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Abstract

This paper presents a novel distributed varia-
tional inference framework that unifies many par-
allel sparse Gaussian process regression (SGPR)
models for scalable hyperparameter learning
with big data. To achieve this, our frame-
work exploits a structure of correlated noise pro-
cess model that represents the observation noises
as a finite realization of a high-order Gaussian
Markov random process. By varying the Markov
order and covariance function for the noise pro-
cess model, different variational SGPR models
result. This consequently allows the correlation
structure of the noise process model to be char-
acterized for which a particular variational SGPR
model is optimal. We empirically evaluate the
predictive performance and scalability of the dis-
tributed variational SGPR models unified by our
framework on two real-world datasets.

1. Introduction

The rich class of Bayesian non-parametric Gaussian pro-
cess (GP) models has recently established itself as a lead-
ing approach to probabilistic non-linear regression due to
its capability of representing highly complex correlation
structure underlying the data. However, the full-rank GP
regression (FGPR) model incurs a cost of cubic time in the
data size for computing the predictive distribution and in
each iteration of gradient ascent to refine the estimate of
its hyperparameters to improve the log-marginal likelihood
(Rasmussen & Williams, 2006), hence limiting its usage to
only small datasets in practice.

To boost its scalability, a wealth of sparse GPR (SGPR)
models (Lazaro-Gredilla et al., 2010; Low et al., 2015;
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Quifionero-Candela & Rasmussen, 2005; Snelson &
Ghahramani, 2007) utilizing varying low-rank approximate
representations of FGPR have been proposed, many of
which are spanned by the unifying view of Quifionero-
Candela & Rasmussen (2005) based on the notion of in-
ducing variables (Section 3) such as the subset of regres-
sors (SoR) (Smola & Bartlett, 2001), deterministic train-
ing conditional (DTC) (Seeger et al., 2003), fully inde-
pendent training conditional (FITC) (Snelson & Gharah-
mani, 2005), fully independent conditional (FIC), partially
independent training conditional (PITC) (Schwaighofer &
Tresp, 2003), and partially independent conditional (PIC)
(Snelson & Ghahramani, 2007) approximations. Conse-
quently, they incur linear time in the data size, which
is still prohibitively expensive for training with million-
sized datasets. To scale up these SGPR models further for
performing real-time predictions necessary in many time-
critical applications and decision support systems (e.g., en-
vironmental sensing (Cao et al., 2013; Dolan et al., 2009;
Ling et al., 2016; Low et al., 2008; 2009; 2011; 2012;
Podnar et al., 2010; Zhang et al., 2016), traffic monitor-
ing (Chen et al., 2012; 2013b; 2015; Hoang et al., 2014a;b;
Low et al., 2014a;b; Ouyang et al., 2014; Xu et al., 2014;
Yu et al., 2012)), a number of these models have been
parallelized (e.g., FITC, FIC, PITC, and PIC (Chen et al.,
2013a), and low-rank-cum-Markov approximation (LMA)
(Low et al., 2015) unifying a spectrum of SGPR mod-
els with PIC and FGPR at the two extremes), but the re-
sulting parallel SGPR models do not readily extend to in-
clude hyperparameter learning. The work of Deisenroth &
Ng (2015) has recently introduced a practical product-of-
expert (PoE) paradigm for GP which imposes a factorized
structure on the marginal likelihood that allows it to be op-
timized effectively in a parallel/distributed fashion.

However, the main criticism of the above approximation
paradigms is their lack of a rigorous approximation since
they do not require optimizing some loss criterion incurred
by an approximation model (Titsias, 2009b). To resolve
this, the work of Titsias (2009a) has introduced an alterna-
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tive formulation of variational inference for DTC approxi-
mation that involves minimizing the Kullback-Leibler(KL)
distance between the variational DTC approximation and
the posterior distribution of some latent variables (includ-
ing the inducing variables) induced by the FGPR model
given the data/observations, or equivalently maximizing
a lower bound of the log-marginal likelihood. Hyperpa-
rameter learning can then be achieved by maximizing this
variational lower bound as a function of the hyperparam-
eters. Its incurred time per iteration of gradient ascent is
still linear in the data size but can be significantly reduced
by parallelization on multiple distributed machines/cores,
as demonstrated by Gal et al. (2014). Despite their theo-
retical rigor and scalability, it has been shown by Hoang
et al. (2015) that DTC has utilized the most crude approx-
imation among all SGPR models (except SoR) spanned
by the unifying view of Quifionero-Candela & Rasmussen
(2005), thus severely compromising its predictive perfor-
mance. As such, it remains an open question whether ef-
ficient and scalable hyperparameter learning of more re-
fined SGPR models (e.g., PIC, LMA) for big data can be

achieved through distributed variational inference'.

