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Abstract
We present an adaptive online gradient descent
algorithm to solve online convex optimization
problems with long-term constraints, which are
constraints that need to be satisfied when accu-
mulated over a finite number of rounds T , but
can be violated in intermediate rounds. For some
user-defined trade-off parameter β ∈ (0, 1), the
proposed algorithm achieves cumulative regret
bounds of O(Tmax{β,1−β}) and O(T 1−β/2), re-
spectively for the loss and the constraint viola-
tions. Our results hold for convex losses, can
handle arbitrary convex constraints and rely on
a single computationally efficient algorithm. Our
contributions generalize over the best known cu-
mulative regret bounds of Mahdavi et al. (2012a),
which are respectively O(T 1/2) and O(T 3/4)
for general convex domains, and respectively
O(T 2/3) and O(T 2/3) when the domain is fur-
ther restricted to be a polyhedral set. We supple-
ment the analysis with experiments validating the
performance of our algorithm in practice.

1. Introduction
Online convex optimization (OCO) plays a key role in ma-
chine learning applications, such as adaptive routing in net-
works (Awerbuch and Kleinberg, 2008) and online display
advertising (Agrawal and Devanur, 2015). An OCO prob-
lem can be viewed as a sequential, repeated game between
a learner and an adversary. In each round t, the learner first
plays a vector xt ∈ X ⊆ Rd, where X is a convex set cor-
responding to the set of possible actions. The learner then
incurs a loss ft(xt) for playing vector xt. The function
ft : X → R+ is defined by the adversary and can vary in
each round. We say that ft is strongly convex with modulus
σ > 0 if ft(x) ≤ ft(y) +∇ft(x)>(x− y)− σ

2 ‖x− y‖22
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for any x,y ∈ X , where the notation ∇ft(x) refers to any
(sub-)gradient of ft at x. If σ = 0, we say that ft is convex.
The learner’s objective is to generate a sequence of vectors
xt ∈ X for t = 1, 2, · · · , T that minimizes the cumulative
regret over T rounds relative to the optimal vector x?:

RegretT (x∗),
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
?). (1)

This regret measures the difference between the cumula-
tive loss of the learner’s sequence of vectors {xt}Tt=1 and
the accumulated loss that would be incurred if the sequence
of loss functions ft would be known in advance and the
learner could choose the best vector x? in hindsight. Sev-
eral algorithms have been developed over the past decade
that achieve sub-linear cumulative regret in the OCO set-
ting. The problem was formalized by Zinkevich (2003),
who introduced an online algorithm based on projected
subgradients (Bertsekas and Tsitsiklis, 1989). The algo-
rithm guarantees a cumulative regret of O(T 1/2) when
the set X is convex and the loss functions are Lipschitz-
continuous over X . Hazan et al. (2007) and Shalev-
Shwartz and Kakade (2009) introduced algorithms with
logarithmic regret bounds for strongly convex loss func-
tions, e.g., online gradient descent has anO(log(T )) regret
bound for appropriate choices of the step size.

In the aforementioned works, the constraint on vector xt is
assumed to hold for each round t, such that a projection step
is applied every round to enforce the feasibility of each xt.
For general convex sets X , the projection step may require
solving an auxiliary optimization problem, which can be
computationally expensive (e.g., projections onto the semi-
definite cone). More importantly, in practical applications,
the learner may in fact only be concerned with satisfying
long-term constraints, that is, the cumulative constraint vi-
olations resulting from the sequence of vectors {xt}Tt=1

should not exceed a certain amount by the final round T .
An example of such an application is in online display ad-
vertising, where xt is a vector of ad budget allocations and
the learner is primarily concerned in enforcing the long-
term constraint that each ad fully consumes its budget over
the lifetime of the ad. Another example is from wireless
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communications (Mannor and Tsitsiklis, 2006), where xt
is a vector of power allocations across multiple devices,
and the learner must satisfy average power consumption
constraints per device over several rounds.

