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Abstract
We develop Square Root Graphical Models
(SQR), a novel class of parametric graphical
models that provides multivariate generalizations
of univariate exponential family distributions.
Previous multivariate graphical models (Yang
et al., 2015) did not allow positive dependencies
for the exponential and Poisson generalizations.
However, in many real-world datasets, variables
clearly have positive dependencies. For example,
the airport delay time in New York—modeled as
an exponential distribution—is positively related
to the delay time in Boston. With this motivation,
we give an example of our model class derived
from the univariate exponential distribution that
allows for almost arbitrary positive and negative
dependencies with only a mild condition on the
parameter matrix—a condition akin to the posi-
tive definiteness of the Gaussian covariance ma-
trix. Our Poisson generalization allows for both
positive and negative dependencies without any
constraints on the parameter values. We also de-
velop parameter estimation methods using node-
wise regressions with `1 regularization and like-
lihood approximation methods using sampling.
Finally, we demonstrate our exponential gener-
alization on a synthetic dataset and a real-world
dataset of airport delay times.

1. Introduction
Gaussian, binary and discrete undirected graphical
models—or Markov Random Fields (MRF)—have become
popular for compactly modeling and studying the struc-
tural dependencies between high-dimensional continuous,
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binary and categorical data respectively (Friedman et al.,
2008; Hsieh et al., 2014; Banerjee et al., 2008; Raviku-
mar et al., 2010; Jalali et al., 2010). However, real-world
data does not often fit the assumption that variables come
from Gaussian or discrete distributions. For example, word
counts in documents are nonnegative integers with many
zero values and hence are more appropriately modeled by
the Poisson distribution. Yet, an independent Poisson dis-
tribution would be insufficient because words are often ei-
ther positively or negatively related to other words—e.g.
the words “machine” and “learning” would often co-occur
together in ICML papers (positive dependency) whereas
the words “deep” and “kernel” would rarely co-occur since
they usually refer to different topics (negative dependency).
Thus, a Poisson-like model that allows for dependencies
between words is desirable. As another example, the delay
times at airports are nonnegative continuous values that are
more closely modeled by an exponential distribution than
a Gaussian distribution but an independent exponential dis-
tribution is insufficient because delays at different airports
are often related (and sometimes causally related)—e.g. if
a flight from Los Angeles, CA (LAX) to San Francisco,
CA (SFO) is delayed then it is likely that the return flight
of the same airplane will also be delayed. Other exam-
ples of non-Gaussian and non-discrete data include high-
throughput gene sequencing count data, crime statistics,
website visits, survival times, call times and delay times.

Though univariate distributions for these types of data have
been studied quite extensively, multivariate generalizations
have only been given limited attention. One basic approach
to forming dependent multivariate distributions is to as-
sume that the marginal distributions are exponentially dis-
tributed (Marshall & Olkin, 1967; Embrechts et al., 2003)
or Poisson distributed (Karlis, 2003). This idea is related
to copula-based models (Bickel et al., 2009) in which a
probability distribution is decomposed into the univariate
marginal distributions and a copula distribution on the unit
hypercube that models the dependency between variables.
However, the exponential model in (Marshall & Olkin,
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1967; Embrechts et al., 2003) gives rise to a distribution
that is composed of a continuous distribution and a singular
distribution, which seems unusual and unlikely for general
real-world situations. The multivariate Poisson distribution
(Karlis, 2003) is based on the sum of independent Pois-
son variables and can only model positive dependencies.
The copula versions of the multivariate Poisson distribution
have significant issues related to non-identifiability because
the Poisson distribution has a discrete domain (Genest &
Neslehova, 2007). There has also been some recent work
on semi-parametric graphical models (Liu et al., 2009) that
use Gaussian copulas to relax the assumption of Gaussian-
ity but these models are not parametric and only consider
continuous real-valued data.