To address this question, we first observe that variational
DTC (Titsias, 2009a) and its distributed variant (Gal et al.,
2014) have implicitly assumed the observation noises to
be independently distributed with constant variance, which
is often violated in practice (Huizenga & Molenaar, 1995;
Koochakzadeh et al., 2015; Rasmussen & Williams, 2006).
This strong assumption has been relaxed slightly by Titsias
(2009b) to that of input-dependent noise variance which al-
lows a variational inference formulation for FITC approxi-
mation to be derived. This seems to suggest a possibility of
deriving variational inference formulations for the more re-
fined sparse GP approximations and, perhaps surprisingly,
their distributed variants by exploiting more sophisticated
noise process models such as those being used by exist-
ing GP works. Such GP works, however, suffer from poor
scalability to big data: Notably, the work of Goldberg et al.
(1997) has proposed a heteroscedastic GPERIGPR) model
that extends the FGPR model by representing the noise
variance with a log-GP (in addition to the original GP mod-
eling the noise-free latent measurements), hence allowing
it to vary across the input space; the observation noises
remain independently distributed though. But, the exact
HGPR model cannot be computed tractably while approxi-
mate HGPR models (Kersting et al., 2007; Lazaro-Gredilla
& Titsias, 2011) still incur cubic time in the data size,
thus scaling poorly to big data (i.e., million-sized datasets).
This is similarly true for FGPR models (Murray-Smith &

"The work of Campbell et al. (2015) has separately developed
a distributed variational inference framework for Bayesian non-
parametric models that are limited to only clustering processes
(e.g., Dirichlet, Pitman-Yor, and their variants) not including GPs.

Girard, 2001; Rasmussen & Williams, 2006) that repre-
sent correlation of observation noises with an additional
covariance function. Unfortunately, variational DTC (Tit-
sias, 2009a), its distributed variant (Gal et al., 2014), and
variational FITC (Titsias, 2009b) cannot readily accommo-
date such heteroscedastic or correlated noise process mod-
els without sacrificing their time efficiency. So, the key
challenge remains in being able to specify some structure
of the noise process model that can be exploited for effi-
cient and scalable hyperparameter learning of more refined
SGPR models (e.g., PITC, PIC, LMA) through distributed
variational inference, which is the focus of our work here.

To tackle this challenge, this paper presents a novel varia-
tional inference framework (Section 3) for deriving sparse
GP approximations to a new FGPR model with observation
noises that vary as a finite realization of a high-order Gaus-
sian Markov random process (Section 2), thus enriching the
expressiveness of HGPR models by correlating the noises
across the input space. Interestingly, our proposed frame-
work can unify many SGPR models via specific choices
of the Markov order and covariance function for the noise
process model (Section 4), which include variational DTC
and FITC (Titsias, 2009a;b) and the more refined PITC,
PIC, and LMA. This then enables the characterization of
the correlation structure of the noise process model for
which a particular sparse GP approximation is (variation-
ally) optimal® and explains why PIC and LMA tend to out-
perform DTC and FITC in practice despite not being char-
acterized as optimal when independently distributed obser-
vation noises are assumed. More importantly, our frame-
work is amenable to parallelization by distributing its com-
putational load of hyperparameter learning on multiple ma-
chines/cores (Section 5), hence reducing its incurred lin-
ear time per iteration of gradient ascent by a factor close
to the number of machines/cores. We empirically evaluate
the predictive performance and scalability of the distributed
variational SGPR models (e.g., state-of-the-art distributed
variational DTC (Gal et al., 2014)) unified by our frame-
work on two real-world datasets (Section 6).

2. Gaussian Processes with Correlated Noises

Let X be a set representing the input domain such that each
d-dimensional input feature vector x € X’ is associated
with a latent output variable f, and its corresponding noisy
output yx £ fyx + !« differing by an additive noise ! . Let
{fx}xex denote a Gaussian proces&GP), that is, every fi-

Such a characterization, which is important to many real-
world applications of GP involving different noise structures, can-
not be realized from the unifying framework of Hoang et al.
(2015) relying on reverse variational inference to obtain the vari-
ational lower bound for a SGPR model. Furthermore, it is unclear
or at least non-trivial to determine whether it is amenable to par-
allelization for learning the hyperparameters of LMA which does
not meet its assumed decomposability conditions.
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nite subset of { f x } x c x follows a multivariate Gaussian dis-
tribution. Then, the GP is fully specified by its prior mean
Ux = E[fy] and covariance ky+ = cov|fy,fy/] for all
x,x’ € X, the latter of which can be defined, for example,
by the widely-used squared exponential covariance func-
tion kyx + 2 02 exp(—0.5(x — x')TA~2(x — x')) where
A 2 diag[ly, ..., 4] and o2 are its length-scale and sig-
nal variance hyperparameters, respectively. Similarly, let
{ex}xex denote another GP with prior mean E[ex] = 0
and covariance kg, , = covle, ex/] for all x,x’ € X, the
latter of which is defined by a covariance function like that
used for ky - (albeit with different hyperparameter values).

