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Abstract
This paper presents a novel distributed varia-
tional inference framework that unifies many par-
allel sparse Gaussian process regression (SGPR)
models for scalable hyperparameter learning
with big data. To achieve this, our frame-
work exploits a structure of correlated noise pro-
cess model that represents the observation noises
as a finite realization of a high-order Gaussian
Markov random process. By varying the Markov
order and covariance function for the noise pro-
cess model, different variational SGPR models
result. This consequently allows the correlation
structure of the noise process model to be char-
acterized for which a particular variational SGPR
model is optimal. We empirically evaluate the
predictive performance and scalability of the dis-
tributed variational SGPR models unified by our
framework on two real-world datasets.

1. Introduction
The rich class of Bayesian non-parametric Gaussian pro-
cess (GP) models has recently established itself as a lead-
ing approach to probabilistic non-linear regression due to
its capability of representing highly complex correlation
structure underlying the data. However, the full-rank GP
regression (FGPR) model incurs a cost of cubic time in the
data size for computing the predictive distribution and in
each iteration of gradient ascent to refine the estimate of
its hyperparameters to improve the log-marginal likelihood
(Rasmussen & Williams, 2006), hence limiting its usage to
only small datasets in practice.

To boost its scalability, a wealth of sparse GPR (SGPR)
models (Lázaro-Gredilla et al., 2010; Low et al., 2015;
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Quiñonero-Candela & Rasmussen, 2005; Snelson &
Ghahramani, 2007) utilizing varying low-rank approximate
representations of FGPR have been proposed, many of
which are spanned by the unifying view of Quiñonero-
Candela & Rasmussen (2005) based on the notion of in-
ducing variables (Section 3) such as the subset of regres-
sors (SoR) (Smola & Bartlett, 2001), deterministic train-
ing conditional (DTC) (Seeger et al., 2003), fully inde-
pendent training conditional (FITC) (Snelson & Gharah-
mani, 2005), fully independent conditional (FIC), partially
independent training conditional (PITC) (Schwaighofer &
Tresp, 2003), and partially independent conditional (PIC)
(Snelson & Ghahramani, 2007) approximations. Conse-
quently, they incur linear time in the data size, which
is still prohibitively expensive for training with million-
sized datasets. To scale up these SGPR models further for
performing real-time predictions necessary in many time-
critical applications and decision support systems (e.g., en-
vironmental sensing (Cao et al., 2013; Dolan et al., 2009;
Ling et al., 2016; Low et al., 2008; 2009; 2011; 2012;
Podnar et al., 2010; Zhang et al., 2016), traffic monitor-
ing (Chen et al., 2012; 2013b; 2015; Hoang et al., 2014a;b;
Low et al., 2014a;b; Ouyang et al., 2014; Xu et al., 2014;
Yu et al., 2012)), a number of these models have been
parallelized (e.g., FITC, FIC, PITC, and PIC (Chen et al.,
2013a), and low-rank-cum-Markov approximation (LMA)
(Low et al., 2015) unifying a spectrum of SGPR mod-
els with PIC and FGPR at the two extremes), but the re-
sulting parallel SGPR models do not readily extend to in-
clude hyperparameter learning. The work of Deisenroth &
Ng (2015) has recently introduced a practical product-of-
expert (PoE) paradigm for GP which imposes a factorized
structure on the marginal likelihood that allows it to be op-
timized effectively in a parallel/distributed fashion.

However, the main criticism of the above approximation
paradigms is their lack of a rigorous approximation since
they do not require optimizing some loss criterion incurred
by an approximation model (Titsias, 2009b). To resolve
this, the work of Titsias (2009a) has introduced an alterna-
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tive formulation of variational inference for DTC approxi-
mation that involves minimizing the Kullback-Leibler(KL)
distance between the variational DTC approximation and
the posterior distribution of some latent variables (includ-
ing the inducing variables) induced by the FGPR model
given the data/observations, or equivalently maximizing
a lower bound of the log-marginal likelihood. Hyperpa-
rameter learning can then be achieved by maximizing this
variational lower bound as a function of the hyperparam-
eters. Its incurred time per iteration of gradient ascent is
still linear in the data size but can be significantly reduced
by parallelization on multiple distributed machines/cores,
as demonstrated by Gal et al. (2014). Despite their theo-
retical rigor and scalability, it has been shown by Hoang
et al. (2015) that DTC has utilized the most crude approx-
imation among all SGPR models (except SoR) spanned
by the unifying view of Quiñonero-Candela & Rasmussen
(2005), thus severely compromising its predictive perfor-
mance. As such, it remains an open question whether ef-
ficient and scalable hyperparameter learning of more re-
fined SGPR models (e.g., PIC, LMA) for big data can be
achieved through distributed variational inference1.

