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Abstract
Gaussian Processes (GPs) provide a general and
analytically tractable way of modeling complex
time-varying, nonparametric functions. The Au-
tomatic Bayesian Covariance Discovery (ABCD)
system constructs natural-language description
of time-series data by treating unknown time-
series data nonparametrically using GP with a
composite covariance kernel function. Unfortu-
nately, learning a composite covariance kernel
with a single time-series data set often results in
less informative kernel that may not give qualita-
tive, distinctive descriptions of data. We address
this challenge by proposing two relational ker-
nel learning methods which can model multiple
time-series data sets by finding common, shared
causes of changes. We show that the relational
kernel learning methods find more accurate mod-
els for regression problems on several real-world
data sets; US stock data, US house price index
data and currency exchange rate data.

1. Introduction
Gaussian Processes (GPs) provide a general and analyt-
ically tractable way of capturing complex time-varying,
nonparametric functions. The time varying parameters of
GPs can be explained as a composition of base kernels such
as linearity, smoothness or periodicity in that covariance
kernels are closed under addition and multiplication. The
Automatic Bayesian Covariance Discovery (ABCD) sys-
tem (Lloyd et al., 2014) constructs natural-language de-
scription of time-series data by treating unknown time-
series data nonparametrically using GPs.
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It is important to find data dependencies and structure in
time-series data. GPs represent data in a non-parametric
way with a mean function and a covariance kernel func-
tion. The covariance kernel function determines correla-
tion patterns between the data points. Therefore, learning
a proper kernel is essential to model data points with GPs
(Rasmussen & Williams, 2006; Diosan et al., 2007; Bing
et al., 2010; Klenske et al., 2013; Lloyd, 2014). Unfortu-
nately, finding an appropriate kernel often requires man-
ual encoding by human experts or reduction to a simple
problem estimating parameters of a fixed, predefined ker-
nel structure.

The covariance kernels of GPs are known to be closed un-
der addition and multiplication (Duvenaud et al., 2013).
Thus, a sequence of complex real-valued variables could
be explained by a compositional kernel with base kernels
and kernel operations (Bach et al., 2004; Candela & Ras-
mussen, 2005; Wilson & Adams, 2013). Recently, ker-
nel operation grammars and a framework for an automatic
discovery of a compositional kernel have been proposed
(Lloyd et al., 2014). This framework is flexible and in-
terpretable in that the framework automatically discovers a
complex composition of interpretable base kernels. Once
a compositional kernel is found, the individual base com-
ponents can be construed in a human readable form. This
capability for decomposition into multiple components and
for interpretability, shed light on finding shared structure
given multiple sets of data.

Finding a shared structure in multiple sequences may reveal
the common covariance structures of the sequences beyond
the patterns in a single sequence (Chu et al., 2006; Xu et al.,
2009; Wilson & Ghahramani, 2011). As a typical example
in economics, the multivariate view is central where each
variable is normally viewed in the context of relationships
to other variables, as with exchange rates affecting gross
domestic product (GDP).

We propose two Relational Multi-Kernel Learning methods
(explained in Section 3) to find a shared covariance ker-



Automatic Construction of Nonparametric Relational Regression Models for Multiple Time Series

nel for multiple sets of data sequences. Our algorithm dis-
covers both a shared composite kernel, which explains the
common causes of changes in multiple data sets, and indi-
vidual components (scale factors and distinctive kernels),
which explain changes in individual data sets. Since GPs
with the learned kernel are non-parametric, we can repre-
sent any data which is known to have the same relationship
with the training data.

This paper is organized as follows. Section 2 introduces
Gaussian Process (GP) and the Automatic Bayesian Co-
variance Discovery (ABCD) system. Section 3 presents
our main contribution and algorithm, Relational Automatic
Bayesian Covariance Discovery (RABCD). Section 4 dis-
cusses related work. Section 5 shows experimental results
with real-world data sets followed by conclusions in Sec-
tion 6.

