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A. Proof of Theorem 1
Here, we describe the detail and proof of Theorem 1. At
the beginning, we introduce a general theory for evaluating
the convergence of a Bayesian estimator.

Preliminary, we introduce some theorems from previous
studies. Let P0 be a true distribution of X , K(f, g) be
the Kullback-Leibler divergence, and define V (f, g) =∫

(log(f/g))2fdx. Let d be the Hellinger distance,
N(ε,P, d) be the bracketing number, andD(ε,P, d) be the
packing number. Also we consider a reproducing kernel
Hilbert space (RKHS), which is a closure of linear space
spanned by a kernel function. Denote by H(k) the RKHS
on X (k).

The following theorem provides a novel tool to evaluate the
Bayesian estimator by posterior contraction.

Theorem 1 (Theorem 2.1 in (Ghosal et al., 2000)). Con-
sider a posterior distribution Πn(·|Dn) on a set P . Let εn
be a sequence such that εn → 0 and nε2n → ∞. Suppose
that, for a constant C > 0 and sets Pn ⊂ P , we have

1. logD(εn,Pn, d) ≤ nε2n,

2. Πn(Pn\P) ≤ exp(−nε2n(C + 4)),

3. Πn

(
p : −K(p, p0) ≤ ε2n, V (p, p0) ≤ ε2n

)
≥

exp(−Cnε2n).

Then, for sufficiently large C ′, EΠn(P : d(P, P0) ≥
C ′εn)|Dn)→ 0.

Based on the theorem, (van der Vaart & van Zanten, 2008)
provide a more useful result for the Bayesian estimator with
the GP prior. They consider the estimator for an infinite
dimensional parameter with the GP prior and investigated
the posterior contraction of the estimator with GP. They
provide the following conditions.

Condition (A) With some Banach space (B, ‖ · ‖) and
RKHS (H, ‖ · ‖),

1. logN(εn, Bn, ‖ · ‖) ≤ Cnε2n,

2. Pr(W /∈ Bn) ≤ exp(−Cnε2n),

3. Pr (‖W − w0‖ < 2εn) ≥ exp(−Cnε2n),

whereW is a random element inB andw0 is a true function
in support of W .

When the estimator with the GP prior satisfied the above
conditions, the posterior contraction of the estimator is ob-
tained as Theorem 2.1 in (Ghosal et al., 2000).

Based on this, we obtain the following result. Consider a
set of GP {{W (k)

m,x : x ∈ X (k)}}m=1,...,M,k=1,...,K and
let {Fx : x ∈ X} be a stochastic process that satisfies
Fx =

∑
m

∑
r λr

∏
kW

(k)

m,x
(k)
r

.

Also we assume that there exists a true function f0
which is constituted by a unique set of local functions
{w(k)

m,0}m=1,...,M,k=1,...,K .

To describe posterior contraction, we define a contraction
rate ε(k)n . It converges to zero as n → ∞. Let φ(k)(ε) be a
concentration function such that

φ(k)(ε) := inf
h∈H(k):‖h−w0‖<ε

‖h‖2H(k) − log Pr(‖W (k)‖ < ε),

where ‖ · ‖H(k) is the norm induced by the inner product
of RKHS. We define the contraction rate with φ(k)(ε). We
denote a sequence {ε(k)n }n,k satisfying

φ(k)(ε(k)n ) ≤ n(ε(k)n )2.

The order of ε
(k)
n depends on a choice of kernel

function, where the optimal minimax rate is ε
(k)
n =

O(n−βk/(βk+Ik)) (Tsybakov, 2008). In the following part,
we set ε̃n(k) = ε̃n for every k. As k′ = arg maxk Ik,
the ε(k)n satisfies the condition about the concentration func-
tion.