In this work, we consider OCO problems where the
learner’s cumulative regret is defined by (1) and it is re-
quired to satisfy long-term constraints—the notion of long-
term constraint is made formal in Section 2. This class
of problems was studied previously in (Mahdavi et al.,
2012a;b). In particular, Mahdavi et al. (2012b) restricted
their study to online exponentially weighted averages with
linear loss and linear constraints, while Mahdavi et al.
(2012a) presented online algorithms based on projected
subgradients and the mirror-prox method (Nemirovski,
2004). The authors derived cumulative regret bounds for
the cumulative loss and cumulative constraint violations,
respectively of O(T 1/2) and O(T 3/4) in the case of on-
line projected subgradients, and respectively of O(T 2/3)
andO(T 2/3) in the case of mirror-prox. To our knowledge,
these are the best-known regret bounds for OCO with long-
term constraints. The analysis of Mahdavi et al. (2012a)
relies on two different algorithms to achieve the two afore-
mentioned guarantees, and the mirror-prox method addi-
tionally requires the constraint set X to be polyhedral.
Some convex domains of interest, such as spectral con-
straints or norm balls, are difficult or cannot be represented
as the intersection of a finite number of linear constraints.

The concept of long-term constraints enables us to avoid
the computation of potentially expensive projections onto
the domain X in each round. This is related in spirit to
recent work in stochastic optimization, where one aims to
minimize the number of expensive projection steps (Mah-
davi et al., 2012c), or online approaches based on Frank-
Wolfe (Hazan and Kale, 2012). Our work only assumes
access to the function values and (sub)gradients, and does
not make further assumptions about other computational
oracles (e.g., maximization of linear functions for Frank-
Wolfe, or access to some proximal operator). The guaran-
tees sought in our analysis have also similarities with those
obtained for the online alternating direction method (Wang
and Banerjee, 2013), where regret bounds are provided
for the violation of equality constraints. Finally, long-term
constraints bear resemblance with recent work on bandits
under global constraints (Badanidiyuru et al., 2013).

Contributions. We propose an algorithm based on a
saddle-point formulation of the OCO problem with long-
term constraints. The resulting online algorithm is adaptive
in that the step sizes are different for the primal/dual vari-
ables and depend on the round t, as does the regularisation
parameter. As a result, we obtain an algorithm with a faster
practical convergence as shown in the experiments.

In the case of convex losses, we show that, for any convex

constraint set X and some user-defined trade-off param-
eter β ∈ (0, 1), our algorithm achieves regret bounds of
O(Tmax{β,1−β}) and O(T 1−β/2) for the cumulative loss
and the cumulative constraint violations. Hence, we re-
cover the O(T 1/2) and O(T 3/4) guarantees from Mah-
davi et al. (2012a) when equating β to 1/2, but we enable
the user to trade-off cumulative loss for cumulative con-
straint violations depending on his/her application. More-
over, we extend the regret bounds of O(T 2/3) achieved
by Mahdavi et al. (2012a) beyond polyhedral sets, propos-
ing an arguably less involved approach than mirror-prox.
While Mahdavi et al. (2012a) consider only the convex set-
ting, we also study the case of strongly convex losses for
which we prove tighter regret bounds, but without improv-
ing their leading terms. All the bounds we obtain are valid
for adversarially-generated sequences, in particular, we do
not assume the losses are generated in an i.i.d. fashion.

Finally, we supplement our theoretical results with an em-
pirical study and compare our algorithm to the ones pro-
posed by Mahdavi et al. (2012a). We consider i) the online
estimation of doubly stochastic matrices and ii) the online
learning of sparse logistic regression with the elastic net
penalty (Zou and Hastie, 2005). The empirical validation
fills a gap in previous work (Mahdavi et al., 2012a;b) and
uncovers the unexpected results that the practical benefit of
having adaptive regularization and step sizes leads to algo-
rithms with faster vanishing cumulative regrets, even when
not fully captured by the theory.