2. Automatic Bayesian Covariance Discovery
Here, we briefly explain Gaussian Processes (GPs) and then
introduce the Automatic Bayesian Covariance Discovery
(ABCD) system (Lloyd et al., 2014), which is an exten-
sion of Compositional Kernel Learning (CKL) (Duvenaud
et al., 2013).

2.1. Gaussian Process

GPs are distributions over functions such that any finite set
of function evaluations, (f(x1), f(x2), . . . , f(xN )) form a
multivariate Gaussian distribution (Rasmussen & Williams,
2006). As a multivariate Gaussian distribution is specified
by its mean vector µ and covariance matrix Σ, a GP is
specified by its mean function, µ(x)=E(f(x)) and covari-
ance kernel function, k(x, x′)=Cov(f(x), f(x′)). Evalu-
ations of the two functions on a finite set of points cor-
respond to the mean vector and the covariance matrix for
the multivariate Gaussian distribution, like µi=µ(xi) and
Σij=k(xi, xj). When a GP is specified, we can calculate
the marginal likelihood of given data or can derive predic-
tive distribution for new points given existing data.

Throughout this paper, we will use the following notations
for GPs. If a function or evaluations of the function f are
drawn from a GP specified by its mean function µ(x) and
covariance kernel function k(x, x′),

f ∼ GP(µ(x), k(x, x′))

We may occasionally omit the arguments of the functions,
x and x′, for simplicity and just say k is a kernel function.
For zero-mean GPs, we put 0 in the place of mean function,
which means µ(x)=0. The covariance kernel functions of-
ten have its hyperparameters which are free parameters in
defining a kernel function. For example, the squared expo-
nential kernel function k(x, x′) = σ2 exp(|x− x′|2/`) has

two hyperparameters, σ and `. In the following, we will use
notation k(x, x′; θ) as a kernel function that has a vector θ
as its hyperparameters.

2.2. Compositional Kernel Learning

Compositional Kernel Learning (CKL) constructs and finds
richer kernels which are composed of several base kernels
and operations. In theory, any positive definite kernels are
closed under addition and multiplication (Duvenaud et al.,
2013). Here, each base kernel expresses each distinctive
feature such as linearity or periodicity. The kernel opera-
tions include not only addition and multiplication but also
the so-called change-point and change-window operation
to deal with abrupt structural changes.

2.2.1. BASE KERNELS

Five base kernels are used for making compositional ker-
nels. Each kernel encodes different characteristics of func-
tions, which further enables the generalization of structure
and inference with new data.

Base Kernels Encoding Function
White Noise (WN) Uncorrelated noise
Constant (C) Constant functions
Linear (LIN) Linear functions
Squared Exponential (SE) Smooth functions
Periodic (PER) Periodic functions

2.2.2. OPERATIONS

The first operation is addition which sums multiple kernel
functions and makes a new kernel function.

k′(x, x′) = k1(x, x′) + k2(x, x′).

This operation works as a superposition of multiple in-
dependent covariance functions. In general, if f1 ∼
GP(µ1, k1), f2 ∼ GP(µ2, k2) then f := f1 + f2 ∼
GP(µ1 + µ2, k1 + k2).

ABCD assumes zero mean for GPs, since marginalizing
over an unknown mean function can be equivalently ex-
pressed as a zero-mean GP with a new kernel (Lloyd et al.,
2014). Under this assumption, the following multiplication
operation is also applicable,

k′(x, x′) = k1(x, x′)× k2(x, x′).

In general, if f1 ∼ GP(0, k1), f2 ∼ GP(0, k2) then f :=
f1 × f2 ∼ GP(0, k1 × k2).