To address this question, we first observe that variational
DTC (Titsias, 2009a) and its distributed variant (Gal et al.,
2014) have implicitly assumed the observation noises to
be independently distributed with constant variance, which
is often violated in practice (Huizenga & Molenaar, 1995;
Koochakzadeh et al., 2015; Rasmussen & Williams, 2006).
This strong assumption has been relaxed slightly by Titsias
(2009b) to that of input-dependent noise variance which al-
lows a variational inference formulation for FITC approxi-
mation to be derived. This seems to suggest a possibility of
deriving variational inference formulations for the more re-
fined sparse GP approximations and, perhaps surprisingly,
their distributed variants by exploiting more sophisticated
noise process models such as those being used by exist-
ing GP works. Such GP works, however, suffer from poor
scalability to big data: Notably, the work of Goldberg et al.
(1997) has proposed a heteroscedastic GPR(HGPR) model
that extends the FGPR model by representing the noise
variance with a log-GP (in addition to the original GP mod-
eling the noise-free latent measurements), hence allowing
it to vary across the input space; the observation noises
remain independently distributed though. But, the exact
HGPR model cannot be computed tractably while approxi-
mate HGPR models (Kersting et al., 2007; Lázaro-Gredilla
& Titsias, 2011) still incur cubic time in the data size,
thus scaling poorly to big data (i.e., million-sized datasets).
This is similarly true for FGPR models (Murray-Smith &

1The work of Campbell et al. (2015) has separately developed
a distributed variational inference framework for Bayesian non-
parametric models that are limited to only clustering processes
(e.g., Dirichlet, Pitman-Yor, and their variants) not including GPs.

Girard, 2001; Rasmussen & Williams, 2006) that repre-
sent correlation of observation noises with an additional
covariance function. Unfortunately, variational DTC (Tit-
sias, 2009a), its distributed variant (Gal et al., 2014), and
variational FITC (Titsias, 2009b) cannot readily accommo-
date such heteroscedastic or correlated noise process mod-
els without sacrificing their time efficiency. So, the key
challenge remains in being able to specify some structure
of the noise process model that can be exploited for effi-
cient and scalable hyperparameter learning of more refined
SGPR models (e.g., PITC, PIC, LMA) through distributed
variational inference, which is the focus of our work here.

To tackle this challenge, this paper presents a novel varia-
tional inference framework (Section 3) for deriving sparse
GP approximations to a new FGPR model with observation
noises that vary as a finite realization of a high-order Gaus-
sian Markov random process (Section 2), thus enriching the
expressiveness of HGPR models by correlating the noises
across the input space. Interestingly, our proposed frame-
work can unify many SGPR models via specific choices
of the Markov order and covariance function for the noise
process model (Section 4), which include variational DTC
and FITC (Titsias, 2009a;b) and the more refined PITC,
PIC, and LMA. This then enables the characterization of
the correlation structure of the noise process model for
which a particular sparse GP approximation is (variation-
ally) optimal2 and explains why PIC and LMA tend to out-
perform DTC and FITC in practice despite not being char-
acterized as optimal when independently distributed obser-
vation noises are assumed. More importantly, our frame-
work is amenable to parallelization by distributing its com-
putational load of hyperparameter learning on multiple ma-
chines/cores (Section 5), hence reducing its incurred lin-
ear time per iteration of gradient ascent by a factor close
to the number of machines/cores. We empirically evaluate
the predictive performance and scalability of the distributed
variational SGPR models (e.g., state-of-the-art distributed
variational DTC (Gal et al., 2014)) unified by our frame-
work on two real-world datasets (Section 6).

2. Gaussian Processes with Correlated Noises
Let X be a set representing the input domain such that each
d-dimensional input feature vector x 2 X is associated
with a latent output variable f

x

and its corresponding noisy
output y

x

, f
x

+ !
x

differing by an additive noise !
x

. Let
{f

x

}
x2X

denote a Gaussian process(GP), that is, every fi-
2Such a characterization, which is important to many real-

world applications of GP involving different noise structures, can-
not be realized from the unifying framework of Hoang et al.
(2015) relying on reverse variational inference to obtain the vari-
ational lower bound for a SGPR model. Furthermore, it is unclear
or at least non-trivial to determine whether it is amenable to par-
allelization for learning the hyperparameters of LMA which does
not meet its assumed decomposability conditions.
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nite subset of { f x } x2X

follows a multivariate Gaussian dis-
tribution. Then, the GP is fully specified by its prior mean
µx , E[f x ] and covariance kxx 0 , cov[f x , f x 0

] for all
x,x0 2 X , the latter of which can be defined, for example,
by the widely-used squared exponential covariance func-
tion kxx 0 , �2

s exp(�0.5(x � x

0

)

>

⇤

�2
(x � x

0

)) where
⇤ , diag[`1, . . . , `d] and �2

s are its length-scale and sig-
nal variance hyperparameters, respectively. Similarly, let
{ ✏x } x2X

denote another GP with prior mean E[✏x ] = 0

and covariance k✏
xx 0 , cov[✏x , ✏x 0

] for all x,x0 2 X , the
latter of which is defined by a covariance function like that
used for kxx 0 (albeit with different hyperparameter values).

Supposing a column vector y
D

, (yx )
>

x2D

of noisy out-
puts is observed for some set D ⇢ X of training inputs, a
FGPR model with correlated observation noises (Murray-
Smith & Girard, 2001; Rasmussen & Williams, 2006) can
perform probabilistic regression by providing a GP pos-
terior/predictive distribution p(f

U

|y
D

) = N (f
U

|µ
U

+

K
UD

(K
DD

+ S
DD

)

�1
(y

D

� µ
D

), K
UU

� K
UD

(K
DD

+

S
DD

)

�1K
DU

) of the unobserved outputs f
U

, (f x )
>

x2U

for any set U ⇢ X \ D of test inputs where µ
U

(µ
D

) is
a column vector with mean components µx for all x 2 U
(x 2 D), K

UD

(K
DD

) is a matrix with covariance com-
ponents kxx 0 for all x 2 U,x0 2 D (x,x0 2 D), K

DU

=

K >

UD

, and S
DD

is a matrix with covariance components
k✏

xx 0 for all x,x0 2 D representing the correlation of obser-
vation noises ✏

D

, (✏x )
>

x2D

⇠ N (0, S
DD

) which implies
p(y

D

|f
D

) = N (y
D

|f
D

, S
DD

). However, the FGPR model
scales poorly in the size |D| of data because computing the
GP predictive distribution incurs O(|D|3) time due to the
inversion of K

DD

+ S
DD

.