We also note the relation between posterior contraction and
the well-known risk bound. Suppose the posterior con-
traction such that EΠn(θ : d2n(θ, θ0) ≥ Cε2n|Dn) → 0
holds, where θ is a parameter, θ0 is a true value, and dn is a
bounded metric. Then we obtain the following inequality:

EΠn(d2n(θ, θ0)|Dn)

≤ Cε2n +DEΠn(θ : d2n(θ, θ0) ≥ Cε2n|Dn),
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where D is a bound of dn. This leads
EΠn(d2n(θ, θ0)|Dn) = O(Cε2n). In addition, if
θ 7→ d2n(θ, θ0) is convex, the Jensen’s inequality pro-
vides d2n(θ, θ0) ≤ Πn(d2n(θ, θ0)|Dn). By taking the
expectation, we obtain

Ed2n(θ, θ0) ≤ EΠn(d2n(θ, θ0)|Dn) = O(Cε2n).

We start to prove Theorem 1. First, we provide a lemma for
functional decomposition. When the function has a form
of a k-product of local functions, we bound a distance be-
tween two functions with a k-sum of distance by the local
functions.

Lemma 1. Suppose that two functions f, g : ×Kk=1Xk → R
have a form f =

∏
k fk and g =

∏
k gk with local func-

tions fk, gk : Xk → R. Then we have a bound such that

‖f − g‖ ≤
∑
k

‖fk − gk‖max {‖fk‖ , ‖gk‖} .

Proof. We show the result based on induction. When k =
2, we have

f − g = f1f2 − g1g2 = f1(f2 − g2) + (f1 − g1)g2,

and

‖f − g‖ ≤ ‖f1‖ ‖f2 − g2‖+ ‖f1 − g1‖ ‖g2‖ .

Thus the result holds when k = 2.

Assume the result holds when k = k′. Let k = k′+ 1. The
difference between k′ + 1-product functions is written as

f − g

= fk′+1

∏
k′

fk − gk′+1

∏
k′

gk

=
∏
k′

fk(fk′+1 − gk′+1) + (
∏
k′

fk −
∏
k′

gk)gk′+1.

From this, we obtain the bound

‖f − g‖

≤

∥∥∥∥∥∏
k′

fk

∥∥∥∥∥ ‖fk′+1 − gk′+1‖+

∥∥∥∥∥∏
k′

fk −
∏
k′

gk

∥∥∥∥∥ ‖gk′+1‖ .

The distance ‖
∏
k′ fk −

∏
k′ gk‖ is decomposed recur-

sively by the case of k = k′. Then we obtain the result.

Now we provide the proof of Theorem 1. Note that M =
M∗ < ∞ in the statement in Theorem 1. Asume that
C,C ′, C ′′, . . . are some positive finite constants and they
are not affected by other values.

Proof. We will show that Fx satisfies the condition (A).
Firstly, we check the third condition in the theorem.

According to Lemma 1, the value ‖Fx− f0‖ is bounded as

‖Fx − f0‖

≤
∑
m

∑
r

∥∥∥∥∥∏
k

W (k)
r −

∏
k

w
(k)
m,0

∥∥∥∥∥
≤
∑
m

∑
r

∑
k

∥∥∥W (k)
m − w(k)

m,0

∥∥∥ ∏
k′ 6=k

max
{∥∥∥w(k′)

m,0

∥∥∥ ,∥∥∥W (k′)
m

∥∥∥} .
By denoting

∥∥∥W̃ (k′)
m

∥∥∥ := max
{∥∥∥w(k′)

m,0

∥∥∥ ,∥∥∥W (k′)
m

∥∥∥}, we
evaluate the probability Pr(‖F − f0‖ ≤ εn) as

Pr(‖F − f0‖ ≤ εn) (1)

≥ Pr

∑
m

∑
r

∑
k

∥∥∥W (k)
m − w(k)

m,0

∥∥∥ ∏
k′ 6=k

∥∥∥W̃ (k′)
m

∥∥∥ ≤ εn


≥ Pr

(∑
r

∑
k

∑
m

∥∥∥W (k)
m − w(k)

m,0

∥∥∥ ≤ 1

Ck
εn

)
, (2)

where Ck is a positive finite constant satisfying Ck =

maxm
∏
k

∥∥∥W̃ (k′)
m

∥∥∥.