The third operation is the change-point (CP) operation.
Given two kernel functions, k1 and k2, the new kernel func-
tion is represented as follows:

k′(x, x′) = σ(x)k1(x, x′)σ(x′)

+ (1− σ(x))k2(x, x′)(1− σ(x′))
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Figure 1: This figure shows components learned from CKL (left) and RKL (right). (a) and (b) represent adjusted closes
of GE and learned components by CKL, respectively. (c) and (d) represent adjusted closes of 3 selected stocks (from top,
yellow:XOM, purple:GE, green:MSFT) and learned (common) components by RKL. The red vertical lines indicate the
September 11 attacks which occurred in 2001. RKL finds and explains the sudden drop after 911 by selectively applying a
constant kernel around that period. However, CKL tries to fit that drop using a (less informative) rapidly varying squared
exponential (SE) kernel function. We provide all components learned by CKL and RKL in the appendix.

where σ(x) is a sigmoidal function which lies between 0
and 1, and ` is the change-point. The change-point op-
eration divides function domain (i.e., time) into two sides
and applies a different kernel function on each side. To
generalize, if f1 ∼ GP(µ1, k1), f2 ∼ GP(µ2, k2) then
f := σ(x)f1 + (1 − σ(x))f2 ∼ GP(σ(x)µ1 + (1 −
σ(x))µ2, σ(x)k1σ(x′) + (1− σ(x))k2(1− σ(x′))).

Finally, the change-window (CW) operation applies the CP
operation twice with two different change points `1 and
`2. Given two sigmoidal functions σ1(x; `1) and σ2(x; `2)
where `1 < `2, the new function will be f := σ1(x)f1(1−
σ2(x)) + (1 − σ1(x))f2σ2(x), which applies the function
f1 to the window (`1, `2). A composite kernel expression
after the change-window operation will be as follows:

k′(x, x′) = σ1(x)(1− σ2(x))k1(x, x′)σ1(x′)(1− σ2(x′))

+ (1− σ1(x))σ2(x)k2(x, x′)(1− σ1(x′))σ2(x′).

2.2.3. SEARCH GRAMMAR

ABCD searches a composite kernel based on the search
grammar. The search grammar specifies how to develop
the current kernel expression by applying the operations
with the base kernels. The following rules are examples of
typical search grammar:

S → S + B S → S × B
S → CP(S,S) S → CW(S,S)

S → B S → C

where S represents any kernel subexpression, B and B′ are
base kernels. For example, supposed that there is a kernel
expression E = K1 + K2 + K3 where Ki is a kernel ex-
pression which cannot be separated into summands. Then,
kernel subexpression S can be the summation of a non-
empty subset of Ki. If we apply multiplication grammar
on a subset (K1 +K3) with a base kernel B1, the expanded
kernel expression is E ′ = K2 + (K1 +K3)× B1

2.2.4. ALGORITHM

Given data and a maximum search depth, the algorithm
gives a compositional kernel k(x, x′; θ). Starting from the
WN kernel, the algorithm expands the kernel expression
based on the search grammar, optimizes hyperparameters
for the expanded kernels, evaluates those kernels given the
data and selects the best one among them. This procedure
repeats. The next iteration in the procedure starts with
the best composite kernel selected in the previous itera-
tion. The conjugate gradient method is used when opti-
mizing hyperparameters. Bayesian Information Criterion
(BIC) (Schwarz, 1978) is used for the model evaluation.
The BIC of modelM with |M| number of free parameters
and data D with |D| number of data points is:

BIC(M) = −2 log p(D|M) + |M| log |D|. (1)

The iteration continues until the specified maximum search
depth is reached. During the iteration, the algorithm keeps
the best model for the output.

Here is an example of how this algorithm works. Suppose
that we start from the WN kernel. Then, we apply operators
with some base kernels as described in the expansion gram-
mar, such as WN → WN+SE, WN → WN+LIN and so
on. With those expanded kernels, the algorithm optimizes
hyperparameters of each expanded kernel. Now we have all
the optimized kernels. Finally we compare the optimized
ones and select the best kernel in terms of the BIC. This
procedure repeats until we meet a certain depth of search.
As an example, suppose that the best kernel selected in the
previous step was WN + SE. Then we apply kernel ex-
pansion again like WN + SE → WN + SE × LIN and so
on. Then we optimize the hyperparameters, select the best
kernel, and then proceed to the next step.
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Figure 2: Graphical representation of (a) RGPs (Chu et al.,
2006) and (b) RKL. Here f denotes latent function. The
subscripts of fi and fj denote sampled latent values for
each point, as in fi = f(xi). yi and yj are observed values
for each point. N is the number of data points for each data
set. M is the number of different data sets.