Supposing a column vector yp = (yx ), cp Of noisy out-
puts is observed for some set D C X of training inputs, a
FGPR model with correlated observation noises (Murray-
Smith & Girard, 2001; Rasmussen & Williams, 2006) can
perform probabilistic regression by providing a GP pos-
terior/predictive distribution p(fylyp) = N (fuluy +
Kup(Kpp + Spp) " Hyp — Up), Kuw — Kup(Kpp +
Spp) 'K py) of the unobserved outputs fo; = (fx), o,
for any set U ¢ X \ D of test inputs where p; (Up) is
a column vector with mean components py for all x € U
(x € D), Kyp (Kpp) is a matrix with covariance com-
ponents Kyy - forall x € U,x’ € D (x,x’ € D), Kpy =
K J,D, and Spp is a matrix with covariance components
ks, - forall x, x’ € D representing the correlation of obser-
vation noises ep £ (ex)XTeD ~ N (0, Spp) which implies
p(yplf o) = N (yp|f o, Spp). However, the FGPR model
scales poorly in the size |D| of data because computing the
GP predictive distribution incurs O(|D|?) time due to the
inversion of K pp + Spp.

To improve its scalability, our key idea stems from im-
posing a B-th order Markov property on the observation
noise process: Specifically, let the set D (U) of training
(test) inputs be partitioned evenly into M disjoint sub-
sets D1, Da,...,Das (Uy, Uz, ..., Up). In the same spirit
as a Gaussian Markov random process, imposing a B-th
order Markov property on the observation noise process
{ex}xep With respect to such a partition implies that ob-
servation noises ep, and ep, are conditionally independent
given epy\ (p,up,) ifli —j| > B . As shown in (Low et al.,
2015), this can be realized by partitioning the matrix Sy,
for the entire set V £ D U U of training and test inputs into
M x M square blocks, that is, Syv = [Sy,v,]ij=1,..m
where V; 2 D, UU; (hence, V = ), V;) and

Kb, if i —j| <B,
o) K peKE s sSpey ifj —i>B> 0,
Sviv; = e T (1)
SviprK pspsK iy, ifi —j>B> 0,
0 ifi —j|>B =0;
such that K, ,, = [Ki /]y ey, xrep,s DF = Disa U... U

D,+ where i}, = min(M,i + B), and 0 denotes a square

block comprising components of value 0. Though the ma-
trix Sy, (and hence its submatrix Spp) is dense, its struc-
ture (1) interestingly guarantees that Ppp = 85713 is B-
block-banded (Low et al., 2015). That is, if |i —j| > B,
then Pp,p, = 0. Such sparsity of Ppp is the main ingre-
dient to improving the scalability of the FGPR model with
correlated observation noises, as revealed in Section 3.

3. Variational Sparse GP Regression Models

This section introduces a novel variational inference frame-
work for deriving sparse GP approximations to the FGPR
model with correlated observation noises that vary as a fi-
nite realization of a B -th order Gaussian Markov random
process (Section 2). Similar to the variational inference
formulations for DTC and FITC approximations (Titsias,
2009a;b), we exploit a vector f s of inducing output vari-
ables for some small set S C X of inducing inputs to con-
struct sufficient statistics for yp such thatyp 1 fp | fs
(ie, p(fp,fslyp) = p(folfs) p(fslyp)). However,
choosing S for which this conditional independence prop-
erty holds may not be possible in practice. Instead, it is
approximated by some (heuristic) choice of S as follows:

p(fp,fslyp) =~ p(folfs) a(fs) )

where q(fs) is a free-form distribution to be opti-
mized by minimizing the KL distance Dkr(q) =
KL(p(fplf s)a(fs)llp(fp, fslyp)) between p(fp|fs)
g(fs) and p(fp,fs|lyp) on either sides of (2) with
respect to q(fs) and the hyperparameters defining prior
covariances Ky - and k<, , (Section 2). To do this, note that

XX !

logp(yp) =L(9,Z) + Dxw(9) €))

where Z denotes a set of hyperparameters 3 defining kyy -
and kg, , and, as derived in Appendix A,

L(9.Z) 2 Eyys)llogN (yplv, Spp)+log(p(f s)/q (f s))]
— 05TI‘[SE,1D(K DD — QDD)} (4)

where v 2 pp + KpsK s (fs — Hs) and Qyyr 2
KysK ssKsy for all Y,Y’ < X. Supposing Z is
fixed/known, since Dkr,(q) > 0 and logp(yp) is inde-
pendent of q(fs), minimizing Dk, (q) is equivalent to
maximizing L (g,Z ) which entails solving for the optimal
choice of q(f s) that satisfies OL (q,Z )/ 9q = 0 as a PDF
parameterized by Z . As derived in Appendix B, this yields

log q(fs) = log[N (yp|v, Spp) p(f s)] + const  (5)

where const is used to absorb all terms independent of f s.
By completing the quadratic form for f s (Appendix C), it
can be derived from (5) that

d(fs) =N (fslus + Kss! 55Vsp, Kss! s6Kss) (6)

3All the terms in (3) and the equations to follow depend on Z .
To ease notational clutter, their dependence on Z are omitted from
their expressions, unless otherwise needed for clarity reasons.



