Supplementary Material

Proof of Theorem 1: Follow the proof of Theorem 6 in (Maurer & Pontil, 2009) with the deterministic function $f_{\pi}(x, a)$ given by (3) and the relations between f_{π} and v_{Φ}^{π} given by (4).

Proof Sketch of Theorem 2: Write \hat{v}^{π}_{Φ} as the estimated value from (2) given the dataset \mathcal{D} , policy $\pi \in \Pi$, and context distribution $\mu(x)$. Given the predicted reward $\bar{r}(a, x)$ for $(a, x) \notin \mathcal{D}$, the estimated value of a policy π can be computed using:

$$\hat{v}_{\Phi}^{\pi} = \sum_{a,x} \mu(x) \pi(a,x) \left(\mathbf{1}\{n(a,x) = 0\} \bar{r}(a,x) + \mathbf{1}\{n(a,x) \neq 0\} \hat{r}(a,x) \right)$$

with $n(a, x) = \sum_{t=1}^{T} \mathbf{1}\{a_t = a, x_t = x\}$. Take the expected value of \hat{v}^{π}_{Φ} and utilize the law of iterative expectations to obtain

$$\mathbb{E}[\hat{v}_{\Phi}^{\pi}] = \sum_{a,x} \mu(x)\pi(a,x) \big(\mathbb{P}(n(a,x)=0)\bar{r}(a,x) + \mathbb{P}(n(a,x)\neq 0)\hat{r}(a,x) \big).$$

$$\tag{1}$$

Given the policy $\pi(\cdot|x)$ and expected rewards $\hat{r}(a, x)$ the actual value of a policy π is given by:

$$v_{\Phi}^{\pi} = \sum_{a,x} \mu(x)\pi(a,x) \big(\mathbb{P}(n(a,x)=0) + \mathbb{P}(n(a,x)\neq 0) \big) r(a,x).$$
(2)

Subtracting (1) from (2), we obtain the result.

Proof Sketch of Theorem 3: Use the law of total variance $\mathbb{V}[\hat{v}_{\Phi}^{\pi}] = \mathbb{E}[\mathbb{V}[\hat{v}_{\Phi}^{\pi}|(a,x) \in \mathcal{D}]] + \mathbb{V}[\mathbb{E}[\hat{v}_{\Phi}^{\pi}|(a,x) \in \mathcal{D}]]$ and apply the same methods as the proof for Theorem 2.