3. Relational Multi-Kernel Learning
Relational Kernel Learning (RKL) combines the ABCD
system with Statistical Relational Learning (SRL). Given
multiple sets of time-series data, RKL finds a composite
kernel for GPs, which can describe the shared structure of
the sets. We first introduce the RKL model with only a
shared kernel, then presents a semi-RKL model with shared
and individual kernels.

3.1. Relational Kernel Learning

RKL aims to find a model M that explains M multiple
data sets, D = {d1, d2, . . . , dM} well. To do so, we
find a model that maximizes the likelihood, p(D|M) =
p(d1, d2, . . . , dM |M). Here, M represents GP models.
We assume the conditional independence of the likelihoods
of each time-series data di. Hence, the log likelihood of the
whole data is the sum of the log likelihoods of individual
time-series:

log p(d1, . . . , dM |M) = log
∏

i
p(di|M)

=
∑

i
log p(di|M)

(2)

This notation leads us to consider each data set separately
and utilize the existing optimization technique and model
evaluation form used for a single data set.

We assume that there is a single, shared factor that deter-
mines the covariance pattern for multiple data sets within
the same domain, e.g., stock values of companies in a cer-
tain industrial sector. This acts as tying different factors
that determine the covariance pattern of each data set as one
single factor. By finding the factor, we achieve the shared
compositional covariance kernel. Finding the shared fac-

tor in GPs is reduced to finding a shared covariance kernel
function.

3.1.1. DESCRIPTION

Defining a GP requires mean function µ(x) and covariance
function k(x, x′). The mean function is set to be a constant
function which gives 0. The covariance function is divided
into two parts, a functional part k, and its parameters θ.
Here we say the functional part k is the function structure
but the values of its hyperparameters are not specified yet.
k is from a context-free language set yielded from context-
free grammar G, which defines the search method while
expanding the search tree in the kernel search algorithm.
Here G contains base kernels like WN and operators like
+ and ×. After functional part k is decided, the hyperpa-
rameter vector θ is decided. In addition, we have parameter
vector σ where its length is twice the number of datasets.
Each bj (additive scaling factor) and vj (multiplicative scal-
ing factor) in σ = [b1, v1, . . . , bM , vM ] is added and mul-
tiplied to the kernel function k(x, x′; θ) before defining a
GP prior for each data set, i.e. k′ = b2j + v2

j × k(x, x′; θ)
for each jth data set. These parameters normalize of scale
variance to deal with the data sets with different scales of
bias and variance in target value y. Summarizing all the
process gives the following model.

k ← G, GP ← k, θ, σ

f ← GP, y← f,X
(3)

Here f is the latent function from GP prior. y and X are
N × 1 and N × D matrices where N is the number of
data points for each data set and D is the input dimension.
For yi which is the ith element of column vector y, and xi
which is the ith row vector of matrix X, yi = f(xi) holds.

Figure 3 shows the overall structure of the model. The GP
prior is specified for each data set, from 1 to M . A mean
function (which is zero here) and a kernel function spec-
ify a GP prior. The covariance kernel function is speci-
fied with the kernel structure and hyperparameters. Addi-
tive and multiplicative scaling factors, bj and vj for each
data set, are added and multiplied to the kernel function
and specifies a GP prior. The GP prior for each data set
gives latent function f . From that latent function, we get
latent values fi for each data point. Finally yi is generated
from the latent value fi. So for each data set, we have the
following distribution:

Ki,j = b2 + v2 × k(xi,xj ; θ) (4)
y ∼ N (0,K) (5)

Here N (0,K) denotes a multivariate normal distribution
with 0 mean vector and covariance matrix K.
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Figure 3: Graphical representation of RKL model with
more steps in generating GP prior. k defines the kernel
function’s structure but not the values of its hyperparame-
ters. θ completes the function by deciding the function’s
hyperparameter values. bj and vj are added and multiplied
to k(x, x′) for each GP prior. This works as normalization
of shift and scale variance of each data set.