A Distributed Variational Inference Framework for Unifying Parallel Sparse Gaussian Process Regression Models

Kss + KspPpp Kps, Pop = Spa , and
KsoPoo (Yo ! Mp). By plugging 6) into (4),

where! gg !
Vsp !

R(Z)! maxqL(q,Z) can be derived analytically. Then,

maximizingR (Z) with respect t&Z gives the optimal hy-

perparametefs The details of this maximization are de- ,

-1
k! Zi’j €B (k) KSDiGEkaGEkaGEkD]‘(yDj ! “DJ)

-1
k! Zi,j eB+(k) KSDmGBkaGEkaGEkDJKDJS © (8)

Its proof is in AppendixE. From @), "1,...,"m and
..,I'm can again be computed independently and

ferred to Sectior for the sake of clarity. In the rest of this pance in parallel i0(|B* (K)[2|SFF) = O(B2[SP) time

section, we will instead focus on deriving an equivalent re-on v distributed machines/cores; alternatively, they can be
formulation ofg(fs) (6) that can be computed efbciently computed sequentially i®(|D||S|2B2) = O(MB 2|S[?)

in linear time in the data sizfp| since computingy(f s)
directly using 6) generally incursO(|D|®) time. More-

time. ! sp andVsp can then be constructed @(M |S|[?)
time and computing|(f ) (6) in turn incursO(|S|®) time.

over, its computation can be distributed among parallel Magg, the overall time complexity of derivirggf s) (6) is lin-

chines/cores to achieve scalability, as described next.

Our prst result (Lemmd) below derives the structure

of eachnon-zero constituent blockPp p ; of the B-block
banded matriPpp (i.e.,|i! j|" B), which is the key in-
gredient to be exploited for computingf s) (6) efbciently

and scalably (Theorerh). Note that it sufpces to simply

computePp p, fori " j ig becausd’pp is symmet-
ric (e, Po,p, = Pgp, forj " i" j3) andB-block-
banded (i.e.Pp,p;, =0 for|i! j|>B) (Section2):

Lemma 1l Ler®

k k -1
gy | Gbwn Sbop || [ Sowor Soiop
GD]?DIC GDkBDE SDka SDED{?’3

fork =1,...,M. Then, fori,j =1,...,M such that
i"j"ig=min(M,i +B)andjg ! max(l,j! B),

i —1

Po,p; = Z:(:jg GlISkaGIISkaGEij . (7)
See AppendiD for its proof. From Lemmad, construct-
ing GX of sizeO(B|D|/M ) = O(B|S|)® by O(B|S]) in-

cursO(B3|S|®) time. G?,...,GM can be computed in-
dependently and hence in parallel bh distributed ma-

chines/cores; otherwise, they can be constructed sequen-

tially in O(|D||S|?B3) = O(MB 3|S[?) time.

Our next result exploits Lemnmand theB -block-banded
structure oPpp for decomposing ss andVsp in (6) into

linear sums of'anependent terms whose computatlons Callodel and the Markov ord
therefore be distributed among parallel machines/cores:

Theorem 1 Let B* (k) ! {k,k +1,...,kg}. Then,
l g5 = Kgg + ZI’Y'::L '« andVsp = ZI’Y'::L "k where

“The formulation described thus far is reminiscent of vari-

ational expectation-maximization (EM) (Wainwright & Jordan

ear in|D| which can be further reduced via parallelization
by a factor close to the number of machines/cores.

Remark The efbciency in derivingg(fs) (6) can be
exploited for constructing a linear-time approximation
g(fu,lyp) to the GP predictive distributiop(f y,|yp) for

any subset) = V; \D; of test inputs and its distributed
variant, the details of which are not needed to understand
our distributed variational inference framework for hyper-
parameter learning in Sectidh(but required for predic-
tions in our experiments in Secti@G)and hence deferred to
Appendiced andG, respectively. By varying the choices
of the Markov ordeB, the covariance functiok,, , for

the noise process model, the numbkrof data partitions,
and the approximatiog(f u,|f s, ypo ) to the test conditional
p(fu,Ifs,yp), they recover the predictive distribution of
various SGPR models spanned by the unifying view of
Quironero-Candela & Rasmussg00j (i.e., SoR, DTC,
FITC, FIC, PITC, PIC) and LMA, as detailed in Sectidn

4. Unifying Sparse GP Regression Models

4.1. SGPR models spanned by unifying view of
Quinonero-Candela & Rasmussen (2005)

We will brst demonstrate how our variational inference
framework (Sectior8) can unify SoR, DTC, FITC, FIC,
PITC, PIC. As discussed in Appendtx it sufbces to show
how the covariance functiok}, , for the noise process
@ can be set such that the
resulting variationally optimal distributiog(f s) (6) coin-
cides with that of these SGPR models. Let us consider the
following covariance function for the noise process model:

Ko ! K ! KxsKgaKsy + #21(x = x') . (9)
where#2 is a noise variance hyperparameter. It follows

2008 whoseapproximate E step involves maximizing the vari- that K !DD = Kpp ! Kps K§§KSD + #§| = Kpp !

