A. Proof of Exponential SQR Normalization

The basic intuition is clear by looking at the asymptotic growth of each term. However, we specifically outline the possibilities:

1. $\eta_{2}>0: \mathrm{A}\left(\eta_{1}, \eta_{2}\right) \rightarrow \infty$.
2. $\eta_{2}<0: \mathrm{A}\left(\eta_{1}, \eta_{2}\right)<\infty$.
3. $\eta_{2}=0$: if $\eta_{1}<0$, then $\mathrm{A}\left(\eta_{1}, \eta_{2}\right)<\infty$, otherwise $\mathrm{A}\left(\eta_{1}, \eta_{2}\right) \rightarrow \infty$.

In summary, we need that $\eta_{2}<0$ or $\left(\eta_{2}=0\right.$ and $\left.\eta_{1}<0\right)$.

Case 1: $\eta_{2}>0$ Let $\hat{\eta}_{2}=\eta_{2} / 2$. First, we seek an exponential lower bound on the partition function. In particular, we want to find an \bar{z} such that for all $z>\bar{z}$, $\exp \left(\hat{\eta}_{2} z\right) \leq \exp \left(\eta_{1} \sqrt{z}+\eta_{2} z\right)$. Taking the \log of both sides and solving, we find that the critical points of the above inequality are at 0 and $\left(-2 \frac{\eta_{1}}{\eta_{2}}\right)^{2}$. We take the non-trivial solution of $\bar{z}=\left(-2 \frac{\eta_{1}}{\eta_{2}}\right)^{2}$. Now we need to check if the region to the right of \bar{z} is possible by plugging into the original equation. Let us try a point $\tilde{z}=a \bar{z}$ where $a>1$:

$$
\begin{align*}
& \exp \left(\hat{\eta}_{2} \tilde{z}\right) \stackrel{?}{\leq} \exp \left(\eta_{1} \sqrt{\tilde{z}}+\eta_{2} \tilde{z}\right) \tag{16}\\
& \Rightarrow \hat{\eta}_{2} \tilde{z} \stackrel{?}{\leq} \eta_{1} \sqrt{\tilde{z}}+\eta_{2} \tilde{z} \tag{17}\\
& \Rightarrow\left(\eta_{2} / 2-\eta_{2}\right) \tilde{z} \stackrel{?}{\leq} \eta_{1} \sqrt{\tilde{z}} \tag{18}\\
& \Rightarrow-\frac{\eta_{2}}{2}\left(-2 a \frac{\eta_{1}}{\eta_{2}}\right)^{2} \stackrel{?}{\leq} \eta_{1} \sqrt{\left(-2 a \frac{\eta_{1}}{\eta_{2}}\right)^{2}} \tag{19}\\
& \Rightarrow a \frac{-2 \eta_{1}^{2}}{\eta_{2}} \stackrel{?}{\leq} \sqrt{a} \frac{-2 \eta_{1}^{2}}{\eta_{2}} \tag{20}\\
& \Rightarrow a \geq \sqrt{a}, \tag{21}
\end{align*}
$$

where the last line is because we assumed $a>1$ and $\eta_{2}>$ 0 . Thus, we can lower bound the log partition function as follows:

$$
\begin{aligned}
\mathrm{A}\left(\eta_{1}, \eta_{2}\right)= & \int_{0}^{\bar{z}} \exp \left(\eta_{1} \sqrt{z}+\eta_{2} z\right) \mathrm{d} z \\
& \quad+\int_{\bar{z}}^{\infty} \exp \left(\eta_{1} \sqrt{z}+\eta_{2} z\right) \mathrm{d} z \\
\geq & \int_{0}^{\bar{z}} \exp \left(\eta_{1} \sqrt{z}+\eta_{2} z\right) \mathrm{d} z+\underbrace{\int_{\bar{z}}^{\infty} \exp \left(\hat{\eta}_{2} z\right) \mathrm{d} z}_{\rightarrow \infty, \text { since } \hat{\eta}_{2}>0} \\
= & \infty
\end{aligned}
$$

Therefore, if $\eta_{2}>0$, the \log partition function diverges and hence the joint distribution is not consistent.