3.1.2. LEARNING

Algorithm 1 presents a learning procedure to find an RKL
model. This algorithm finds a single covariance kernel,
shared by multiple data sets. To explain each line in detail,
line 1 limits the depth of the search tree. Line 2 expands
the given kernel k to multiple candidate kernels based on
the expansion grammar G giving the set of expanded ker-
nels K. For each expanded kernel, in line 4, thealgorithm
optimizes hyperparameters and scaling factors of the ker-
nel, that minimizes negative log-likelihood on the whole
multiple data sets D. In the optimization process, a conju-
gate gradient descent algorithm is used. After optimizing
all the parameters for every candidate kernels in line 6, the
algorithm selects the best kernel among those candidates
that minimizes BIC. At the end, in line 8, it returns the best
kernel.

The main difference is that we calculate the negative log
marginal likelihood of the whole data as a summation of
negative log marginal likelihood of each data set. This is
possible because our RKL model shares a covariance ker-
nel function through multiple data sets. This does not spec-
ify any correlation of variables across the different data
sets. In other words, if we construct a single covariance
matrix for all the data, we get a covariance matrix that has
a block diagonal form. Thus we can factorize the likeli-
hood p(D|M), whereM is a model and D is a set of data,
into a product of individual likelihoods

∏
d∈D p(d|M) as

those individual likelihoods are independent. As we are
dealing with the log likelihood, this can be represented as∑
d∈D log p(d|M).

Algorithm 1 Relational Kernel Learning

Require: initial kernel k, initial hyperparameters θ, ini-
tial scaling factors σ, multiple data sets D =
{d1, . . . , dM}, expansion grammarG, maximum depth
of search s

1: for i ∈ 0 . . . s do
2: K ← expand(k,G)
3: for k ∈ K do
4: k(θ, σ)← argmin(θ,σ)− log p(D|k)
5: end for
6: k ← argmink∈K BIC(k,D)
7: end for
8: return k

3.2. Semi-Relational Kernel Learning

The assumption made by the RKL model is rather too
strong to accommodate variations of individual data se-
quences. To handle this issue, we propose Semi-Relational
Kernel Learning which loosens RKL’s constraint by con-
sidering two parts of a structure, including a shared struc-
ture and an individualized structure.

3.2.1. DESCRIPTION

SRKL aims to learn a set of kernels

K = {Kj = KS +Kdj |dj ∈ D, j = 1, . . . ,M},

where KS is the shared kernel among M sequences, Kdj is
the distinctive kernel for j-th sequence. When we describe
time series as types of trees, the shared kernel represents
the common shape of trunk shared among those trees. The
distinctive kernel interprets the small branches and leaves.

Ideally, the search grammar can be performed to discover
one shared kernel and M distinctive kernels. The search
space explodes in term of complexity O(nM+1) where n
is the number of possible kernels on each search grammar
tree for every depth. To reduce this intensive search, the
distinctive kernel for each time series does not follow the
extensive search grammar but is fixed by using the spectral
mixture (SM) kernel (Wilson & Adams, 2013)

k(τ) =

Q∑
q=1

wq
∏

exp{−2π2τ2
p v

(p)
q } cos(2πτpµ

(p)
q ),

where Q is the number of components, τ = x − x′ is a P
dimensional vector. SM is chosen because its expressive-
ness and ability to approximate a wide range of covariance
kernels.

3.2.2. LEARNING

Algorithm 2 elucidates the learning procedure of the SRKL
model. The search grammar keeps playing its role as a
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Figure 4: Graphical representation of SRKL model. Com-
paring to RKL, SRKL elaborates the GP kernel structure
with an additional distinctive kernel for each data sequence.

