(θ) ∝ p0(θ)

N∏
n=1

p(yn|θ,xn)

∝ exp

(
−1

2
θ>θ −

N∑
n=1

1

2σ2

(
yn − x>n θ

)2)

∝ exp

(
−1

2
θ>(I +

1

σ2

N∑
n=1

xnx>n )θ + (
1

σ2

N∑
n=1

ynx>n )θ

)
and so the posterior is Gaussian with covariance matrix and mean given by

Σ =

(
I +

1

σ2

N∑
n=1

xnx>n

)−1
, (4a)

µ =

(
I +

1

σ2

N∑
n=1

xnx>n

)−1
1

σ2

N∑
n=1

ynxn . (4b)

B.1 Non-recovery of posterior distribution

We first consider the case of a variational family of distributions which contains the true posterior distribution
for this model. We let f(θ) be an arbitrary 2−dimensional Gaussian distribution

f(θ) ∝ exp

(
−1

2
θ>Λθ + η>θ

)
parameterized by its natural parameters Λ ∈ R2×2 and η ∈ R2, and consider the variational family of the
form q(θ) ∝ p0(θ)f(θ)N . As described in the main text, the BB-α optimality equations for the variational
distribution q are given by

Eq [s(θ)] =
1

N

N∑
n=1

Ep̃n [s(θ)] , (5)

where s is a vector of sufficient statistics for q, and p̃n(θ) ∝ q(θ)(p(yn|θ,xn)/f(θ))α is the tilted distribution
for data point n.

Since the variational family considered is 2-dimensional Gaussian, the sufficient statistics for q are s(θ) =
((θi)

2
i=1, (θiθj)

2,2
i,j=1). We denote the solution of Equation (5) by q?, and denote its mean and variance by

µq? and Σq? respectively; we denote the corresponding quantities for the tilted distribution p̃n by µ̃n and

Σ̃n. Equation (5) then becomes

µq? =
1

N

N∑
n=1

µ̃n , (6a)

Σq? + µq?µ
>
q? =

1

N

(
N∑
n=1

Σ̃n + µ̃nµ̃
>
n

)
. (6b)
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Or, in terms of natural parameters,

Λ−1q? ηq? =
1

N

N∑
n=1

Λ̃−1n η̃n , (7a)

Λ−1q? + (Λ−1q? ηq?)(Λ−1q? ηq?)> =
1

N

N∑
n=1

(
Λ̃−1n + (Λ̃−1n η̃n)(Λ̃−1n ηn)>

)
. (7b)

But the natural parameters of the true posterior are the mean of the natural parameters of the tilted
distributions; i.e. power EP returns the true posterior when it lies in the approximating family. Since the
map from moments to natural parameters is non-linear, we deduce that the distribution q fitted according
the moment matching equations (7) is not equal to the true posterior for non-zero α.

B.2 Example 1

We now provide a concrete example of this phenomenon, by performing the explicit calculations for a toy
dataset consisting of two observations. We select our dataset to given by x1 = (1, 0)> and x2 = (0, 1)>, for
now letting the output points y1:2 be arbitrary. In this case, we can read off the mean and covariance of the
true posterior from (4):

Σ =
σ2

1 + σ2
I2 , µ =

1

1 + σ2
(y1, y2)> .

Note that in this case the true posterior has a diagonal covariance matrix. We consider fitting a variational
family of distributions containing the true posterior via BB-α, to demonstrate that the true posterior is
generally not recovered for non-zero α.

We now suppose that

f(θ) ∝ exp

(
−1

2
θ>Λθ + η>θ

)
is constrained to have diagonal precision matrix Λ (and hence diagonal covariance matrix). The optimality
equation is still given by (5), but the sufficient statistics are now given by the reduced vector s(θ) =
((θi)

2
i=1, (θ

2
i )

2
i=1). Now, we have q(θ) ∝ p0(θ)f(θ)N , and so

q(θ) ∝ exp

(
−1

2
θ>θ

)
exp

(
−1

2
θ>(NΛ)θ +Nη>θ

)
= exp

(
−1

2
θ>(I +NΛ)θ +Nη>θ

)
.

Similarly, note that the tilted distribution p̃n(θ) ∝ p0(θ)f(θ)N−αp(yn|θ,xn)α. We note that

p(yn|θ,xn) ∝ exp

(
− 1

2σ2
(yn − x>n θ)2

)
∝ exp

(
ynx>n θ −

1

2σ2
θ>(xnx>n )θ

)
.