To improve its scalability, our key idea stems from im-
posing a B -th order Markov property on the observation
noise process: Specifically, let the set D (U) of training
(test) inputs be partitioned evenly into M disjoint sub-
sets D1, D2, . . . , DM (U1, U2, . . . , UM ). In the same spirit
as a Gaussian Markov random process, imposing a B -th
order Markov property on the observation noise process
{ ✏x } x2D

with respect to such a partition implies that ob-
servation noises ✏

Di and ✏
Dj are conditionally independent

given ✏
D\(Di[Dj) if |i � j | > B . As shown in (Low et al.,

2015), this can be realized by partitioning the matrix S
VV

for the entire set V , D [U of training and test inputs into
M ⇥ M square blocks, that is, S

VV

, [S
ViVj ]i,j=1,...,M

where Vi , Di [ Ui (hence, V =

SM
i=1 Vi) and

S
ViVj ,

8
>>><

>>>:

K ✏
ViVj

if |i � j |  B,

K ✏
ViD

B
i

K ✏ �1

D

B
i D

B
i

S
D

B
i Vj

if j � i > B > 0,

S
ViD

B
j

K ✏ �1

D

B
j D

B
j

K ✏
D

B
j Vj

if i � j > B > 0,

0 if |i � j | > B = 0;

(1)

such that K ✏
ViVj

, [k✏
xx 0 ]x2Vi,x 0

2Vj
, DB

i = Di+1 [ . . . [
Di+B

where i+B , min(M, i + B ), and 0 denotes a square

block comprising components of value 0. Though the ma-
trix S

VV

(and hence its submatrix S
DD

) is dense, its struc-
ture (1) interestingly guarantees that P

DD

, S�1
DD

is B -
block-banded (Low et al., 2015). That is, if |i � j | > B ,
then P

DiDj = 0. Such sparsity of P
DD

is the main ingre-
dient to improving the scalability of the FGPR model with
correlated observation noises, as revealed in Section 3.

3. Variational Sparse GP Regression Models
This section introduces a novel variational inference frame-
work for deriving sparse GP approximations to the FGPR
model with correlated observation noises that vary as a fi-
nite realization of a B -th order Gaussian Markov random
process (Section 2). Similar to the variational inference
formulations for DTC and FITC approximations (Titsias,
2009a;b), we exploit a vector f

S

of inducing output vari-
ables for some small set S ⇢ X of inducing inputs to con-
struct sufficient statistics for y

D

such that y
D

? f
D

| f
S

(i.e., p(f
D

, f
S

|y
D

) = p(f
D

|f
S

) p(f
S

|y
D

)). However,
choosing S for which this conditional independence prop-
erty holds may not be possible in practice. Instead, it is
approximated by some (heuristic) choice of S as follows:

p(f
D

, f
S

|y
D

) ' p(f
D

|f
S

) q(f
S

) (2)

where q(f
S

) is a free-form distribution to be opti-
mized by minimizing the KL distance DKL(q) ,
KL(p(f

D

|f
S

)q(f
S

)||p(f
D

, f
S

|y
D

)) between p(f
D

|f
S

)

q(f
S

) and p(f
D

, f
S

|y
D

) on either sides of (2) with
respect to q(f

S

) and the hyperparameters defining prior
covariances kxx 0 and k✏

xx 0 (Section 2). To do this, note that

log p(y
D

) = L (q,Z ) + DKL(q) (3)

where Z denotes a set of hyperparameters 3 defining kxx 0

and k✏
xx 0 and, as derived in Appendix A,

L (q,Z ) , Eq(fS)[logN (y
D

|⌫, S
DD

)+log(p(f
S

)/q (f
S

))]

� 0.5Tr[S�1
DD

(K
DD

� Q
DD

)]

(4)
where ⌫ , µ

D

+ K
DS

K �1
SS

(f
S

� µ
S

) and Q
YY

0 ,
K

YS

K �1
SS

K
SY

0 for all Y, Y 0 ⇢ X . Supposing Z is
fixed/known, since DKL(q) � 0 and log p(y

D

) is inde-
pendent of q(f

S

), minimizing DKL(q) is equivalent to
maximizing L (q,Z ) which entails solving for the optimal
choice of q(f

S

) that satisfies @L (q,Z )/ @q = 0 as a PDF
parameterized by Z . As derived in Appendix B, this yields

log q(f
S

) = log[N (y
D

|⌫, S
DD

) p(f
S

)] + const (5)

where const is used to absorb all terms independent of f
S

.
By completing the quadratic form for f

S

(Appendix C), it
can be derived from (5) that

q(f
S

) = N (f
S

|µ
S

+ K
SS

! �1
SS

V
SD

, K
SS

! �1
SS

K
SS

) (6)
3All the terms in (3) and the equations to follow depend on Z .