Algorithm 2 Semi-Relational Kernel Learning

Require: dataD = {d1, . . . , dM}, grammarG, maximum
depth of search s

1: Initialize K ← ∅
2: for i ∈ 0 . . . s do
3: KS ← expand(G)
4: Θ← ∅
5: for kS ∈ KS do
6: Initialize θ0 ← (θ0

S , θ
0
1, . . . , θ

0
M , σ

0
1 , . . . , σ

0
M )

7: kj(θ
0)← kS(θ0

S , σ
0
j ) + kdj (θ0

j ), j = 1 . . .M

8: θ∗ ← argmin
∑M
j=1− log p(D|kj(θ))

9: Θ← Θ ∪ {(kS , θ∗)}
10: end for
11: (k̂S , θ̂)← argmin(kS ,θ)∈Θ BIC (kS , D)
12: K ← K ∪ (k̂S , θ̂, σ̂)
13: end for
14: return K

generator of composite kernels for each depth s. For each
kernel in the search space, the hyperparameters consist of
shared hyperparamters θS , scale factors σ1, . . . , σM , dis-
tinctive hyperparameters θ1, . . . , θM . The optimal hyper-
parameters are learned based on finding the minimum neg-
ative log likelihood of data on kernels K. The objective
is to find the most common components between time se-
ries. The search grammar identifies the best shared kernel
by the BIC score on a shared kernel KS where the likeli-
hood is computed by the summation of the likelihood of
each time series with respect to the shared kernel.

During the learning procedure, there is a notable compro-
mise between the shared kernel KS and distinctive kernels
Kdj . At the beginning (lower levels of search grammar),
the shared kernel is still coarse and not expressive enough.
The distinctive kernel fills the gap between the true ker-
nel and the shared kernel. When the search grammar gets
deeper, KS becomes more complex and makes Kdj adapt
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Figure 5: Negative log-likelihoods (NLL) made byKS and
Kj . (a) Non-overfitting case. The NLLs onKj andKS de-
crease together; (b) Overfitting starts from level 3 of search
grammar. From level 3, the total NLL on KS keeps going
down while the total NLL on the whole kernel Kj starts
increasing. Kdj adds more complexity to the model and
worsens the Kj .

to data not yet explained by KS . Once KS gets too com-
plex to data, Kdj will be unable to make improvement on
Kj . The overfitting phenomena occurs when the negative
log-likelihood made by Kj starts overwhelming the nega-
tive log-likelihood made by KS as shown in Figure 5.

4. Related Work
4.1. Learning Composite GP Kernels

A composite GP kernel can greatly improves the perfor-
mance of nonparametric regression models. Manually
constructed composite models have shown to fit accu-
rate GP models (Rasmussen & Williams, 2006; Klenske
et al., 2013; Lloyd, 2014). Tree-shaped composite kernels
have also been used with Support Vector Machine (SVM)
(Diosan et al., 2007; Bing et al., 2010).

A weighted sum of base kernels is limited but also effective
when building a composite kernel from base kernels. Mul-
tiple Kernel Learning (MKL) (Bach et al., 2004; Candela
& Rasmussen, 2005; Wilson & Adams, 2013) find optimal
weights in polynomial time when the component kernels
and parameter are pre-specified.

Recently, an algorithm for learning a composite kernel
(CKL) (Duvenaud et al., 2013), and a system for an auto-
matic explanation of the learned composite kernel (ABCD)
(Lloyd et al., 2014) have been proposed. Our RKL and
SRKL are based on CKL and the ABCD system. However,
our models expand the CKL for multiple time-series data
and improves the interpretability of the individual time-
series data by finding a shared relational structure.

4.2. Relational GPs for Continuous Data

Relational GPs can represent the relationships among mul-
tiple time-series data sets (Chu et al., 2006; Xu et al., 2009;
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Wilson & Ghahramani, 2011). These models are based
on pre-specified base kernels instead of composite kernel
representations. A straightforward extension of relational
GP with a composite kernel does not work unless the time-
series data sets share the same hyperparameter. Our models
are more flexible in handling relational data sets by intro-
ducing GPs with both shared and distinct, non-shared hy-
perparameters.