Another line of work assumes that the node conditional
distributions—i.e. one variable given the values of all the
other variables—are univariate exponential families1 and
determines under what conditions a joint distribution exists
that is consistent with these node conditional distributions.
Besag (1974) developed this multivariate distribution for
pairwise dependencies, and Yang et al. (2015) extended this
model to n-wise dependencies. Yang et al. (2015) also de-
veloped and analyzed an M-estimator based on `1 regular-
ized node-wise regressions to recover the graphical model
structure with high probability. Unfortunately, these mod-
els only allowed negative dependencies in the case of the
exponential and Poisson distributions. Yang et al. (2013)
proposed three modifications to the original Poisson model
to allow positive dependencies but these modifications al-
ter the Poisson base distribution or require the specifica-
tion of unintuitive hyperparameters. Allen & Liu (2013)
allowed positive dependencies by only requiring the Local
Markov property rather than a consistent joint distribution
that would have Global Markov properties. In a different
approach, Inouye et al. (2015) altered the Poisson gener-
alization by assuming the length of the vector is fixed or
known similar to the multinomial distribution in which the
number of trials is known. This allows a joint distribution
that is decomposed into the marginal distribution of vector
length and the distribution of the vector direction given the
length. While the model in (Inouye et al., 2015) allowed for
both positive and negative dependencies, the joint distribu-
tion needed to be modified by an ad hoc scalar weighting
function to avoid very low likelihood values for vectors of
long length—i.e. documents with many words.

Therefore, we develop a novel parametric generalization
of univariate exponential family distributions with non-
negative sufficient statistics—e.g. Gaussian, Poisson and
exponential—that allows for both positive and negative de-
pendencies. We call this novel class of multivariate dis-

1See (Wainwright & Jordan, 2008) for an introduction to ex-
ponential families.

tributions Square Root Graphical Models (SQR) because
the square root function is fundamentally important as will
be described in future sections. SQR models have a sim-
ple parametric form without needing to specify any hy-
perparameters and can be fit using `1-regularized node-
wise regressions similar to previous work (Yang et al.,
2015). The independent model—e.g. independent Poisson
or exponential—is merely a special case of this class unlike
in (Yang et al., 2013). We show that the normalizability of
the distribution puts little to no restriction on the values of
the parameters, and thus SQR models give a very flexible
multivariate generalization of well-known univariate distri-
butions.

Notation Let p and n denote the number of dimensions
and number data instances respectively. We will generally
use uppercase letters for matrices (e.g. Φ, X), boldface
lowercase letters for vectors (i.e x,φ) and lowercase let-
ters for scalar values (i.e. x, φ). Let R+ denote the set of
nonnegative real numbers and Z+ denote the set of nonneg-
ative integers.

2. Background
To motivate the form of our model class, we present a
brief background on the graphical model class as in (Be-
sag, 1974; Yang et al., 2015; 2013). Let T(x) and B(x)
be the sufficient statistics and log base measure respec-
tively of the base univariate exponential family and let
D ⊆ Rp+ be the domain of the random vector. We will
denote T(x) : Rp → Rp to be the entry-wise application of
the sufficient statistic function to each entry in the vector x.
With this notation, the previous class of graphical models
can be defined as (Yang et al., 2015):

Pr(x|θ,Φ) = exp
(
θTT(x) + T(x)TΦT(x)

+
∑p
s=1 B(xs)− A(θ,Φ)

) (1)

A(θ,Φ) =
∫
D exp

(
θTT(x) + T(x)TΦT(x)

+
∑p
s=1 B(xs)

)
dµ(x) ,

(2)

where A(θ,Φ) is the log partition function (i.e. log nor-
malization constant) which is required for probability nor-
malization, Φ ∈ Rp×p is symmetric with zeros along the
diagonal and µ is either the standard Lebesgue measure or
the counting measure depending on whether the domain
D is continuous or discrete. The only difference from a
fully independent model is the quadratic interaction term
T(x)TΦT(x)—i.e. O(T(x)2)—which is why the exponen-
tial and Poisson cases do not admit positive dependencies
as will be described in later sections.

We will review the exponential instantiation of this pre-
vious graphical model in which the domain D ∈ Rp+,
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T(x) = x and B(x) = 0. Suppose there is even one pos-
itive entry in Φ denoted φst. Then as x → ∞, the posi-
tive quadratic term xsφstxt will dominate the linear term
θTx and thus the log partition function will diverge (i.e.
A(θ,Φ) → ∞). Thus, Φst ≤ 0 is required for a consis-
tent joint distribution. Similarly, in the case of the Poisson
distribution where the domain D ∈ Zp+, T(x) = x and
B(x) = −ln(x!), suppose there is even one positive entry
φst. The quadratic term xsφstxt will dominate the linear
term and the log base measure term which is O(xln(x));
thus, Φst ≤ 0 is also required for the Poisson distribution.