To ease notational clutter, their dependence on Z are omitted from
their expressions, unless otherwise needed for clarity reasons.
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where! SS ! K SS + K SD PDD K DS , PDD = S�1
DD , and

VSD ! K SD PDD (yD ! µD ). By plugging (6) into (4),
R(Z ) ! maxq L (q,Z ) can be derived analytically. Then,
maximizingR(Z ) with respect toZ gives the optimal hy-
perparameters4. The details of this maximization are de-
ferred to Section5 for the sake of clarity. In the rest of this
section, we will instead focus on deriving an equivalent re-
formulation ofq(f S ) (6) that can be computed efÞciently
in linear time in the data size|D| since computingq(f S )
directly using (6) generally incursO(|D|3) time. More-
over, its computation can be distributed among parallel ma-
chines/cores to achieve scalability, as described next.

Our Þrst result (Lemma1) below derives the structure
of eachnon-zero constituent blockPD iD j of the B -block
banded matrixPDD (i.e., |i ! j | " B ), which is the key in-
gredient to be exploited for computingq(f S ) (6) efÞciently
and scalably (Theorem1). Note that it sufÞces to simply
computePD iD j for i " j " i +

B becausePDD is symmet-
ric (i.e., PD iD j = P>

D jD i
for j " i " j +

B ) andB -block-
banded (i.e.,PD iD j = 0 for |i ! j | > B ) (Section2):

Lemma 1 Let5

Gk !

"
Gk

D kD k
Gk

D kD B
k

Gk
D B

k D k
Gk

D B
k D B

k

#
!

"
SD kD k SD kD B

k

SD B
k D k

SD B
k D B

k

#
�1

for k = 1 , . . . , M . Then, for i, j = 1 , . . . , M such that
i " j " i +

B = min( M, i + B ) and j �B ! max(1, j ! B ),

PD iD j =
Pi

k= j �
B

Gk
D iD k

Gk�1

D kD k
Gk

D kD j
. (7)

See AppendixD for its proof. From Lemma1, construct-
ing Gk of sizeO(B |D|/M ) = O(B |S|)6 by O(B |S|) in-
cursO(B 3|S|3) time. G1, . . . , GM can be computed in-
dependently and hence in parallel onM distributed ma-
chines/cores; otherwise, they can be constructed sequen-
tially in O(|D||S|2B 3) = O(MB 3|S|3) time.

Our next result exploits Lemma1 and theB -block-banded
structure ofPDD for decomposing! SS andVSD in (6) into
linear sums of independent terms whose computations can
therefore be distributed among parallel machines/cores:

Theorem 1 Let B+ (k) ! { k, k + 1 , . . . , k+
B } . Then,

! SS = K SS +
PM

k=1 ! k and VSD =
PM

k=1 " k where

4The formulation described thus far is reminiscent of vari-
ational expectation-maximization (EM) (Wainwright & Jordan,
2008) whoseapproximate E step involves maximizing the vari-
ational lower boundL (q,Z ) with respect toq given optimalZ
from M step while its M step follows exactly that of EM by
maximizingL (q,Z ) with respect toZ given optimalq from E
step. The implication is that, like variational EM, variational DTC
and FITC (Titsias, 2009a;b), and distributed variational DTC (Gal
et al., 2014), though the log-marginal likelihoodlog p(yD ) does
not necessarily increase in each iteration, our formulation has an
attractive interpretation of maximizing its lower bound.

5WhenB = 0, Gk
= S�1

D kD k
for k = 1, . . . , M .

6We choose the size ofS such that|Di | = |D| /M = O(|S|).

" k !
P

i,j 2B+(k ) K SD iG
k
D iD k

Gk�1

D kD k
Gk

D kD j
(yD j ! µD j )

! k !
P

i,j 2B+(k ) K SD iG
k
D iD k

Gk�1

D kD k
Gk

D kD j
K D jS . (8)

Its proof is in AppendixE. From (8), " 1, . . . , " M and
! 1, . . . , ! M can again be computed independently and
hence in parallel inO(|B+ (k)|2|S|3) = O(B 2|S|3) time
onM distributed machines/cores; alternatively, they can be
computed sequentially inO(|D||S|2B 2) = O(MB 2|S|3)
time. ! SD andVSD can then be constructed inO(M |S|2)
time and computingq(f S ) (6) in turn incursO(|S|3) time.
So, the overall time complexity of derivingq(f S ) (6) is lin-
ear in|D| which can be further reduced via parallelization
by a factor close to the number of machines/cores.

Remark The efÞciency in derivingq(f S ) (6) can be
exploited for constructing a linear-time approximation
q(f Ui |yD ) to the GP predictive distributionp(f Ui |yD ) for
any subsetUi = Vi \ D i of test inputs and its distributed
variant, the details of which are not needed to understand
our distributed variational inference framework for hyper-
parameter learning in Section5 (but required for predic-
tions in our experiments in Section6) and hence deferred to
AppendicesF andG, respectively. By varying the choices
of the Markov orderB , the covariance functionk!

xx 0 for
the noise process model, the numberM of data partitions,
and the approximationq(f Ui |f S , yD ) to the test conditional
p(f Ui |f S , yD ), they recover the predictive distribution of
various SGPR models spanned by the unifying view of
Qui÷nonero-Candela & Rasmussen(2005) (i.e., SoR, DTC,
FITC, FIC, PITC, PIC) and LMA, as detailed in Section4.