There is a large body of work attempting to represent the
probabilistic knowledge formalisms in statistical relational
learning (SRL) (Getoor & Taskar, 2007). SRL models
for continuous variables (Wang & Domingos, 2008; Choi
et al., 2010; Belle et al., 2015; Choi et al., 2015) and lifted
inference algorithms have been proposed (Kimmig et al.,
2015). Unfortunately, learning composite relational mod-
els from complex continuous data is still hard, and thus
models are defined manually.

4.3. Multiple Output GPs

Multiple correlated data sets can be handled by multiple
output GPs (Wei et al., 2007; Pan & Yao, 2008; Silva et al.,
2008; Álvarez & Lawrence, 2011; Qiu et al., 2016). In prin-
ciple, handling multiple output GPs is intractable because
of the increased size of the full covariance function (matrix)
(Álvarez & Lawrence, 2011). Thus, existing work exploits
efficient ways to extract a common (but simple) structure
given a fixed GP kernel. Our RKL and SRKL seek for a
similar goal by finding a shared covariance kernel. How-
ever, our models with a shared composite GP kernel and
distinctive components (scale factors and SM) are far more
expressive.

5. Experimental Results
In this section, we compare two proposed models, RKL
and SRKL, with CKL, the learning algorithm of the ABCD
system.

5.1. Data sets

5.1.1. STOCK MARKET

From US stock market data, we selected the 9 most valu-
able stocks, GE, MSFT, XOM, PFE, C, WMT, INTC, BP
and AIG based on the market capitalization rankings as of
2001 (von Alten, 2001). The adjusted close of stock fig-
ures from 2001-05-29 to 2001-12-25 were collected from
Yahoo finance (Yahoo Inc., 2015). Each stock’s historical
adjusted close in that period consists of 129 points. Thus,
the total number of points is 1161(=129×9). The collected
period includes the September 11 attacks. After the 9/11
attacks, most of stock values show a steep drop and grad-
ual recovery as time goes on. We arrange this data set into

three different learning settings - STOCK3, STOCK6, and
STOCK9. The suffix number indicates the number of most
valuable stocks.

5.1.2. HOUSING MARKET

US house price index data are retrieved from S&P Dow
Jones Indices (Guarino & Blitzer, 2015) as a seasonally ad-
justed home price index levels. We selected 6 cities: New
York, Los Angeles, Chicago, Pheonix, San Diego and San
Francisco based on the US city population rankings (United
States Census Bureau, 2014) and where the house price in-
dex is available. The period is from the start of year 2004
to the end of year 2013 with monthly granularity, with a
total of 120 points for each data set and 720 for all the data
sets. There are smooth peaks around 2007 and drops until
2009 (the subprime mortgage crisis). Here, we have three
learning settings - HOUSE2, HOUSE4, and HOUSE6 with
top housing markets in terms of city population.

5.1.3. EMERGING CURRENCY MARKET

We collected US dollar to 4 currencies exchange rates from
emerging markets; South African Rand (ZAR), Indone-
sian Rupiah (IDR), Malaysian Ringgit (MYR), and Rus-
sian Rouble (RUB). The currency data from 2015-06-28
to 2015-12-30 were acquired from Yahoo Finance (Ya-
hoo Inc., 2015), containing 132 currency values for each
currency. The financial market greatly fluctuated from the
middle of September 2015 to the beginning of October
2015 as they were affected by several economic events in-
cluding FED’s announcement about policy changes in in-
terest rates and falls in China’s foreign exchange reserves.
We call this data set as CURRENCY4.

5.2. Quantitative evaluations

Table 1 presents all experimental results for three different
evaluation criteria; negative log-likelihood (NLL), and BIC
on training data, and root mean square error on test (extrap-
olation) data.

5.2.1. NEGATIVE LOG LIKELIHOOD AND BIC

The first two groups of columns in Table 1 present how
the models fit the data. RKL surpasses in most of data
sets in term of the BIC. RKL model consistently keeps
a small number of hyperparameters since it shares pa-
rameters through the data sets. With a single kernel and
some scale factors, RKL express multiple sequences bet-
ter than CKL in STOCK3, STOCK6, STOCK9, HOUSE4,
and HOUSE6. It can be inferred that these time series are
highly correlated.