ational lower bound. (q,Z ) with respect tog given optimalZ

from M step while its M step follows exactly that of EM by

maximizingL (q,Z ) with respect taZ given optimalg from E

step. The implication is that, like variational EM, variational DTC With B = 0 givesSpp = blkdiag[ K pp

and FITC (Titsias 2009ab), and distributed variational DTGl
et al, 2014, though the log-marginal likelihoolbg p(yp ) does

Qop + #21. Then, imposing th& -th order Markov prop-
erty on the observation noise proc¢$s} « cp through @)
! QDD ] + #%l
which impliesSp,p, = (i = j)(Kp.p, ! Qp,o, + #21).
Plugging this expression @pp into (6) yields the same

not necessarily increase in each iteration, our formulation has aQ(f 5) induced by PIC, as detailed ifloang et al.2015".

attractive interpretation of maximizing its lower bound.
SWhenB = 0, G¥ :SSka fork=1,...,M.
®We choose the size & such tha{Di| = |D|/M = O(|S|).

"The work ofHoang et al(2015 assumes a GP with zero prior
mean which is equivalent to settipg = pup = 0 in (6).
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Furthermore, ifDj| =1 fori =1,...,M (i.e.,M = |D]), Rasmusser?005 Snelson2007). But, to the best of our
then Spp = diag[Kpp ! Qpp] + !2l which can be knowledge, it has not been explicitly explained why SGPR
plugged into 6) to recover the samg(fs) induced by models like PIC and LMA, despite being able to provide
FIC. Supposingk),: ! !'21(x = x') instead of us- more rePned approximations of the prior covariance ma-
ing (9), Sop = !2I that can be plugged intc) to re-  trix of the FGPR model, do not minimize their KL distance
cover the samg(f s) induced by DTC. Finally, the predic- to the FGPR model.

tive dIStI’Ik.)ut.IOI’]S(_](f ui lyo ). of the SGPR models spanned Our unibcation results (Sectiors1 and 4.2) have ex-
by the unifying view ofQuironero-Candela & Rasmussen

(2009 such as PIC, FIC and DTC can be recovered b)})lalned this by giving a theoretical justibcation based

integrating the resulting(f s) with their approximations on the correlation structure of the noise process model:

9 9 gfs) V pp . Specibcally, FITC and DTC can only minimize their KL
A(fu Ifs,yo) to the test conditionad(f [fs, Yo ), as dis- oo neos 1o a FGPR model under the assumption of in-
cussed in Appendi¥. We omit details of unifying PITC, P

sameq(fs) as that of PIC, FIC and DTC, respectively. y

be correlateduizenga & Molenaarl 995 Koochakzadeh

et al, 2015 Rasmussen & William=006. However, they

do not necessarily minimize their KL distances to a FGPR
To unify LMA with our variational inference framework, modelin such cases. In light of this fact, our unibcation re-
we have to derive its induceg(f s) since it is not explic- sults reveal that different SGPR models minimize their KL
itly given in (Low et al, 2015. To do this, let us brst derive distances to a FGPR model under varying assumptions of
an equivalent reformulation of the predictive distribution of correlation structure of the noise process model: For exam-
the FGPR model with independently distributed observaple, Sectiord.1 (4.2) shows that when our variational in-
tion noises of constant variance, as shown in Appehtlix ference framework minimizes the KL distance to a FGPR
p(fslyp) ! N(fslus + KssT'saVsp,KssI's3Kss)  model (SectiorB) under the assumption & =0 (B > 0)
whereT'ss ! Kss + KspRps Kps and Vsp = and the covariance functide}, . in (9) for the noise process
KsoRp3 (Yo ! Hp)suchthaRpp ! Kpp ! Qpp +!21. model, it recovers the sanugéf s) and predictive distribu-
But, computingp(fs|yp) generally incursO(|D|3) time.  tiond(fu;lyo) induced by PIC (LMA).

To reduce to linear time and achieve further scalability via L I
parallelization, the work of ow et al.(2015 has proposed 5. Distributed Variational !nference for

LMA by approximatingRpp with Spp (1) based on the Hyperparameter Learning

covariance function in9), which interestingly induces the Recall from Sectior8 that plugging the derived(fs) (6)
sameq(f s) and predictive distribution (Appendi)as that  into the variational lower bound(q,Z) (4) gives

produced by our variational inference framework (see, re- _

spectively, 6) in Section3 and @8) in AppendixF, the ?I(Z) = maxqL(q,2) | - |

latter of which relies on a specibc choice of approximation~ '°9 N (Yo [Mp. Spp + Qoo )! 0.5T[Spp (Ko ! Qoo )]

" (20)
q(fu Ifs,yo) (47) to the test conditionad(fy, |fs,¥p))-  where the last equality is derived in AppendixHyperpa-
So, LMA is unibed with our framework. rameter learning then involves iteratively rebning the esti-
mate of hyperparameters via gradient ascent to improve
the value ofR(Z). Its time complexity depends on the ef-
bciency of computing the gradiehR/" Z per iteration of
It is well-known that, among existing SGPR models, DTC gradient ascent. As shown in Appendix differentiating
and FITC are deemed variationally optimal as they mini-both sides of10) with respectt@ " Z yields
mize the KL distance to a FGPR model with independently