4. Unifying Sparse GP Regression Models
4.1. SGPR models spanned by unifying view of

Quiñonero-Candela & Rasmussen (2005)
We will Þrst demonstrate how our variational inference
framework (Section3) can unify SoR, DTC, FITC, FIC,
PITC, PIC. As discussed in AppendixF, it sufÞces to show
how the covariance functionk!

xx 0 for the noise process
model and the Markov orderB can be set such that the
resulting variationally optimal distributionq(f S ) (6) coin-
cides with that of these SGPR models. Let us consider the
following covariance function for the noise process model:

k!
xx 0 ! kxx 0 ! K x S K �1

SS K Sx 0 + #2
n I (x = x 0) . (9)

where#2
n is a noise variance hyperparameter. It follows

that K !
DD = K DD ! K DS K �1

SS K SD + #2
n I = K DD !

QDD + #2
n I . Then, imposing theB -th order Markov prop-

erty on the observation noise process{ $x } x2D through (1)
with B = 0 givesSDD = blkdiag[ K DD ! QDD ] + #2

n I
which impliesSD iD j = I(i = j )(K D iD i ! QD iD i + #2

n I ).
Plugging this expression ofSDD into (6) yields the same
q(f S ) induced by PIC, as detailed in (Hoang et al., 2015)7.

7The work ofHoang et al.(2015) assumes a GP with zero prior
mean which is equivalent to settingµS = µD = 0 in (6).
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Furthermore, if|Di | = 1 for i = 1 , . . . , M (i.e.,M = |D|),
then SDD = diag[K DD ! QDD ] + ! 2

n I which can be
plugged into (6) to recover the sameq(f S ) induced by
FIC. Supposingk!

xx ! ! ! 2
n I (x = x !) instead of us-

ing (9), SDD = ! 2
n I that can be plugged into (6) to re-

cover the sameq(f S ) induced by DTC. Finally, the predic-
tive distributionsq(f Ui |yD ) of the SGPR models spanned
by the unifying view ofQui÷nonero-Candela & Rasmussen
(2005) such as PIC, FIC and DTC can be recovered by
integrating the resultingq(f S ) with their approximations
q(f Ui |f S , yD ) to the test conditionalp(f Ui |f S , yD ), as dis-
cussed in AppendixF. We omit details of unifying PITC,
FITC, and SoR with our framework since they induce the
sameq(f S ) as that of PIC, FIC and DTC, respectively.

4.2. Low-rank-cum-Markov approximation (LMA)

To unify LMA with our variational inference framework,
we have to derive its inducedq(f S ) since it is not explic-
itly given in (Low et al., 2015). To do this, let us Þrst derive
an equivalent reformulation of the predictive distribution of
the FGPR model with independently distributed observa-
tion noises of constant variance, as shown in AppendixH:
p(f S |yD ) ! N (f S |µS + K SS�

" 1
SS VSD , K SS�

" 1
SS K SS )

where �SS ! K SS + K SD R" 1
DD K DS and VSD =

K SD R" 1
DD (yD ! µD ) such thatRDD ! K DD ! QDD + ! 2

n I .
But, computingp(f S |yD ) generally incursO(|D|3) time.
To reduce to linear time and achieve further scalability via
parallelization, the work ofLow et al.(2015) has proposed
LMA by approximatingRDD with SDD (1) based on the
covariance function in (9), which interestingly induces the
sameq(f S ) and predictive distribution (AppendixI) as that
produced by our variational inference framework (see, re-
spectively, (6) in Section3 and (48) in Appendix F, the
latter of which relies on a speciÞc choice of approximation
q(f Ui |f S , yD ) (47) to the test conditionalp(f Ui |f S , yD )).
So, LMA is uniÞed with our framework.

4.3. Key insight: Different variational SGPR models
evolve from varying noise correlation structures

It is well-known that, among existing SGPR models, DTC
and FITC are deemed variationally optimal as they mini-
mize the KL distance to a FGPR model with independently
distributed noises (i.e.,SDD = ! 2

n I (Titsias, 2009a) or
SDD = diag[K DD ! QDD ] + ! 2

n I (Titsias, 2009b)). How-
ever, empirical results in the existing literature show that
FITC and DTC often predict more poorly than PIC (Hoang
et al., 2015), and LMA (Low et al., 2015)8, which are usu-
ally explained by empirically inspecting how well these
SGPR models approximate the prior covariance matrix of
the FGPR model (Low et al., 2015; Qui÷nonero-Candela &

8In (Low et al., 2015), LMA outperforms PIC on the same
dataset used byHoang et al.(2015) to compare PIC and DTC.

Rasmussen, 2005; Snelson, 2007). But, to the best of our
knowledge, it has not been explicitly explained why SGPR
models like PIC and LMA, despite being able to provide
more reÞned approximations of the prior covariance ma-
trix of the FGPR model, do not minimize their KL distance
to the FGPR model.