From (van der Vaart & van Zanten, 2008), we use the fol-
lowing inequality for every Gaussian random element W :

Pr (‖W − w0‖ ≤ εn) ≥ exp(−nε2n),

Then, by seting εn =
∑
m,r,k ε

(k)
n and with some constant

C, we bound (2) below as

Pr

∑
r

∑
k

∑
m

∥∥∥W (k)
m − w(k)

m,0

∥∥∥ ≤ 1

Ck

∑
m,r,k

ε(k)n


≥
∏
m,r,k

Pr
(∥∥∥W (k)

m − w(k)
m,0

∥∥∥ ≤ 1

Ck
ε(k)n

)

≥
∏
m

∏
r

∏
k

exp

(
− n

(Ck)
2 ε

(k),2
n

)

≥ exp

−n ∑
m,r,k

ε(k),2n

 .

For the second condition, we define a subspace of the Ba-
nach space as

B(k)
n = ε(k)n B

(k)
1 +M (k)

n H
(k)
1 ,

for all k = 1, . . . ,K. Note B(k)1 and H(k)
1 are unit balls in

B andH. Also, we define Bn as

Bn :=

{
w : w = MR

∏
k

wk, wk ∈ B(k)
n ,∀k

}
.
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As shown in (van der Vaart & van Zanten, 2008), for every
r and k,

Pr
(
W (k)
m /∈ B(k)

n

)
≤ 1− Φ(α(k)

n +M (k)
n ),

where Φ is the cumulative distribution function of the stan-
dard Gaussian distribution; α(k)

n and M (k)
n satisfy the fol-

lowing equation with a constant C ′ > 0 as

α(k)
n = Φ−1(Pr(W (k)

m ∈ εnB(k)1 )) = Φ−1(exp(−φ0(ε(k)n ))),

M (k)
n = −2Φ−1(exp(−C ′n(ε(k)n )2)).

By setting α(k)
n + M

(k)
n ≥ 1

2M
(k)
n and using the relation

φ0(ε) ≤ nε2n, we have

Pr
(
W (k)
m /∈ B(k)

n

)
≤ 1− Φ

(
1

2
M (k)
n

)
= exp(−C ′n(ε(k)n )2).

This leads

Pr(Fx /∈ Bn) ≤
∏
m

∏
k

∏
r

Pr(W (k)
m /∈ B(k)

n )

≤
∏
m

∏
k

∏
r

exp(−C ′n(ε(k)n )2)

= exp(−C ′
∑
m,r,k

(ε(k)n )2).

Finally, we show the first condition. Let {h(k)j }N
(k)

j=1 be a set

of elements of M (k)
n H(k)

1 for all k. Also, we set that each
h
(k)
j are 2ε

(k)
n separated, thus ε(k)n balls with center h(k)j do

not have intersections. According to Section 5 in (van der
Vaart & van Zanten, 2008), we have

1 ≥
N(k)∑
j=1

Pr(W (k)
m ∈ h(k)j + εnB

(k)
1 )

≥
N(k)∑
j=1

exp(−1

2
‖h(k)j ‖

2
H)Pr(W ∈ ε(k)n B

(k)
1 )

≥ N (k) exp

(
−1

2
(M (k)

n )2
)

exp(−φ0(ε(k)n )).

Consider 2ε
(k)
n -nets with center {h(k)j }N

(k)

j=1 . The nets cover

M
(k)
n H(k)

1 , we obtain

N(2ε(k)n ,M (k)
n H

(k)
1 , ‖ · ‖)

≤ N (k) ≤ exp

(
1

2
(M (k)

n )2
)

exp(φ(k)(ε(k)n )).

Because every point in B(k)
n is within ε(k)n from some point

of MnH(k)
1 , we have

N(3ε(k)n , B(k)
n , ‖ · ‖) ≤ N(2ε(k)n ,M (k)

n H
(k)
1 , ‖ · ‖).