So we have

p̃n(θ) ∝ exp(−1

2
θ>θ) exp

(
−1

2
θ>((N − α)Λ)θ + (N − α)η>θ

)
exp

( α
σ2
ynx>n θ −

α

2σ2
θ>(xnx>n )θ

)
(8a)

∝ exp

(
−1

2
θ>
(
I + (N − α)Λ +

α

σ2
xnx>n

)
θ +

(
(N − α)η> +

α

σ2
ynx>n

)
θ

)
. (8b)

We can now use these expressions for the natural parameters, together with the optimality conditions (5) to
fit the variational family of distributions.
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B.2.1 Matching first moments of the variational distribution

Denoting Λ = diag(λ1, λ2), setting N = 2 and using the specific values of x1:2 mentioned above, the
optimality equation (7a) implies that we have

2ηi
1 + 2λi

=
1

2

(
(2− α)ηi + α

σ2 yi

1 + (2− α)λi + α
σ2

)
+

1

2

(
(2− α)ηi

1 + (2− α)λi

)
, i = 1, 2 .

These equations are linear in the components of η, so we have that

ηi =
(yi

α
σ2 )/(1 + (2− α)λi + α

σ2 )
4

1+2λi
− 2−α

1+(2−α)λi+ α
σ2
− 2−α

1+(2−α)λi
, i = 1, 2 ,

yielding the natural parameter ηi in terms of λi.

B.2.2 Matching second moments of the variational distribution

The optimality equation (7b) can now be used to recover the precision matrix parameters λ1:2, and hence
also the parameters η1:2 using the formula derived in the above section. Importantly, recall that since we
are dealing only with Gaussian variational distributions with diagonal covariance matrices, we need only the
diagonal elements of this matrix equation. The resulting equations for λ1:2 are quite involved, so we begin
by evaluating the left-hand side of Equation (7b). Evaluating the ith diagonal element (where i = 1 or 2)
gives

1

1 + 2λi
+

4η2i
(1 + 2λi)2

.

We now turn our attention to the right-hand side. We again evaluate the ith diagonal element, which yields

1

2

(
1

1 + (2− α)λi + α
σ2

+

(
(2− α)ηi + α

σ2 yi

1 + (2− α)λi + α
σ2

)2
)

+
1

2

(
1

1 + (2− α)λi
+

(
(2− α)ηi

1 + (2− α)λi

)2
)
.

Equating the above two expressions in general yields λi as a zero of a high-order polynomial, and therefore
does not have an analytic solution. However, taking the data points y1:2 to be zero simplifies the algebra
considerably, and allows for an analytic solution for the natural parameters to be reached. In this case, the
optimality equation yields

1

1 + 2λi
=

1

2

(
1

1 + (2− α)λi + α
σ2

+
1

1 + (2− α)λi

)
, i = 1, 2 .

Solving this fixed point equation (with the constraints that 1 + 2λi > 0, 1 + (2 − α)λi + α
σ2 > 0 and

1 + (2− α)λi > 0 to make sure q and p̃n are valid distributions) gives

λi =

√
α2 − 2α+ (σ2 + 1)2 − α− σ2 + 1

2σ2(2− α)
, i = 1, 2 .

Plotting a diagonal element of the variational covariance matrix as a function of α gives the curve plotted
in Figure 1. This plot demonstrates that the variance of the fitted distribution increases continuously and
monotonically with α in the range (0, 2).

With the fitted mean and covariance matrix, we can plot the fitted approximate posterior distributions as
α varies, along with the true posterior, see Figure 2. Note that in the limit as α → 0, the true posterior
is recovered by BB-α, as the corresponding α-divergence converges to the KL-divergence; in fact, the true
posterior and the fitted approximation for α = 10−6 are indistinguishable at this scale. Note that for non-zero
α, the fitted covariance parameters differ from those of the true posterior.
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Figure 1: Diagonal element of fitted covariance
matrix against α, using output data points y1 =
y2 = 0 and σ2 = 1

Figure 2: Plot of the mean and one standard de-
viation’s confidence region for the true posterior
and several BB-α approximations. Output data
is set to y1 = 0, y2 = 0 and σ2 = 1

B.3 Mean-field approximations

We now demonstrate the behavior of BB-α in fitting mean-field Gaussian distributions, showing that smooth
interpolation between KL-like and EP-like behavior can be obtained by varying α.