Our uniÞcation results (Sections4.1 and 4.2) have ex-
plained this by giving a theoretical justiÞcation based
on the correlation structure of the noise process model:
SpeciÞcally, FITC and DTC can only minimize their KL
distances to a FGPR model under the assumption of in-
dependently distributed noises, which is often violated in
many real-world datasets where observation noises tend to
be correlated (Huizenga & Molenaar, 1995; Koochakzadeh
et al., 2015; Rasmussen & Williams, 2006). However, they
do not necessarily minimize their KL distances to a FGPR
model in such cases. In light of this fact, our uniÞcation re-
sults reveal that different SGPR models minimize their KL
distances to a FGPR model under varying assumptions of
correlation structure of the noise process model: For exam-
ple, Section4.1 (4.2) shows that when our variational in-
ference framework minimizes the KL distance to a FGPR
model (Section3) under the assumption ofB = 0 (B > 0)
and the covariance functionk!

xx ! in (9) for the noise process
model, it recovers the sameq(f S ) and predictive distribu-
tion q(f Ui |yD ) induced by PIC (LMA).

5. Distributed Variational Inference for
Hyperparameter Learning

Recall from Section3 that plugging the derivedq(f S ) (6)
into the variational lower boundL (q,Z ) (4) gives

R(Z ) = max q L (q,Z )
= log N (yD |µD , SDD + QDD ) ! 0.5Tr[S" 1

DD (K DD ! QDD )]
(10)

where the last equality is derived in AppendixJ. Hyperpa-
rameter learning then involves iteratively reÞning the esti-
mate of hyperparametersZ via gradient ascent to improve
the value ofR(Z ). Its time complexity depends on the ef-
Þciency of computing the gradient" R / " Z per iteration of
gradient ascent. As shown in AppendixK, differentiating
both sides of (10) with respect toz " Z yields

" R/ " z =

!
1
2

Tr


" PDD

" z
WDD + PDD

" WDD

" z
! SDD

" PDD

" z

�

!
1
2

Tr

�

" 1
SS

" �SS

" z
! K " 1

SS
" K SS

" z

�

+
1
2

Tr

V #

SD
" �" 1

SS

" z
VSD + 2

" V #
SD

" z
�

" 1
SS VSD

�

(11)

whereWDD ! K DD ! QDD + ( yD ! µD )(yD ! µD )# .
However, computing" R/ " z directly using (11) is pro-
hibitively expensive as it involves computing the matrix
derivative " PDD / " z = ! PDD (" SDD / " z) PDD which



A Distributed Variational Inference Framework for Unifying Parallel Sparse Gaussian Process Regression Models

generally incursO
�
|D|3

�
time. In the rest of this sec-

tion, we will exploit the B -block-banded structure of
PDD (Section2) for deriving an efÞcient reformulation of
! R / ! z (11) that can be computed in linear time in the data
size|D|. More importantly, it is amenable to parallelization
on distributed machines/cores by constructing and commu-
nicating summaries of data clusters to be described next:

DeÞnition 1 (B -th order Markov Cluster) A B -th order
Markov clusterk is deÞned asM B

k !
S

i ! B+ (k ) Di ! DB
k

for k = 1 , . . . , M whereB+ (k) and DB
k are previously

deÞned in Theorem1 and just below(1), respectively.

From DeÞnition1, D =
SM

k=1 M B
k andM B

k " M B
k ! #= $

if |k % k"| & B and B > 0. EachB -th order Markov
clusterk of size |M B

k | = O (B |D|/M ) = O(B |S|)6 is
assigned to a separate machine/corek which constructs its
local summary, as deÞned below:

DeÞnition 2 (Local Summary) The local summary of a
B -th order Markov clusterk is deÞned as a tuplePk !
(" k , #k , { " z

k , #z
k , $z

k , %z
k } z! Z ) where" k and#k are previ-

ously deÞned in Theorem1, " z
k ! !" k / ! z, #z

k ! !# k / ! z,

$z
k !

X

i,j ! B+ (k )

Tr


!
! z

⇣
Gk

D i D k
Gk " 1

D k D k
Gk

D k D j
WD j D i

⌘�
,

%z
k !

X

i,j ! B+ (k )

Tr


!
! z

⇣
Gk

D i D k
Gk " 1

D k D k
Gk

D k D j

⌘
SD j D i

�
.

The local summariesP1, . . . , PM can be computed in-
dependently and hence in parallel onM distributed ma-
chines/cores: To construct local summaryPk , each ma-
chine/corek only needs access to its Markov clusterM B

k ,
the corresponding noisy outputsyM B

k
, and a common set

S of inducing inputs known to all machines/cores. Eval-
uating the derivative terms in local summaryPk essen-
tially requires computing terms such as! Gk

D i D k
/ ! z for

i ' B+ (k). To compute the latter terms, we exploit the
result of Lemma1 for computing ! Gk / ! z in terms of
! SD B

k D B
k

/ ! z, ! SD B
k D k

/ ! z, and ! SD k D k / ! z. For each
Markov clusterM B

k , computingGk (and hence! Gk / ! z)
incurs only O(B 3|S|3) time, as discussed in the para-
graph after Lemma1. Its corresponding local summary
Pk can then be computed inO(B 2|S|3) time. So, the
overall time complexity of computing local summaryPk

of Markov clusterM B
k in each parallel machine/corek is

O(B 3|S|3) which is independent of the data size|D|. Al-
ternatively,P1, . . . , PM can be constructed sequentially in
O(|D||S|2B 3) = O(MB 3|S|3) time that is linear in|D|.
Every machine/corek then communicates the local sum-
mary Pk of its assigned Markov clusterM B

k to a central
machine that will assimilate these local summaries into a
global summary deÞned as follows:

DeÞnition 3 (Global Summary) The global summary is
deÞned as a tupleP# ! (" , #, { " z , #z , &z} z! Z ) where

" !
MX

k=1

" k , # ! K SS +
MX

k=1

#k , " z !
MX

k=1

" z
k ,

#z !
! K SS

! z
+

MX

k=1

#z
k , and &z !