In an attempt to allow positive dependencies for the Pois-
son distribution, Yang et al. (2013) developed three variants
of the Poisson graphical model defined above. First, they
developed a Truncated Poisson Graphical Model (TPGM)
that kept the same parametric form but merely truncated
the usual infinite domain to the finite domain DTPGM =
{x ∈ Zp+ : xs ≤ R}. However, a user must a priori spec-
ify the truncation value R and thus TPGM is unnatural for
normal count data that could be infinite. In addition, be-
cause of the quadratic term, even though the domain is fi-
nite, the quadratic term can dominate and push most of the
mass near the boundary of the domain (Yang et al., 2013).
The second proposal was to change the base measure from
ln(x!) to x2. This proposal, however, gives the distribution
Gaussian-like quadratic tails rather than the thicker tails of
the Poisson distribution. Finally, the last proposal modi-
fied the sufficient statistic T(x) to decrease from linear to
constant as x increases. Similar to TPGM, this third pro-
posal requires the a priori specification of two cutoff pa-
rameters (R1, R2) and behaves similarly to TPGM after the
second cutoff point because the base measure of −ln(x!)
will quickly make the probability approach 0 once the suf-
ficient statistics become constant.

In a somewhat different direction, Inouye et al. (2015)
proposed a variant called Fixed-Length Poisson MRF
(LPMRF) that modifies the domain of the distribution as-
suming the length of the vector L = ‖x‖1 is fixed, i.e.
D = {x ∈ Zp+ : ‖x‖1 = L}. Because the domain is finite
as in TPGM, the distribution is normalizable even with pos-
itive dependencies. However, as with TPGM, the quadratic
term in the parametric form dominates the distribution if L
is large, and thus Inouye et al. (2015) modify the distribu-
tion by introducing a weighting function that decreases the
quadratic term as L increases. All of these variants of the
Poisson graphical model attempt to deal with the quadratic
interaction term in different ways but all of them signifi-
cantly change the distribution/domain and often require the
specification of new unintuitive hyperparameters to allow
for positive dependencies. Also, according to the authors’
best knowledge, no variants of the exponential graphical
model have been proposed to allow for positive dependen-
cies. Therefore, we propose a novel graphical model class

that alleviates the problem with the quadratic interaction
term and provides both exponential and Poisson graphical
models that allow positive and negative dependencies.

3. Square Root Graphical Model
The amazingly simple yet helpful change from the previous
graphical model class in Eqn. 1 is that we take the square
root of the sufficient statistics in the interaction term. Es-
sentially, this makes the interaction term linear in the suffi-
cient statistics O(T(x)) rather than quadratic O(T(x)2) as
in Eqn. 1. This change avoids the problem of the quadratic
term overcoming the other terms while allowing both pos-
itive and negative dependencies. More formally, given any
univariate exponential family with nonnegative sufficient
statistics T(x) ≥ 0, we can define the Square Root Graphi-
cal Model (SQR) class as follows:

Pr(x |θ,Φ)=exp
(
θT
√

T(x)+
√

T(x)
T
Φ
√

T(x)

+
∑
sB(xs)− A(Φ)

) (3)

A(θ,Φ)=
∫
D exp

(
θT
√

T(x)+
√

T(x)
T
Φ
√

T(x)

+
∑
sB(xs)

)
dµ(x) ,

(4)

where
√

T(x) is an entry-wise square root except when
T(x) = x2 in which case

√
T(x) ≡ x.2 Figure 1 shows ex-

amples of the exponential and Poisson SQR distributions
for no dependency, positive dependency and negative de-
pendency. If θ = 0 and Φ is a diagonal matrix, then we
recover an independent joint distribution so the SQR class
of models can be seen as a direct relaxation of the indepen-
dence assumption, similar to previous graphical models. In
the next sections, we analyze some of the properties of SQR
models including their conditional distributions.

3.1. SQR Conditional Distributions

We analyze two types of univariate conditional distribu-
tions of the SQR graphical models. The first is the standard
node conditional distribution, i.e. the conditional distribu-
tion of one variable given the values for all other variables
(see Fig. 2). The second is what we will call the radial con-
ditional distribution in which the unit direction is fixed but
the length of the vector is unknown (see Fig. 2). The node
conditional distribution is helpful for parameter estimation
as described more fully in Sec. 3.3. The radial conditional
distribution is important for understanding the form of the
SQR distribution as well as providing a means to succinctly
prove that the normalization constant is finite (i.e. the dis-
tribution is valid) as described in Sec. 3.2.