B.4 Example 2

We now consider the case where the true posterior has non-diagonal covariance matrix; we set the input
values in our toy dataset to be x1 = (1,−1)>, x2 = (−1, 1)> (again leaving the output data y1:2 arbitrary
for now), and note from Equation (4) that this implies the mean and covariance of the true posterior are
given by

Σ =
1

4 + σ2

(
σ2 + 2 2

2 σ2 + 2

)
,

µ =

(
y1 − y2
4 + σ2

,
y2 − y1
4 + σ2

)>
.

We fit the same variational family considered in Example 1; namely the family in which

f(θ) ∝ exp

(
−1

2
θ>Λθ + η>θ

)
is constrained to have diagonal precision matrix Λ (and hence covariance matrix). We can now use this
information, together with the form of the tilted distributions in Equation (8) and the optimality conditions
in Equation (5) to fit the variational family of distributions.
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B.4.1 Matching first moments of the variational distribution

Denoting Λ = diag(λ1, λ2), substituting in N = 2 and using our specific choice of data points x1:2, Equation
(7a) yields the linear system( 2

1+2λ1
0

0 2
1+2λ2

)
η =

(
1 + (2− α)λ1 + α

σ2 − α
σ2

− α
σ2 1 + (2− α)λ2 + α

σ2

)−1(
(2− α)η +

α

2σ2

(
y1 − y2
y2 − y1

))
.

This linear system can be solved for η, although in general the solution is a complicated rational function of
(λ1, λ2). However, taking y1 = y2 yields η = 0.

B.4.2 Matching the second moments of the variational distribution

With the above choices for y1 and y2, it follows by symmetry that we must have λ1 = λ2. We denote this
unknown variable by λ in what follows. Considering the diagonal elements of the Equation (7b) then yields

1

1 + 2λi
=

1 + (2− α)λi + α/σ2

(1 + (2− α)λi + α/σ2)− α2/σ2
+
y2α2

σ4

(1 + (2− α)λi)
2

(1 + (2− α)λi + α/σ2)2 − α2/σ4
.

This can be re-arranged into a cubic for λ and thus solved analytically, at least in theory; the resulting
expression for λ in terms of α, σ and y is lengthy in practice and is therefore omitted here. We instead
consider the case y = y1 = y2 = 0, where the algebra is more tractable. This results in the following
equation for λ:

1

1 + 2λi
=

1 + (2− α)λi + α/σ2

(1 + (2− α)λi + α/σ2)2 − α2/σ4
, i = 1, 2 .

This equation is merely quadratic, and hence has a more easily expressible solution; solving this equation
(with the constraint that both sides are positive, and the denominator of the RHS is also positive) gives the
precision parameters as

λi =

√
4α2 − 8α+ σ4 + 4σ2 + 4− (2α+ σ2 − 2)

2σ2(2− α)
, i = 1, 2 .

Plotting a diagonal element of the corresponding fitted covariance matrix as a function of α gives the curve
shown in Figure 3. Note that as before, the element exhibits a continuous, monotonic dependence on α in
the range (0, 2).

With the fitted mean and covariance matrix, we can plot the fitted approximate posterior distributions as
α varies, along with the true posterior, see Figure 4. Note that in the limit as α → 0, the BB-α solution
mimics the KL fit, exhibiting low variance relative to the true posterior, and as α increases, so does the
spread of the distribution, consistent with Figure 3.

C Results on toy dataset with neural network regression

We evaluated the predictions obtained by neural networks trained with BB-α in the toy dataset described
in [Hernández-Lobato and Adams, 2015]. This dataset is generated by sampling 20 inputs x uniformly
at random in the interval [−4, 4]. For each value of x obtained, the corresponding target y is computed
as y = x3 + εn, where εn ∼ N (0, 9). We fitted a neural network with one hidden layer with 100 hidden units
and rectifier activation functions. In this neural network model, we fixed the variance of the output noise
optimally to σ2 = 9 and kept the prior variance for the weights fixed to value one. Figure 5 shows plots of
the predictive distributions obtained for different values of α. We can see that smaller and negative values of
α produce lower variance in the predictive distributions, while larger values of α result in higher predictive
variance.
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Figure 3: Diagonal element of fitted covariance
matrix against α, using output data points y1 =
0, y2 = 0 and σ2 = 1

Figure 4: Plot of mean and one standard devia-
tion’s confidence region for the true posterior and
several BB-α approximations. Output data is set
to y1 = 0, y2 = 0 and σ2 = 1
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Figure 5: Predictions obtained for different values of α in the toy dataset with neural networks.
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