MX

k=1

$z
k %%z

k .

Our main result to follow presents an efÞcient reformula-
tion of ! R / ! z (11) by exploiting the global summaryP#:

Theorem 2 ! R/ ! z (11) can be re-expressed in terms of
global summaryP# = ( " , #, { " z , #z , &z} z! Z ) as follows:

! R
! z

=
1
2

Tr

K $ 1

SS
! K SS

! z

�
+ " z#

#$ 1"

%
1
2

Tr
⇥
#$ 1#z⇤ %

1
2

" %#$ 1#z#$ 1" %
1
2

&z.
(12)

Its proof is in AppendixL. Since" and" z are column vec-
tors of size|S|, # and#z are matrices of size|S| by |S|,
and&z is a scalar, computing! R / ! z using (12) only incurs
O(|S|3) time given the global summaryP#. So, the overall
time complexity of computing! R / ! z (12) in a distributed
manner onM parallel machines/cores (sequentially) is still
O(B 3|S|3) (O(|D||S|2B 3) = O(MB 3|S|3)).

6. Experiments and Discussion

This section empirically evaluates the predictive perfor-
mance and scalability of distributed variational SGPR mod-
els uniÞed by our framework (Section5) such as the dis-
tributed variants of PIC and LMA and the current state-of-
the-art distributed variant of DTC (Gal et al., 2014), which
we respectively calldPIC,dLMA, anddDTC9, on two real-
world datasets:

(a) The AIMPEAK dataset (Chen et al., 2013a) contains
41850observations of trafÞc speeds (km/h) along775road
segments of an urban road network during morning peak
hours on April 20, 2011. Each observation comprises a5-
dimensional input vector featuring the length, number of
lanes, speed limit, direction of the road segment as well as
its recording time which is discretized into54 Þve-minute
time slots. The outputs correspond to the trafÞc speeds.

(b) The AIRLINE dataset (Hensman et al., 2013; Hoang
et al., 2015) contains2055733information records of com-
mercial ßights in the USA from January to April 2008. The
input denotes a8-dimensional feature vector of the age of
the aircraft (year), travel distance (km), airtime, departure
and arrival time (min), day of the week, day of the month,
and month. The output is the delay time (min) of the ßight.

Both datasets are modeled using GP with correlated noises
(Section2) whose prior covariance matrix is deÞned using
the squared exponential covariance function described in

9The induced variational lower bound ofdDTC (Eq. (10)) is
equivalent to that of the Dist-VGP framework ofGal et al.(2014).
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Figure 1.Graphs of RMSEs achieved by (a)dDTC, (c)dPIC, and
(e)dLMA vs. numbert of iterations, and graphs of the total train-
ing times incurred by (b)dDTC, (d)dPIC, and (f)dLMA vs. num-
berM ! of parallel cores for the AIMPEAK dataset.

Section2. For dPIC anddLMA models, the prior covari-
ance of the noise process is constructed using (1) (respec-
tively, with Markov orderB = 0 and1) and the covariance
function in (9). Likewise, fordDTC, the prior covariance
of the noise process is constructed using (1) with B = 0
and covariance functionk!

xx ! ! ! 2
n I . Both the training and

test data are then partitioned evenly intoM blocks using
k-means (i.e.,k = M ). All experiments are run on a Linux
system with Intel" Xeon" E5-2670 at 2.6GHz with 96
GB memory and32processing cores. Our distributed vari-
ational SGPRs are implemented using Armadillo linear al-
gebra library for C++ (Sanderson, 2010). For each tested
model, we report the (a)root mean square error(RMSE),!

|U|! 1
"

x " U (yx ! #yx )2, of its predictions{ #yx } x " U , (b)
training time vs. no. of iterations, and (c) training time
vs. no. of parallel cores. The results for each model are
evaluated on5% of the dataset with respect to its best con-
Þguration (e.g., learning rate, no. of inducing inputs, etc.).

AIMPEAK Dataset. We randomly remove50 data points
from the original dataset so that the experimented data can
be partitioned evenly intoM = 100 blocks. The empirical
results, observations, and analysis are described below:
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Figure 2.Graphs of (a) RMSEs and (b) total incurred times of
dDTC,dPIC, anddLMA vs. numbert of iterations withM ! = 16
computing cores andM = 100 blocks for AIMPEAK dataset.

(a) Figs.1 and2 show results of RMSEs, incurred times,
and parallel efÞciencies ofdPIC, dDTC, anddLMA av-
eraged over5 random instances with varying numbert
of iterations. In particular, it can be observed from both
Figs.1 and2 that the RMSEs of all tested methods decrease
rapidly (see Figs1a, 1c, and1e) while their total incurred
training times only increase linearly in the numbert of it-
erations (see Fig.2b), which shows the effectiveness of our
distributed hyperparameter learning framework (Section5)
for these variational SGPR models;

(b) Fig. 1 also shows results of the total training times in-
curred bydPIC,dLMA, and dDTC over10 iterations with
varying numberM # = 2 , 4, 8, 16 of parallel cores. As ex-
pected, it can be observed from Figs.1b, 1d, and1f that the
training times of the tested models decrease gradually when
the number of computing cores increases, which corrobo-
rates our complexity analysis of distributed SGPR models
in Section5. More speciÞcally, our experiment reveals that
using M # = 16 cores,dPIC (116 seconds),dLMA ( 193
seconds), anddDTC (97 seconds) can achieve speedups
(i.e., parallel efÞciencies) of5.5 to 7.2 over their central-
ized counterparts (i.e.,M # = 1 ): PIC (836seconds), LMA
(1266seconds), and DTC (537seconds).