2This nuance is important for the Gaussian SQR in Sec. 4.
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Figure 1. These examples of 2D exponential SQR and Poisson SQR distributions with no dependency (i.e. independent), positive
dependency and negative dependency show the amazing flexibility of the SQR model class that can intuitively model positive and
negative dependencies while having a simple parametric form. The approximate 1D marginals are shown along the edges of the plots.

Node Conditional 
Distributions

Radial Conditional 
Distributions

Figure 2. Node conditional distributions (left) are univariate prob-
ability distributions of one variable assuming the other variables
are given while radial conditional distributions are univariate
probability distributions of vector scaling assuming the vector di-
rection is given. Both conditional distributions are helpful in un-
derstanding SQR graphical models.

Node Conditional Distribution The probability distri-
bution of one variable xs given all other variables x−s =
[x1, x2, . . . , xs−1, xs+1, . . . , xp] is as follows:

Pr(xs |x−s,θ,Φ) ∝
exp
{
φssT(xs) +

(
θs+2φT−s

√
T(x−s)

)√
T(xs)+B(xs)

}
,

where φ−s ∈ Rp−1 is the s-th column of Φ with the s-th
entry removed. This conditional distribution can be refor-
mulated as a new two parameter exponential family:

Pr(xs |x−s,θ,Φ) =

exp
(
η1T̃1(xs) + η2T̃2(xs) + B(xs)− Anode(η)

) (5)

Anode(η) =∫
D exp

(
η1T̃1(xs) + η2T̃2(xs) + B(xs)

)
dµ(xs) ,

(6)

where η1 = φss, η2 = θs+2φT−s
√

T(x−s), T̃1(x) = T(x),
and T̃2(x) =

√
T(x). Note that this reduces to the base ex-

ponential family only if η2 = 0 unlike the model in Eqn. 1
which, by construction, has node conditionals in the base
exponential family. Examples of node conditional distribu-
tions for the exponential and Poisson SQR can be seen in
Fig. 3. While these node conditionals are different from the
base exponential family and hence slightly more difficult to
use for parameter estimation as described later in Sec. 3.3,
the benefit of almost arbitrary positive and negative depen-
dencies significantly outweighs the cost of using SQR over
previous graphical models.

Radial Conditional Distribution For simplicity, let us
assume w.l.o.g. that T(x) = x.3 Suppose we condition on
the unit direction v = x

‖x‖1 of the sufficient statistics but
the scaling of this unit direction z = ‖x‖1 is unknown. We
call this the radial conditional distribution:

Pr(x = zv |v,θ,Φ)

∝ exp
(
θT
√
zv +

√
zv

T
Φ
√
zv +

∑
s B(zvs)

)
∝ exp

(
(θT
√
v)
√
z +

(√
v
T

Φ
√
v
)
z +

∑
s B(zvs)

)
.

3If T is not linear than we can merely reparameterize the dis-
tribution so that this is the case.
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Figure 3. Examples of the node conditional distributions of expo-
nential (left) and Poisson (right) SQR models for η2 = 0, η2 > 0
and η2 < 0.

The radial conditional distribution can be rewritten as a uni-
variate exponential family:

Pr(z |v,θ,Φ) = exp
(
η̄1z + η̄2

√
z︸ ︷︷ ︸

O(z)

+ B̃v(z)︸ ︷︷ ︸
O(B(z))

−Arad(η̄)
)

(7)

Arad(η̄) =

∫
D

exp
(
η̄1z + η̄2

√
z︸ ︷︷ ︸

O(z)

+ B̃v(z)︸ ︷︷ ︸
O(B(z))

)
dµ(z) , (8)

where η̄1 =
√
v
T

Φ
√
v, η̄2 = θT

√
v and B̃v(z) =∑

s B(zvs). Note that if the log base measure of the base
exponential family is zero B(x) = 0, then the radial con-
ditional is the same as the node conditional distribution be-
cause the modified base measure is also zero B̃v(z) = 0.
If both θ = 0 and B(x) = 0, this actually reduces to
the base exponential family. For example, the exponen-
tial distribution has B(x) = 0, and thus if we set θ = 0,
the radial conditional of an exponential SQR is merely
the exponential distribution. Other examples with a log
base measure of zero include the Beta distribution and the
gamma distribution with a known shape. For distributions
in which the log base measure is not zero, the distribution
will deviate from the node conditional distribution based
on the relative difference between B(x) and B̃v(x). How-
ever, the important point even for distributions with non-
zero log base measures is that the terms in the exponent
grow at the same rate as the base exponential family—i.e.
O(z) + O(B(z)). This helps to ensure that the radial con-
ditional distribution is normalizable even as z → ∞ since
the base exponential family was normalizable. As an ex-
ample, the Poisson distribution has the log base measure
B(x) = −ln(x!) and thus B̃v(x) is O(−xlnx) whereas the
other terms η̄1z + η̄2

√
z are only O(z). This provides the

intuition of why the Poisson SQR radial distribution is nor-
malizable as will be explained in Sec. 4.2.