2. Problem statement
Consider m convex functions gj : Rd 7→ R which induce a
convex constraint set

X ,
{
x ∈ Rd : max

j∈{1,··· ,m}
gj(x) ≤ 0

}
.

We assume that the set X is bounded so that it is included
in some Euclidean ball B with radius R > 0

X ⊆ B ,
{
x ∈ Rd : ‖x‖2 ≤ R

}
.

Along with the functions gj , we consider a sequence of
convex functions ft : Rd 7→ R+ such that

F , max
t∈{1,··· ,T}

max
x,x′∈B

|ft(x)− ft(x′)| > 0.

As is typically assumed in online learning (Cesa-Bianchi
and Lugosi, 2006), the functions gj and ft shall be taken
to be Lipschitz continuous. In particular, for some finite
G > 0 the (sub-)gradients of f and gj are bounded

max
j∈{1,··· ,m}

x∈B

‖∇gj(x)‖2 ≤ G, max
t∈{1,··· ,T}

x∈B

‖∇ft(x)‖2 ≤ G.

We take the same constant G for both gj and ft for sim-
plicity as we can always take the maximum between that
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of gj and that of ft. We notably have F ≤ 2RG. Also,
we do not generally assume gj and ft to be differentiable.
Finally, we assume that there exists a finite D > 0 such
that the constraint functions are bounded over B:

max
j∈{1,··· ,m}

max
x∈B
|gj(x)| ≤ D.

The set of assumptions enumerated above match the ones
in Mahdavi et al. (2012a).

2.1. Online Optimization with Long-term Constraints

Let {xt}Tt=1 be the sequence of vectors played by the
learner from the set B and {ft(xt)}Tt=1 the corresponding
sequence of incurred losses. We aim at minimizing the cu-
mulative regret subject to long-term constraint, that is:

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) s.t. max
j∈{1,··· ,m}

T∑
t=1

gj(xt) ≤ 0.

3. Adaptive Online Algorithms based on a
Saddle-point Formulation

Following Mahdavi et al. (2012a), we consider a saddle-
point formulation of the optimization problem. For any λ ∈
R+,x ∈ B we define the following function:

Lt(x, λ) , ft(x) + λg(x)− θt
2
λ2, (2)

where g(x) , maxj∈{1,··· ,m} gj(x) and {θt}Tt=1 is a se-
quence of positive numbers to be specified later. The role
of g is to aggregate them constraints into a single function.
It otherwise preserves the same properties as those of indi-
vidual gj’s (sub-differentiability, bounded (sub-)gradients
and bounded values; see Proposition 6 in (Mahdavi et al.,
2012a) or Section 2.3 in (Borwein and Lewis, 2006)).

In the saddle-point formulation (2), we will alternate be-
tween minimizing with respect to the primal variable x and
maximizing with respect to the dual parameter λ. A closer
look at the function λ 7→ Lt(x, λ) indicates that we penal-
ize the violation of the constraint g(x) ≤ 0:

1

2θt
[g(x)]2+ = sup

λ∈R+

[
λg(x)− θt

2
λ2
]
, (3)

where [u]+ , max{0, u}. This penalty is commonly
used when transforming constrained to unconstrained prob-
lems (see e.g., Nocedal and Wright (2006), Section 17.1).
Also, we can see from (3) that θt acts as a regularization pa-
rameter. We note that Mahdavi et al. (2012a) make use of a
single θ that is constant in all rounds, equal to the product
of a constant step size times a constant scaling factor.