4.2. Low-rank-cum-M arkov approximation (LMA)

4.3. Key insight: Different variational SGPR models
evolve from varying noise correlation structures

distributed noises (i.eSpp = !2I (Titsiag 20093 or R/ Z'":P "W “p

Sop =diag[Kpp ! Qop ]+ ! 2l (Titsias 20098). How- 1 27y |22 w0 + Ppp —vP2 | gop DD]

ever, empirical results in the existing literature show that 2 L z oz Z

FITC and DTC often predict more poorly than Plggang | 1 »1"Tss | n1"Kss (11)
* VST (Tgs—; ' Kgg—

et al, 20159, and LMA (Low et al, 20158, which are usu- L a z

ally explained by empirically inspecting how well these + }Tr Vi " SéV 19 "V 1y,

SGPR models approximate the prior covariance matrix of 2 | 'SP "z ‘'SP wz SSYSP

the FGPR modell(ow et al, 2015 Quironero-Candela & whereWop ! Koo ! Qob + (Yo ! 1p)(Yo ! o).

8ln (Low et al, 2015, LMA outperforms PIC on the same However, computing' R/" z directly using (1) is pro-
dataset used biyloang et al(2015 to compare PIC and DTC. hibitively expensive as it involves computing the matrix
derivative"Ppp /"z = ! Ppp ("Spp /" z) Ppp which
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generally incursO (|D|®) time. In the rest of this sec-
tion, we will exploit the B-block-banded structure of
Pop (Section2) for deriving an efbcient reformulation of

I'R/!z(11) that can be computed in linear time in the data 4z

size|D|. More importantly, it is amenable to parallelization

M M M

" Z"k’ y KSS"’Z#ky Wz Zﬁ'
k=1 k=1 k=1
IKSS M M
N z z Z
?+kz:1:#k, and & ! ;@%%ﬁ.

on distributed machines/cores by constructing and commu-
nicating summaries of data clusters to be described nexur main result to follow presents an efbcient reformula-

Debpnition 1 B -th order Markov Cluster) A B-th order
Markov clusterk is dePned as ¢ ! U, g+ () Di ! D§
fork = 1,...,M whereB"* (k) and Dg are previously
debned in Theorethand just below(1), respectively.

From Depnitionl, D = Uy, M2 andM B " M B # $

if |k%k'| & B andB > 0. EachB-th order Markov
clusterk of size[M B| = O(B|D|/M ) = O(B|S|)®is

assigned to a separate machine/dorehich constructs its
local summary, as debPned below:

Debpnition 2 (Local Summary) The local summary of a
B-th order Markov clustek is debned as a tuplEy !
("ot R #E 8 Y% 2 2) where  and# are previ-
ously debned in Theoretm" { ! " /1 z #Z ! ¥\ /!z,

! ‘1
g1y TrLZ<G',§|DkG‘E,ka

ij ! B* (k)

% 1y Tr[!!Z<G',§ka

ij !B+ (k)

GIE)kDJWD,D.>:| :

"1
G:(Dk Dk GlBk Dj ) SDj Di:| .

The local summarie®,...,Py can be computed in-
dependently and hence in parallel bh distributed ma-
chines/cores: To construct local summddy, each ma-
chine/corek only needs access to its Markov cluskér?

the corresponding noisy outpufsg, e, and a common set

S of inducing inputs known to all machines/cores. Eval-

uating the derivative terms in local summalPy essen-
tially requires computing terms such as;kD‘ o /!z for
i

result of Lemmal for computing! G¥/! z in terms of
!'Spepe/!z, ' Spep, /! 2z, and! Sp,p, /! z. For each
Markov clustetM B, computingG¥ (and hence G¥/! z)
incurs only O(B3|S|®) time, as discussed in the para-
graph after Lemmad. Its corresponding local summary
Py can then be computed i@(B?|S[®) time. So, the
overall time complexity of computing local summalPy

of Markov clusterM B in each parallel machine/cokeis
O(B3|S[®) which is independent of the data sijfy. Al-
ternatively,P,, ..., Pu can be constructed sequentially in
O(|D|IS|?°B?3) = O(MB 3|S[®) time that is linear inD].
Every machine/cor& then communicates the local sum-
mary Py of its assigned Markov clustev B to a central

tion of | R/! z (11) by exploiting the global summayy:

Theorem 2 ' R/! z (11) can be re-expressed in terms of
global summanPy = (" ,#,{" ?,#%, &}, z) as follows:
= -Tr

K
Iz 2{

1 1 1
%=Tr [#% 142 0o =" Py 1pzus 1y o 287,
o2 [ ] (0 5 () 2&

'R 1 s1! Kss

SS 17

:| + " z* #$ 1n
(12)

Its proofis in Appendix. Since" and" ? are column vec-
tors of size|S|, # and#* are matrices of siz¢S| by |S],
and&? is a scalar, computingR /! z using (L2) only incurs
O(|S[®) time given the global summaR);. So, the overall
time complexity of computing R/! z (12) in a distributed
manner orM parallel machines/cores (sequentially) is still
O(B®ISP) (O(IDIS|?B®) = O(MB *|S]%)).