3.2. Normalization

Normalization of the distribution was the reason for the
negative-only parameter restrictions of the exponential and
Poisson distributions in the previous graphical models (Be-
sag, 1974; Yang et al., 2015) as defined in Eqn. 1. However,
we show that in the case of SQR models, normalization
is much simpler to achieve and generally puts little to no
restriction on the value of the parameters—thus allowing
both positive and negative dependencies. For our deriva-
tions, let V = {v : ‖v‖1 = 1,v ∈ Rp+} be the set of unit
vectors in the positive orthant. The SQR log partition func-
tion A(Φ) can be decomposed into nested integrals over the
unit direction and the one dimensional integral over scal-
ing, denoted z:

A(θ,Φ) = ln

∫
V

∫
Z(v)

exp
(
θT
√
zv +

√
zv

T
Φ
√
zv (9)

+
∑
s

B(zvs)
)

dµ(z) dv

= ln

∫
V

∫
Z(v)

exp(η̄1(v)z+η̄2(v)
√
z+
∑
s

B(zvs))dµ(z) dv,

(10)

where Z(v) = {z ∈ R+ : zv ∈ D}, and µ and D are de-
fined as in Eqn. 2. Because V is bounded, we merely need
that the radial conditional distribution is normalizable (i.e.
Arad(η̄) < ∞ from Eqn. 8) for the joint distribution to be
normalizable. As suggested in Sec. 3.1, the radial condi-
tional distribution is similar to the base exponential family
and thus likely only has similar restrictions on parameter
values as the base exponential family. In Sec. 4, we give
examples for the exponential SQR and Poisson SQR dis-
tributions showing that this condition can be achieved with
little or no restriction on the parameter values.

3.3. Parameter Estimation

For estimating the parameters Φ and θ, we follow the ba-
sic approach of (Ravikumar et al., 2010; Yang et al., 2015;
2013) and fit p `1-regularized node-wise regressions us-
ing the node conditional distributions described in Sec. 3.1.
Thus, given a data matrix X ∈ Rp×n we attempt to opti-
mize the following convex function:

arg min
Φ

− 1
n

∑
s

∑
i

(
η1sixsi + η2si

√
xsi

+B(xsi)− Anode(η1si, η2si)
)

+ λ‖Φ‖1,off ,

(11)

where η1si = φs,s, η2si = θ+2φT−s
√

T(x−si), ‖Φ‖1,off =∑
s 6=t |φst| is the `1-norm on the off diagonal elements and

λ is a regularization parameter. Note that this can be triv-
ially parallelized into p independent sub problems which
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allows for significantly faster computation as in (Inouye
et al., 2015). Unlike previous graphical models (Yang et al.,
2015) that were known to have closed-form solutions to the
node conditional log partition function, the main difficulty
for SQR graphical models is that the node conditional log
partition function Anode(η) is not known to have a closed
form in general.

For the particular case of exponential SQR models, there
is a closed-form solution for Anode using the error function
as will be seen in Sec. 4.1 on exponential SQR models.
More generally, because Anode is merely a one dimensional
summation or integral, standard numerical approximations
such as Gaussian quadrature could be used. Similarly, the
gradient of∇Anode could be numerically approximated by:

∇Anode = 1
ε

[(
Â(η1 + ε, η2)− Â(η1, η2)

)
,(

Â(η1, η2 + ε)− Â(η1, η2)
)]
,

(12)

where ε is a small step such as 0.001. Notice that to
compute the function value and the gradient, only three
1D numerical integrations are needed. Another significant
speedup that could be explored in future work would be
to use a Newton-like method as in (Hsieh et al., 2014; In-
ouye et al., 2015), which optimize a quadratic approxima-
tion around the current iterate. Because these Newton-like
methods only need a small number of Newton iterations to
converge, the number of numerical integrations could be
reduced significantly compared to gradient descent which
often require thousands of iterations to converge.