Case 2: $\eta_{2}<0$ Now we will find an exponential upper bound and show that this upper bound converges-and hence the \log partition function converges. In a similar manner to case 1 , let $\hat{\eta}_{2}=\eta_{2} / 2$. We want to find an \bar{z} such that for all $z>\bar{z}, \exp \left(\hat{\eta}_{2} z\right) \geq \exp \left(\eta_{1} \sqrt{z}+\eta_{2} z\right)$-the only difference from case 1 is the direction of the inequality. Thus, using the same reasoning as case 1 , we have that $\bar{z}=\left(-2 \frac{\eta_{1}}{\eta_{2}}\right)^{2}$. Similarly, we need to check if the region to the right of \bar{z} is possible by plugging into the original equation. In a analogous derivation, we arrive at the same equation as Eqn. 20 except with the inequality is flipped:

$$
\begin{gather*}
\Rightarrow a \frac{-2 \eta_{1}^{2}}{\eta_{2}} \stackrel{?}{\geq} \sqrt{a} \frac{-2 \eta_{1}^{2}}{\eta_{2}} \tag{22}\\
\Rightarrow a \geq \sqrt{a} \tag{23}
\end{gather*}
$$

where the last step is because we assumed $\eta_{2}<0$ and $a>1$ note that we do not flip the inequality because $\frac{-2 \eta_{1}^{2}}{\eta_{2}}$ is overall a positive number. Thus, this is an upper bound on the interval $[\bar{z}, \infty]$:

$$
\begin{aligned}
\mathrm{A}\left(\eta_{1}, \eta_{2}\right) & =\int_{0}^{\bar{z}} \exp \left(\eta_{1} \sqrt{z}+\eta_{2} z\right) \mathrm{d} z \\
& +\int_{\bar{z}}^{\infty} \exp \left(\eta_{1} \sqrt{z}+\eta_{2} z\right) \mathrm{d} z \\
\leq & \int_{0}^{\bar{z}} \exp \left(\eta_{1} \sqrt{z}+\eta_{2} z\right) \mathrm{d} z+\underbrace{\int_{\text {Upper bound }}^{\infty} \exp \left(\hat{\eta}_{2} z\right) \mathrm{d} z}_{\bar{z}} \\
\leq & \underbrace{\int_{0}^{\bar{z}} \exp \left(\eta_{1} \sqrt{z}+\eta_{2} z\right) \mathrm{d} z}_{<\infty}+\underbrace{\int_{0}^{\infty} \exp \left(\hat{\eta}_{2} z\right) \mathrm{d} z}_{\text {Exp. log partition }} \\
& <\infty
\end{aligned}
$$

where the last step is based on the fact that a bounded integral of a finite smooth function is bounded away from ∞ and the second term is merely the log partition function of a standard exponential distribution.

Case 3: $\eta_{2}=0 \quad$ This gives the \log partition function simply as:

$$
\mathrm{A}\left(\eta_{1}, \eta_{2}\right)=\int_{0}^{\infty} \exp \left(\eta_{1} \sqrt{z}\right) \mathrm{d} z
$$

which has the closed form solution:

$$
\begin{align*}
& \mathrm{A}\left(\eta_{1}, \eta_{2}\right)=\left.2 \eta_{1}^{-2}\left(\eta_{1} \sqrt{z}-1\right) \exp \left(\eta_{1} \sqrt{z}\right)\right|_{0} ^{\infty} \tag{24}\\
& \quad=\lim _{z \rightarrow \infty} 2 \eta_{1}^{-2}\left(\eta_{1} \sqrt{z}-1\right) \exp \left(\eta_{1} \sqrt{z}\right)-\left(-2 \eta_{1}^{-2}\right) \tag{25}\\
& \quad=2 \eta_{1}^{-2}+\lim _{z \rightarrow \infty} 2 \eta_{1}^{-2}\left(\eta_{1} \sqrt{z}-1\right) \exp \left(\eta_{1} \sqrt{z}\right) \tag{26}
\end{align*}
$$

The convergence critically depends on the limit in Eqn. 26. This limit diverges to ∞ if $\eta_{1} \geq 0$ but converges to 0 if
$\eta_{1}<0$. Thus, if $\eta_{2}=0$, then $\eta_{1}<0$ for the \log partition function to be finite.