6. Experiments and Discussion

This section empirically evaluates the predictive perfor-
mance and scalability of distributed variational SGPR mod-
els unibed by our framework (Secti&y such as the dis-
tributed variants of PIC and LMA and the current state-of-
the-art distributed variant of DTG3al et al, 2014), which

we respectively caliPIC,dLMA, anddDTC?, on two real-
world datasets:

(a) The AIMPEAK datasetQhen et al. 20133 contains
418500bservations of trafbc speeds (km/h) alaitgroad
segments of an urban road network during morning peak

B* (k). To compute the latter terms, we exploit the hours on April 20, 2011. Each observation comprisés a

dimensional input vector featuring the length, number of
lanes, speed limit, direction of the road segment as well as
its recording time which is discretized infgl bve-minute
time slots. The outputs correspond to the trafbc speeds.

(b) The AIRLINE datasetflensman et a/.2013 Hoang

et al, 2015 contains2055733nformation records of com-
mercial Bights in the USA from January to April 2008. The
input denotes &-dimensional feature vector of the age of
the aircraft (year), travel distance (km), airtime, departure
and arrival time (min), day of the week, day of the month,
and month. The output is the delay time (min) of the Right.

Both datasets are modeled using GP with correlated noises

machine that will assimilate these local summaries into {Section2) whose prior covariance matrix is debPned using

global summary debned as follows:

Debpnition 3 (Global Summary) The global summary is
debned as atupley ! (",#,{"?,#%,&}, z) where

the squared exponential covariance function described in

°The induced variational lower bound dbTC (Eq. (L0)) is
equivalent to that of the Dist-VGP framework @&l et al.(2014).
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255 500 |
g s b & a0 V (a) Figs.1 and2 show results of RMSEs, incurred times,
Zas 209 V and parallel efpciencies @PIC, dDTC, anddLMA av-
4 V‘\v,_, R 200 eraged ovel5 random instances with varying number
E R —" Y YY B A w3 of iterations. In particular, it can be observed from both
No. ¢ ‘(’8““"‘“““ No. A“Zd())f cores Figs.1 and2 that the RMSEs of all tested methods decrease
: 400 rapidly (see Figda, 1c, andle) while their total incurred
o AR 700 =21 training times only increase linearly in the numbbesf it-
=6 56 erations (see Figb), which shows the effectiveness of our
Eus 8 500 distributed hyperparameter learning framework (Seckjon
W 2 for these variational SGPR models;
-
& Zzz \ (b) Fig. 1 also shows results of the total training times in-
3: 100 curred bydPIC,dLMA, and dDTC over10iterations with
2o tofiteratione. 2 o M of cores 4 varying numbemM # = 2, 4, 8,16 of parallel cores. As ex-
(e) 0] pected, it can be observed from Fidb, 1d, andilf that the

Figure 1.Graphs of RMSEs achieved by @PTC, (c)dPIC, and  training times of the tested models decrease gradually when
(e)dLMA vs. numbert of iterations, and graphs of the total train- the number of computing cores increases, which corrobo-
ing times incurred by (JDTC, (d)dPIC, and (JALMAvs. num-  rates our complexity analysis of distributed SGPR models
berM " of parallel cores for the AIMPEAK dataset. in Sections. More specibcally, our experiment reveals that
usingM # = 16 cores,dPIC (116 seconds)dLMA (193
seconds), andDTC (97 seconds) can achieve speedups
(i.e., parallel efbciencies) &.5 to 7.2 over their central-

Section2. FordPIC anddLMA models, the prior covari-
ance of the noise process is constructed uslygréspec-
tively, with Markov ordeB = 0 and1l) and the covariance | A
function in 9). Likewise, fordDTC, the prior covariance ized counterparts (i.eM "= 1): PIC (836seconds), LMA
of the noise process is constructed usifigwith B = 0 (1266seconds), and DTGE7seconds).
and covariance functioki, . ! ! 21. Both the trainingand (c) Fig. 2b further shows thalDTC consistently incurs
test data are then partitioned evenly ifio blocks using  less training time than bottiPIC anddLMA with varying
k-means (i.ek = M). All experiments are run on a Linux numbert of learning iterations. This is expected because
system with Intél Xeor" E5-2670at 2.6GHz with 96  the primary cost of computing a local summary &@TC,
GB memory and2 processing cores. Our distributed vari- which involves computings® in Lemmal, is constarif
ational SGPRs are implemented using Armadillo linear al-while that ofdP1C anddLMA grows cubically in the block
gebra library for C++ $anderson2010. For each tested size|D|/M . On the other hand, Figa, however, reveals
model, we report the (apot mean square erroRMSE),  that the RMSEs achieved lofPIC (3.75) anddLMA ( 3.54)
[UF'T . ulyx ! ¥)2?, ofits predictiong ¥ }x- u, (b)  are both signibcantly lower than that achieveddiyTC
training time vs. no. of iterations, and (c) training time (10.70). This inferior performance ofiDTC is also ex-
vs. no. of parallel cores. The results for each model argected because of its more restrictive assumption of deter-
evaluated or5% of the dataset with respect to its best con- ministic relation between the training and inducing outputs
Pguration (e.g., learning rate, no. of inducing inputs, etc.)(Hoang et al.2015.