In the sequel, we study the following online algorithm
where we alternate between primal and dual updates:

• Initialize x1 = 0 and λ1 = 0.
• For t ∈ {1, · · · , T − 1}:

xt+1 = ΠB(xt − ηt∇xLt(xt, λt)),
λt+1 = ΠR+(λt + µt∇λLt(xt, λt)),

where ΠC stands for the Euclidean projection onto the
set C, while {ηt}Tt=1 and {µt}Tt=1 are sequences of non-
negative step sizes that respectively drive the update of x
and λ. The algorithm resembles the ones proposed by Mah-
davi et al. (2012a); Koppel et al. (2014), but it is adaptive.
The step sizes, which are different for the updates of x and
λ, are listed in Table 1 and result from the analysis we pro-
vide in the next section. We also derive sub-linear regret
bounds associated to these instantiations of the sequences
{θt}Tt=1, {ηt}Tt=1 and {µt}Tt=1.

3.1. Main Results

We begin by listing three sufficient conditions for obtaining
sub-linear regret bounds for the proposed algorithm:

(C1): For any t ≥ 2, 1
µt
− 1

µt−1
− θt ≤ 0.

(C2): For any t ≥ 2, ηtG2 + µtθ
2
t − 1

2θt ≤ 0.

(C3): For some finiteUη>0,
∑T
t=2

[
1
ηt
− 1
ηt−1
−σ
]
≤ Uη.

Conditions C1 and C3 impose constraints on the rate of de-
crease of the step sizes. We note that there is an asymmetry
between µt and ηt: while we will always be able to control
the norm of the variables xt (by design, they must lie in B),
the sequence {λt}Tt=1 is not directly upper-bounded in the
absence of further assumptions on the gradient of g, hence
the most stringent condition C1 is to avoid any dependen-
cies on λt. Condition C2 couples the behaviour of the three
sequences to guarantee their validity. Finally, C1, C2 and
C3 are expressed for t ≥ 2 because of our choice for the
initial conditions x1 = 0 and λ1 = 0.

Our main result is described in the following theorem,
whose proof is detailed in Section 3.2:
Theorem 1. Consider the choices of the sequences µt, ηt
and θt for some β ∈ (0, 1), as summarized in Table 1. Let
x?∈argminx∈X

∑T
t=1 ft(x). For any T ≥ 1, it holds that

T∑
t=1

∆ft≤RfT and
T∑
t=1

g(xt) ≤

√
C

1−β

(
RfT +FT

)
T 1−β

where ∆ft,ft(xt)− ft(x?). The termRfT is defined as

RfT
(σ=0)

=

[
RG+

D2

6βRG

]
T β+

2RG

1− β
T 1−β with C , 24RG,

RfT
(σ>0)

=
G2

σ
(1 + log(T )) +

D2σ

6G2β
T β with C ,

24G2

σ
,

for respectively the cases σ = 0 and σ > 0.
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Convex (σ = 0) Strongly convex (σ > 0)

θt
6RG
tβ

6G2

σtβ

ηt
R
Gtβ

1
σt

µt
1

θt(t+1)
1

θt(t+1)

Sθ
6RG
1−β T

1−β 6G2

σ(1−β)T
1−β

Sη
R

G(1−β)T
1−β 1

σ (1 + log(T ))

Sµ
1

6βRGT
β σ

6βG2T
β

Uη
G
RT

β 0
1
µ1
− θ1 6RG 6G2

σ
1
η1
− σ G

R 0

Table 1. Parameter choices in different regimes, with β ∈ (0, 1).

Theorem 1 can be further simplified in the convex case (i.e.,
σ = 0). Forgetting momentarily about the dependencies on
{D,G,R, F}, it can be stated as follows:

∑T
t=1 ∆ft ≤ O(max{T β , T 1−β}),∑T

t=1 g(xt) ≤ O(T 1−β/2).