B. Proof of Poisson SQR Normalization (Eqn. 15)

First, we take an upper bound by absorbing the \sqrt{z} term:

$$
\begin{align*}
\mathrm{A}\left(\eta_{1}, \eta_{2}\right) \leq & \sum_{z \in \mathbb{Z}_{+}} \exp (\underbrace{\eta_{1} \sqrt{z}+\eta_{2} z}_{O(z)} \tag{27}\\
& -\underbrace{\sum_{s} \ln \left(\Gamma\left(z v_{s}+1\right)\right)}_{O(z \ln z)}) \tag{28}\\
\leq & \sum_{z \in \mathbb{Z}_{+}} \exp \left(\eta z-\sum_{s} \ln \left(\Gamma\left(z v_{s}+1\right)\right)\right) \tag{29}
\end{align*}
$$

where $\eta=\eta_{2}+\left|\eta_{1}\right|$. We continue the bound as follows:

$$
\begin{align*}
& A\left(\eta_{1}, \eta_{2}\right) \leq \sum_{z \in \mathbb{Z}_{+}} \exp \left(\eta z-\max _{s} \ln \left(\Gamma\left(z v_{s}+1\right)\right)\right) \tag{30}\\
& \leq \sum_{z \in \mathbb{Z}_{+}} \exp (\eta z-\ln (\Gamma(z / p+1))) \tag{31}
\end{align*}
$$

where Eqn. 31 comes from the fact that $\arg \max _{v_{s}} \ln \left(\Gamma\left(z v_{s}+1\right)\right) \geq 1 / p$ (simple proof by contradiction).
Now let us use the ratio test for convergent series where $a_{z}=\exp \left(\eta(\mathbf{v}) z-\ln \left(\Gamma\left(\frac{z}{p}+1\right)\right)\right):$

$$
\begin{gather*}
\lim _{z \rightarrow \infty} \frac{\left|a_{z+1}\right|}{\left|a_{z}\right|}=\exp (\eta(z+1)-\ln (\Gamma((z+1) / p+1)) \\
\quad-[\eta z-\ln (\Gamma(z / p+1))]) \tag{32}
\end{gather*}
$$

$$
\begin{equation*}
=\lim _{z \rightarrow \infty} \exp \left(\eta+\ln \left(\frac{\Gamma(z / p+1))}{\Gamma((z+1) / p+1))}\right)\right) \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
=\exp (\eta) \lim _{z \rightarrow \infty} \frac{\Gamma(z / p+1))}{\Gamma((z / p+1+1 / p))} \frac{(z / p+1)^{1 / p}}{(z / p+1)^{1 / p}} \tag{34}
\end{equation*}
$$

$$
=\exp (\eta) \lim _{z \rightarrow \infty} \frac{1}{(z / p+1)^{1 / p}}
$$

$$
\begin{equation*}
\times \lim _{z \rightarrow \infty} \frac{\Gamma(z / p+1))(z / p+1)^{1 / p}}{\Gamma((z / p+1+1 / p))} \tag{35}
\end{equation*}
$$

$=\exp (\eta) \lim _{z \rightarrow \infty} \frac{1}{(z / p+1)^{1 / p}}(1)$
$=\exp (\eta)(0)(1)=0<1$,
where Eqn. 35 is by the product of limits rule and Eqn. 36 is by the well-known asymptotic properties of gamma functions. Therefore, by the ratio test, the radial conditional log partition function is bounded for any $\eta_{1}<\infty$ and $\eta_{2}<\infty$.