AIRLINE Dataset. We extract2M data points from the

AIMPEAK Dataset. We randomly remové&0 data points . )
aglngmal dataset for experiment to guarantee an even par-

from the original dataset so that the experimented data c
be partitioned evenly intM = 100 blocks. The empirical OFor dDTC, sinceSpp = ! 21, it follows straightforwardly
results, observations, and analysis are described below: thatG* = I, 2| which can be constructed in constant time.
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Figure 3. Graphs of RMSEs achieved by (a) dDTC, (c¢) dPIC, and
(e) dLMA vs. number ¢t of iterations, and graphs of the total train-
ing times incurred by (b) dDTC, (d) dPIC, and (f) dLMA vs. num-
ber M’ of parallel cores for the AIRLINE dataset.

tition into M = 2000 blocks. Figs. 3 and 4 show re-
sults of RMSEs, incurred time, and parallel efficiencies
of dPIC, dDTC, and dLMA averaged over 5 random in-
stances with varying number ¢ of iterations. The observa-
tions are mostly similar to that of the AIMPEAK dataset:
From Figs. 3a, 3c, and 3e, the RMSEs of dPIC, dDTC, and
dLMA decrease quickly while their total incurred training
times only increase linearly in the number ¢ of iterations
(Fig. 4b). Figs. 3b, 3d, and 3f then show a rapid decrease
of their total training times with increasing number of pro-
cessing cores. Our experiments reveal that using M' = 32
cores, dLMA (24151 seconds), dPIC (9981 seconds), and
dDTC (1419 seconds) incur less than 6.7 hours to optimize
their hyperparameters and can achieve significant speed-
ups from 12.69 to 13.58 over their centralized counterparts:
LMA (306476 seconds), PIC (135542 seconds), and DTC
(19426 seconds). It can also be observed from Fig. 4b that
dDTC incurs less training time than dPIC and dLMA but,
as observed from Fig. 4a, both dLMA (13.20) and dPIC
(17.88) outperform dDTC (36.84) by a huge margin.

Finally, the predictive performance of our proposed dis-
tributed hyperparameter learning frameworks, dLMA and

~x 10"

4& 2
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(a) (b)
Figure 4. Graphs of (a) RMSEs and (b) total incurred times of
dDTC, dPIC, and dLMA vs. number ¢ of iterations with M’ = 32
computing cores and M = 2000 blocks for AIRLINE dataset.

dPIC, are further evaluated on two benchmark settings of
the AIRLINE dataset to compare with the previously best
reported RMSE results of the existing state-of-the-art dis-
tributed methods such as Dist-VGP (Gal et al., 2014) and
rBCM (Deisenroth & Ng, 2015). All results are reported
in Table 1 below, which essentially shows that dPIC and
dLMA significantly outperform Dist-VGP and rBCM in
both settings. Notably, ILMA (16.50 and 13.20) manages
to reduce the previously best reported RMSEs (27.10 and
34.40) by 39.11% and 61.62%, respectively.

Dist-VGP 1BCM  dPIC dLMA
700K/100K 33.00 2710 21.09 16.50
2M/100K 3530  34.40 17.88 13.20

Table 1. RMSEs achieved by existing distributed/parallel meth-
ods on two standard benchmark settings (training/test data sizes)
of AIRLINE dataset: (a) 700K/100K and (b) 2M/100K. The re-
sults (RMSEs) of Dist-VGP (Gal et al., 2014) and rBCM (Deisen-
roth & Ng, 2015) are reported from their respective papers.

7. Conclusion

This paper describes a novel distributed variational infer-
ence framework that unifies many parallel SGPR models
(e.g., DTC, FITC, FIC, PITC, PIC, LMA) for scalable
hyperparameter learning, consequently reducing their in-
curred linear time per iteration of gradient ascent signifi-
cantly. To achieve this, our framework exploits a structure
of correlated noise process model that represents the obser-
vation noises as a finite realization of a B-th order Gaus-
sian Markov random process. By varying the Markov order
and covariance function for the noise process model, dif-
ferent variational SGPR models result. This consequently
allows the correlation structure of the noise process model
to be characterized for which a particular variational SGPR
model is optimal; in other words, different SGPR models
minimize their KL distance to a FGPR model under varying
characterizations of the noise correlation structure. Empiri-
cal evaluation on two real-world datasets show that our pro-
posed framework can achieve significantly better predictive
performance than the state-of-the-art distributed variational
DTC (Gal et al., 2014) and distributed GPs (Deisenroth &
Ng, 2015) while preserving scalability to big data.
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