SRKL, like RKL, also seeks for a general, shared kernel
among time series data sets as RKL. However, the num-
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Figure 6: A shared covariance kernel found by SRKL in the currency exchange rate data.

Table 1: Comparisons of CKL, RKL, and SRKL by NLL, BIC, and RMSE among on US stock data, US house price index
data and current exchange rate data

Negative log likelihood Bayesian Information Criteria Root mean square error
Data set CKL RKL SRKL CKL RKL SRKL CKL RKL SRKL
STOCK3 332.75 311.84 304.05 750.65 665.09 1251.62 0.40 0.78 0.38
STOCK6 972.00 1007.09 988.14 2219.71 2066.18 3333.21 3.69 5.75 1.22
STOCK9 1776.31 1763.96 1757.11 3985.03 3626.00 5633.33 8.35 9.77 4.85
HOUSE2 264.69 304.29 310.38 634.00 634.76 905.76 6.58 2.75 3.12
HOUSE4 594.79 586.81 1249.82 1424.18 1221.88 3326.94 5.84 3.66 2.22
HOUSE6 849.64 891.09 1495.40 2100.62 1876.47 4339.54 7.96 5.33 3.10
CURRENCY4 578.35 617.77 693.76 1165.82 1291.77 2269.17 330.00 282.24 201.56

ber of hyperparameters in the distinctive (spectral mixture)
kernel contributes to SRKL’s high BIC score. In addition,
the SRKL kernels Kj = KS + Kdj is more complex than
other kernels. The complexity penalty log |Kj |/2 (Ras-
mussen & Williams, 2006) in the negative log-likelihood
term causes high negative log-likelihood.

5.2.2. EXTRAPOLATION PERFORMANCE

We assess performance using root mean square error
(RMSE) between the predicted and actual values of the ex-
trapolation after the end of the training period. For stock
data, housing data, and currency exchange data, we respec-
tively collected the next 14 days, 13 months, and 13 days
of data.

The RMSEs of CKL, RKL, and SRKL are presented in the
third group of columns in Table 1. Although SRKL has
been seen possessing bigger BIC scores, it outperforms on
most of data sets. It conveys the general information among
time series via the shared kernel. SM kernels are in charge
of the distinctive information, and complement favorably
the shared kernel for each time series. RKL also outruns
CKL on the housing data and the currency exchange data.

5.3. Qualitative Comparisons

RKL can find distinct signal components those are domi-
nant in multiple sequences better than CKL. While CKL
learns a model based on only a single dataset, RKL can re-
fer to multiple datasets and thus provides much evidence
to help decide whether a certain signal is really distinct or

dominant. As with the example of the US stock market
data, when we learned model for each data set using CKL,
the most of the learned models could not specify the drop
after the 9/11 attacks as a single component but just con-
sidered the drop as a kind of normal drift included in the
smooth changes of the signal as time flows. However, in
the case of the RKL, the model could find the component
that solely explains the drop by exactly specifying the time
window of the sudden drop and recovery after 9/11, similar
to the Figure 1.

In currency exchange rate data, SRKL also finds a quali-
tatively important compositional kernel shortly written as
CW(SE + CW(WN + SE, WN), C). The second change-
window kernel presents a time period from mid Septem-
ber 2015 to beginning October 2015. This reveals the big
changes in financial markets influenced by fiscal events,
namely the FED’s announcement about policy changes in
interest rates (see Figure 6). ABCD captures a change-
point on only one currency for the Indonesian Rupiah. The
other results form ABCD do not show this change.

6. Conclusion
We proposed a nonparametric Bayesian framework that
finds shared structure throughout multiple sets of data. The
resulting Relational Kernel Learning (RKL) method pro-
vides a way of finding a shared kernel function that can de-
scribe multiple data with better BIC. We applied this model
to several real world data, including US stock data, US
house price index data and currency exchange rate data, to
validate our approach.
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