3.4. Likelihood Approximation

We use Annealed Importance Sampling (AIS) (Neal, 2001)
similar to the sampling used in (Inouye et al., 2015) for
likelihood approximation. In particular, we need to approx-
imate the SQR log partition function A(θ,Φ) as in Eqn. 4.
First, we derive a slice sample for the node conditionals in
which the bounds for the slice can be computed in closed
form. Second, we use the slice sampler to develop a Gibbs
sampler for SQR models. Finally, we derive an annealed
importance sampler (Neal, 2001) using the Gibbs sampler
as the intermediate sampler by linearly combining the off-
diagonal part of the parameter matrix Φoff with the diag-
onal part Φdiag—i.e. Φ̃ = γΦoff + Φdiag. We also mod-
ify θ̃ = γθ similarly. For each successive distribution,
we linearly change γ from 0 to 1. Thus, we start by sam-
pling from the base exponential family independent distri-
bution

∏p
s=1 Pr(x | η1s = φss, η2s = 0) and slowly move

towards the final SQR distribution Pr(x |θ,Φ). We main-
tain the sample weights as defined in (Neal, 2001) and from
these weights, we can compute an approximation to the log
partition function (Neal, 2001).

4. Examples from Various Exponential
Families

We give several examples of SQR graphical models in the
following sections (however, it should be noted that we
have been developing a class of graphical models for any
univariate exponential family with nonnegative sufficient
statistics). The main analysis for each case is determining
what conditions on the parameter matrix Φ allow the joint
distribution to be normalized. As described in Sec. 3.2, for
SQR models, this merely reduces to determining when the
radial conditional distribution is normalizable. We analyze
the exponential and Poisson cases in later sections but first
we give examples of the discrete and Gaussian SQR graph-
ical models.

The discrete SQR graphical model—including the binary
Ising model—is equivalent to the standard discrete graph-
ical model because the sufficient statistics are indicator
functions Ts(x) = I(x = s),∀s 6= p and the square root
of an indicator function is merely the indicator function.
Thus, in the discrete case, the discrete graphical model in
(Ravikumar et al., 2010; Yang et al., 2015) is equivalent to
the discrete SQR graphical model. For the Gaussian dis-
tribution, we can use the nonnegative Gaussian sufficient
statistic T(x) = x2. Thus, the Gaussian SQR graphical
model is merely Pr(x|Φ) ∝ exp(θTx + xTΦx), which
by inspection is clearly the standard Gaussian distribution
where θ = Σ−1µ and Φ = − 1

2Σ−1 is required to be neg-
ative definite.4 Thus, the Gaussian graphical model can be
seen as a special case of SQR graphical models.

4.1. Exponential SQR Graphical Model

We consider what are the required conditions on the param-
eters θ and Φ for the exponential SQR graphical model. If
η̄1 is positive, the log partition function will diverge be-
cause even the end point limz→∞ exp(η̄1z) → ∞. On the
other hand, if η̄1 is negative, then the radial conditional dis-
tribution is similar in form to the exponential distribution
and thus the log partition function will be finite because
the negative linear term η̄1z dominates in the exponent as
z →∞.5 See appendix for proof. Thus, the basic condition
on Φ is:

ΦExp ∈ {Φ :
√
v
T

Φ
√
v < 0,∀v ∈ V} . (13)

Note that this allows both positive and negative dependen-
cies. A sufficient condition is that Φ be negative definite—

4This is by the slightly nuanced definition of the square root
operator in Eqn. 3 and 4 such that

√
x2 ≡ x rather than |x|.

5On the edge case when η̄1 = 0, the log partition function
will diverge if η̄2 ≥ 0 and will converge if η̄1 < 0 by simple
arguments. The normalizability condition when η2 = 0 could
slightly loosen the condition on Φ in Eqn. 13 but for simplicity
we did not include this edge case.
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as is the case for Gaussian graphical models. However,
negative definiteness is far from necessary because we only
need negativity of the interaction term for vectors in the
positive orthant. It may even be possible for Φ to positive
definite but Eqn. 13 be satisfied; however, we have not ex-
plored this idea.