By Lemma 1, for every elements w,w′ ∈ Bn constructed
as w =

∏
k w

(k), w(k) ∈ B(k)
n , its distance is evaluated as

‖w − w′‖ =

∥∥∥∥∥∏
k

wk −
∏
k

w′k

∥∥∥∥∥
≤
∑
k

∥∥∥w(k) − w′(k)
∥∥∥ ∏
k′ 6=k

∥∥∥w̃(k′)
∥∥∥

≤
∏
k′ 6=k

Ck′
∑
k

∥∥∥w(k) − w′(k)
∥∥∥ . (3)

We consider a set {h∗ : h∗ =
∏
k,j h

(k)
j }, which are

the element of Bn. According to (3), the Cεn-net with
center {h∗} will cover Bn, and its number is equal to∏
kN(εn, B

(k)
n , ‖ · ‖). Let C

∑
m,r,k ε

(k)
n =: ε′n and we

have

logN(3ε′n, Bn, ‖ · ‖)

≤
∑
m,r,k

logN(3ε(k)n , B(k)
n , ‖ · ‖)

≤
∑
m,r,k

logN(2ε(k)n ,M (k)
n H

(k)
1 , ‖ · ‖)

≤
∑
m,r,k

(
1

2
(M (k)

n )2 + φ(k)(ε(k)n )

)
≤
∑
m,r,k

(
C ′′n(ε(k)n )2 + C ′′′n(ε(k)n )2

)
≤ C ′′′′n

∑
m,r,k

(ε(k)n )2.

The last inequality is from the definition of Mn and
φ(k)(εn).

We check that the conditions (A) are all satisfied, thus we
obtain posterior contraction of the GP estimator with rate
ε
(k)
n . Also, according to the connection between posterior

contraction and the risk bound, we achieve the result of
Theorem 1.

B. Proof of Theorem 2
We define the representation for the true function. Recall
the notation f =

∑
m f̄m. We introduce the notation for

the true function f∗ and the GP estimator f̂ as follow:

f∗ =

∞∑
m=1

f̄∗m

f̂n =

M∑
m=1

ˆ̄fm.
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We decompose the above two functions as follows:

‖f∗ − f̂‖n =

∥∥∥∥∥
∞∑
m=1

f̄∗m −
M∑
m=1

ˆ̄fm

∥∥∥∥∥
n

=

∥∥∥∥∥
∞∑

m=M+1

f̄∗m −
M∑
m=1

(f̄∗m − ˆ̄fm)

∥∥∥∥∥
n

≤

∥∥∥∥∥
∞∑

m=M+1

f̄∗m

∥∥∥∥∥
n

+

∥∥∥∥∥
M∑
m=1

(f̄∗m − ˆ̄fm)

∥∥∥∥∥
n

.

(4)

Consider the first term with Assumption 1. Assumption 1
provides a following relation:

∞∑
m=1

‖f̄m‖2mγ <∞. (5)

Then, the expectation of the first term of (4) is bounded by

E

∥∥∥∥∥
∞∑

m=M+1

f̄∗m

∥∥∥∥∥
n

≤ C
∞∑

m=M+1

∥∥f̄∗m∥∥2
≤ C 1

(M + 1)γ

∞∑
m=1

∥∥f̄∗m∥∥2mγ ,

with finite constant C > 0. The exchangeability of the
first inequality is guaranteed by the setting of f∗. Also, the
second inequality comes from (5). Then, we have that

1

(M + 1)γ

∞∑
m=1

∥∥f̄∗m∥∥2mγ = O(M−γ).

About the second term of (4), we consider the estimation
for f∗ with finite M . As shown in the proof of Theorem 1,
the estimation of

∑M
m f̄m is evaluated as

E‖f̂ − f∗‖2 = O

(
M∑
m

n
− β

2β+maxk Ik

)
= O

(
Mn

− β
2β+maxk Ik

)
.

Finally, we obtain the relation

E‖f∗ − f̂‖n = O(M−γ) +O
(
Mn

− β
2β+maxk Ik

)
.

Then, we allow M to increase as n increases. Let M � nζ
with positive constant ζ, and simple calculation concludes
that ζ = ( β

2β+maxk Ik
)/(1 + γ) is optimal. By substituting

ζ, we obtain the result.
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