(c) Fig. 2b further shows thatdDTC consistently incurs
less training time than bothdPIC anddLMA with varying
numbert of learning iterations. This is expected because
the primary cost of computing a local summary fordDTC,
which involves computingGk in Lemma1, is constant10

while that ofdPIC anddLMA grows cubically in the block
size|D|/M . On the other hand, Fig.2a, however, reveals
that the RMSEs achieved bydPIC (3.75) anddLMA ( 3.54)
are both signiÞcantly lower than that achieved bydDTC
(10.70). This inferior performance ofdDTC is also ex-
pected because of its more restrictive assumption of deter-
ministic relation between the training and inducing outputs
(Hoang et al., 2015).

AIRLINE Dataset. We extract2M data points from the
original dataset for experiment to guarantee an even par-

10For dDTC, sinceSDD = ! 2
n I , it follows straightforwardly

thatGk = ! " 2
n I which can be constructed in constant time.
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Figure 3. Graphs of RMSEs achieved by (a) dDTC, (c) dPIC, and
(e) dLMA vs. number t of iterations, and graphs of the total train-
ing times incurred by (b) dDTC, (d) dPIC, and (f) dLMA vs. num-
ber M 0 of parallel cores for the AIRLINE dataset.

tition into M = 2000 blocks. Figs. 3 and 4 show re-
sults of RMSEs, incurred time, and parallel efficiencies
of dPIC, dDTC, and dLMA averaged over 5 random in-
stances with varying number t of iterations. The observa-
tions are mostly similar to that of the AIMPEAK dataset:
From Figs. 3a, 3c, and 3e, the RMSEs of dPIC, dDTC, and
dLMA decrease quickly while their total incurred training
times only increase linearly in the number t of iterations
(Fig. 4b). Figs. 3b, 3d, and 3f then show a rapid decrease
of their total training times with increasing number of pro-
cessing cores. Our experiments reveal that using M !

= 32

cores, dLMA (24151 seconds), dPIC (9981 seconds), and
dDTC (1419 seconds) incur less than 6.7 hours to optimize
their hyperparameters and can achieve significant speed-
ups from 12.69 to 13.58 over their centralized counterparts:
LMA (306476 seconds), PIC (135542 seconds), and DTC
(19426 seconds). It can also be observed from Fig. 4b that
dDTC incurs less training time than dPIC and dLMA but,
as observed from Fig. 4a, both dLMA (13.20) and dPIC
(17.88) outperform dDTC (36.84) by a huge margin.

Finally, the predictive performance of our proposed dis-
tributed hyperparameter learning frameworks, dLMA and
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Figure 4. Graphs of (a) RMSEs and (b) total incurred times of
dDTC, dPIC, and dLMA vs. number t of iterations with M 0 = 32
computing cores and M = 2000 blocks for AIRLINE dataset.

dPIC, are further evaluated on two benchmark settings of
the AIRLINE dataset to compare with the previously best
reported RMSE results of the existing state-of-the-art dis-
tributed methods such as Dist-VGP (Gal et al., 2014) and
rBCM (Deisenroth & Ng, 2015). All results are reported
in Table 1 below, which essentially shows that dPIC and
dLMA significantly outperform Dist-VGP and rBCM in
both settings. Notably, dLMA (16.50 and 13.20) manages
to reduce the previously best reported RMSEs (27.10 and
34.40) by 39.11% and 61.62%, respectively.

Dist-VGP rBCM dPIC dLMA
700K/100K 33.00 27.10 21.09 16.50
2M/100K 35.30 34.40 17.88 13.20

Table 1. RMSEs achieved by existing distributed/parallel meth-
ods on two standard benchmark settings (training/test data sizes)
of AIRLINE dataset: (a) 700K/100K and (b) 2M/100K. The re-
sults (RMSEs) of Dist-VGP (Gal et al., 2014) and rBCM (Deisen-
roth & Ng, 2015) are reported from their respective papers.

7. Conclusion
This paper describes a novel distributed variational infer-
ence framework that unifies many parallel SGPR models
(e.g., DTC, FITC, FIC, PITC, PIC, LMA) for scalable
hyperparameter learning, consequently reducing their in-
curred linear time per iteration of gradient ascent signifi-
cantly. To achieve this, our framework exploits a structure
of correlated noise process model that represents the obser-
vation noises as a finite realization of a B-th order Gaus-
sian Markov random process. By varying the Markov order
and covariance function for the noise process model, dif-
ferent variational SGPR models result. This consequently
allows the correlation structure of the noise process model
to be characterized for which a particular variational SGPR
model is optimal; in other words, different SGPR models
minimize their KL distance to a FGPR model under varying
characterizations of the noise correlation structure. Empiri-
cal evaluation on two real-world datasets show that our pro-
posed framework can achieve significantly better predictive
performance than the state-of-the-art distributed variational
DTC (Gal et al., 2014) and distributed GPs (Deisenroth &
Ng, 2015) while preserving scalability to big data.
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