For fitting the SQR model, the node conditional log parti-
tion function AExp(η) has a closed-form solution:

AExp(η) =ln

(√πη1 exp
(−η22

4η1

)(
1−erf

( −η2
2
√
−η1

))
−2(−η1)

3
2

− 1

η1

)
,

where erf(·) is the error function. The erf function shows
up because of an initial substitution of u =

√
x to transform

the exponent into a quadratic form. Note that η1 < 0 by
the condition on ΦExp in Eqn. 13 above. The derivatives
of AExp can also be computed in closed form for use in the
parameter estimation algorithm.

4.2. Poisson SQR Graphical Model

The normalization analysis for Poisson SQR graphical
model is also relatively simple but requires a more care-
ful analysis than the exponential SQR graphical model.
Let us consider the form of the Poisson radial conditional:
Prrad(z |v) ∝ exp(η̄1z + η̄2

√
z −

∑
s ln((zvs)!)). Note

that the domain of z, denoted Dz = {z ∈ Z+ : zv ∈ Zp+},
is discrete. We can simplify the analysis by taking a larger
domain D̃z = {z ∈ Z+} of all non-negative integers and
changing the log factorial to the smooth gamma function,
i.e.
∑
s ln((zvs)!))→

∑
s ln(Γ(zvs+1)). Thus, the radial

conditional log partition function is upper bounded by:∑
z∈Z+

exp
(
η̄1z + η̄2

√
z︸ ︷︷ ︸

O(z)

−
∑
sln(Γ(zvs + 1))︸ ︷︷ ︸

O(zlnz)

)
<∞. (14)

The basic intuition is that the exponent has a linear O(z)
term minus an O(zlnz) term, which will eventually over-
come the linear term and hence the summation will con-
verge. Note that we did not assume any restrictions on Φ
except that all the entries are finite. Thus, for the Pois-
son distribution, Φ can have arbitrary positive and negative
dependencies. A formal proof for Eqn. 14 is given in the
appendix.

5. Experiments and Results
5.1. Synthetic Experiment

In order to show that our parameter estimation algorithm
has the ability to find the correct dependencies, we de-
velop a synthetic experiment on chain-like graphs. We con-
struct Φ to be a k-dependent circular chain-like graph by
first setting the diagonal of Φ to be 1. Then, we add an

edge between each node and its k neighbors with a value
of 0.9

2∗k , i.e. the s-th node is connected to the (s + 1)-
th, (s + 2)-th, . . . , (s + k)-th nodes where the indices
are modulo p (e.g. k = 1 is the standard chain graph).
This ensures that Φ is negative definite by the Gershgorin
disc theorem. We generate samples using Gibbs sampling
with 1000 Gibbs iterations per sample and 10 slice sam-
ples for each node conditional sample. For this experi-
ment, we set p = 30, λ = 10−5, k ∈ {1, 2, 3, 4}, and
n ∈ {100, 200, 400, 800, 1600}. We calculate the edge
precision for the fitted model by computing the precision
for the top kp edges—i.e. the number of true edges in the
top kp estimated edges over the total number of true edges.
The results in Fig. 4 demonstrate that our parameter esti-
mation algorithm is able to easily find the edges for small k
and is even able to identify the edges for large k, though the
problem becomes more difficult when k is large (because
there are more parameters, which are also smaller), and
thus more samples are needed. With 1,600 samples, our
parameter estimation algorithm is able to recover at least
95% of the edges even when k = 4.

5.2. Airport Delay Times Experiment

In order to demonstrate that the SQR graphical model class
is more suitable for real-world data than the graphical mod-
els in (Yang et al., 2015) (which can only model nega-
tive dependencies), we fit an exponential SQR model to a
dataset of airport delay times at the top 30 commercial USA
airports—also known as Large Hub airports. We gathered
flight data from the US Department of Transportation pub-
lic “On-Time: On-Time Performance” database6 for the
year 2014. We calculated the average delay time per day
at each of the top 30 airports (excluding cancellations).

For our implementation, we set λ ∈ {0.05, 0.005, 0.0005}
and set a maximum of 5000 iterations for our proxi-
mal gradient descent algorithm. For approximating the
log partition function using the AIS sampling defined in
Sec. 3.4, we sampled 1000 AIS samples with 100 anneal-
ing distributions—i.e. γ took 100 values between 0 and
1—, 10 Gibbs steps per annealed distribution and 10 slice
samples for every node conditional sampling. Generally,
our algorithm with these parameter settings took roughly
35 seconds to train the model and about 25 seconds to com-
pute the likelihood (i.e. AIS sampling) using MATLAB
prototype code on the TACC Maverick cluster.7

We computed the geometric mean of the relative log likeli-
hood compared to the independent exponential model, i.e.
exp((LSQR−LInd)/n), whereL is the log likelihood. These
values can be seen in Fig. 4 (higher is better). Clearly, the

6http://www.transtats.bts.gov/DL SelectFields.asp?Table ID
=236&DB Short Name=On-Time

7https://portal.tacc.utexas.edu/user-guides/maverick



Square Root Graphical Models

exponential SQR model provides a major improvement in
relative likelihood over the independent model suggesting
that the delay times of airports are clearly related to one
another. In Fig. 5, we visualize the non-zeros of Φ—which
correspond to the edges in the graphical model—to show
that our model is capturing intuitive positive dependencies.
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Figure 4. (Left) The fitted exponential SQR model improves sig-
nificantly over the independent exponential model in terms of rel-
ative likelihood suggesting that a model with positive dependen-
cies is more appropriate. (Right) The edge precision for the cir-
cular chain graph described in Sec. 5.1 demonstrate that our pa-
rameter estimation algorithm is able to effectively identify edges
for small k, and if given enough samples, can also identify edges
for larger k.

Figure 5. Visualizing the top 50 edges between airports shows that
SQR models can capture interesting and intuitive positive depen-
dencies even though previous exponential graphical models (Yang
et al., 2015) were restricted to negative dependencies. The delays
at the Chicago airports seem to affect other airports as would be
expected because of Chicago weather delays. Other dependencies
are likely related to weather or geography. (For this visualization,
we set λ = 0.0005. Width of lines is proportional to the value of
the edge weight, i.e. a non-zero in Φ, and the size of airport ab-
breviation is proportional to the average number of passengers.)

First, it should be noted that all the dependencies are pos-
itive yet positive dependencies were not allowed by previ-
ous graphical models (Yang et al., 2015)! Second, as would
be expected because of weather delays, the airports in the
Chicago area seems to affect the delays of many other air-
ports. Similarly, a weather effect seems to be evident for
the airports near New York City. Third, as would be ex-

pected, some dependencies seem to be geographic in nature
as seen by the west coast dependencies, Texas dependency
(i.e. DFW-IAH), and east coast dependencies. Note that
the geographic dependencies were found even though no
location data was given to the algorithm. Fourth, the busi-
est airport in Atlanta, GA (ATL) is not strongly dependent
on other airports. This seems reasonable because Atlanta
rarely has snow and there are few major airports geograph-
ically close to Atlanta. These qualitative results suggest
that the exponential SQR model is able to capture multiple
interesting and intuitive dependencies.

6. Discussion
As full probability models, SQR graphical models could
be used in any situation where a multivariate distribution
is required. For example, SQR models could be used
in Bayesian classification by modeling the probability of
each class distribution instead of the classical Naive Bayes
assumption of independence. As another example, SQR
models could be used as the base distribution in mix-
tures or admixture composite distributions as in (Inouye
et al., 2014; Inouye et al.)—similar to multivariate Gaus-
sian mixture models. Another extension would be to con-
sider mixed SQR graphical models in which the joint distri-
bution has variables using different exponential families as
base distributions as explored for previous graphical mod-
els in (Yang et al., 2014; Tansey et al., 2015).

7. Conclusion
We introduce a novel class of graphical models that creates
multivariate generalizations for any univariate exponen-
tial family with nonnegative sufficient statistics—including
Gaussian, discrete, exponential and Poisson distributions.
We show that SQR graphical models generally have few re-
strictions on the parameters and thus can model both posi-
tive and negative dependencies unlike previous generalized
graphical models as represented by (Yang et al., 2015). In
particular, for the exponential SQR model, the parameter
matrix Φ can have both positive and negative dependen-
cies and is only constrained by a mild condition—akin to
the positive-definiteness condition on Gaussian covariance
matrices. For the Poisson distribution, there are no restric-
tions on the parameter values, and thus the Poisson SQR
model allows for arbitrary positive and negative dependen-
cies. We develop parameter estimation and likelihood ap-
proximation methods and demonstrate that the SQR model
indeed captures interesting and intuitive dependencies by
modeling both synthetic datasets and a real-world dataset
of airport delays. The general SQR class of distributions
opens the way for graphical models to be effectively used
with non-Gaussian and non-discrete data without the unin-
tuitive restriction to negative dependencies.
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