Setting β = 2/3 leads to
∑T
t=1 ∆ft ≤ O(T 2/3) and∑T

t=1 g(xt) ≤ O(T 2/3), which matches the mirror-prox
guarantees of Mahdavi et al. (2012a). However, it is
valid for general convex constraint sets X as opposed to
just polyhedral constraint sets. Taking β = 1/2, we
recover the regret bounds

∑T
t=1 ∆ft ≤ O(T 1/2) and∑T

t=1 g(xt) ≤ O(T 3/4) achieved in Section 3.1 of (Mah-
davi et al., 2012a). Other trade-offs between loss and con-
straint violations can be selected, e.g., β = 3/4 with regret
bounds of O(T 3/4) and O(T 5/8) respectively.

Theorem 1 shows cumulative regret bounds in the strongly
convex case (i.e., σ>0). The bounds have the same leading
terms, but are tighter. Condition C2 couples the loss and
constraint regrets, suggesting that a logarithmic regret for
the loss would result in a non-vanishing regret for the con-
straint. This non-trivial property is related to how fast θt is
allowed to decrease. Intuitively, there is a tension between
(a) making progress in x with large ηt’s, and (b) adap-
tively controlling the constraint violation via 1/θt. Having
1/θt to be too large risks impeding the progress in x; set-
ting them too small leads to large constraint violations. As
for µt’s, making these larger penalizes the violations more.
This intuitive trade-off is formalized via C1-2-3.

Finally, conditions C1-2-3 make it possible to instantiate
the sequences {θt, ηt, µt} without prior knowledge of the
time horizon T . In contrast, Mahdavi et al. (2012a) use se-
quences depending on T , requiring to resort to the doubling
trick (e.g., Section 2.3.1 in Shalev-Shwartz (2011)).

3.2. Analysis and Proofs

The analysis is analogous to Mahdavi et al. (2012a), and we
provide it for self-containedness. We first introduce a series
of lemmas and close the section by proving Theorem 1.

We begin by upper-bounding the variations of Lt with re-
spect to its two arguments. In particular, the following
lemma takes advantage of the fact that the partial function
λ 7→ Lt(xt, λ) is not only concave as considered in (Mah-
davi et al., 2012a), but strongly concave with parameter θt.
This observation, together with separate step sizes for x
and λ forms the basis of our improved regret bounds.

Lemma 1 (Upper bound of Lt(xt, λ)− Lt(xt, λt)). Con-
sider bt , (λ − λt)2. For Lt(x, λ) as defined in (2), and
non-negative ηt, θt, µt, the term Lt(xt, λ) − Lt(xt, λt) is
upper bounded by

1

2µt

[
bt − bt+1

]
− θt

2
bt +

µt
2

[∇λLt(xt, λt)]2.

Proof. The argument can be found in (Hazan et al., 2007).
We expand bt+1 = (λ− λt+1)2 into

=
(
λ−ΠR+(λt + µt∇λLt(xt, λt))

)2

≤
(
λ− (λt + µt∇λLt(xt, λt))

)2

= bt − 2µt(λ− λt)∇λLt(xt, λt) + µ2
t (∇λLt(xt, λt))2.

By strong concavity of Lt(xt, λ) with respect to λ,

Lt(xt, λ)− Lt(xt, λt) ≤ (λ− λt)∇λLt(xt, λt)−
θt
2
bt.

Substituting the inequality for µt(λ − λt)∇λLt(xt, λt)
completes the proof.

We omit the proof for x 7→ Lt(x, λt) that follows similar
arguments, leading to a bound on Lt(xt, λt) − Lt(x, λt).
We now turn to a lower-bound of the variations of Lt.
Lemma 2. Let x? ∈ arg minx∈X

∑T
t=1 ft(x). The term∑T

t=1 Lt(xt, λ)− Lt(x?, λt) is lower bounded by

T∑
t=1

∆ft + λ

T∑
t=1

g(xt)−
λ2

2

T∑
t=1

θt +
1

2

T∑
t=1

θtλ
2
t .

Proof. We have Lt(xt, λ)− Lt(x?, λt) equal to

ft(xt)− ft(x?) + λg(xt)− λtg(x?)− θt
2

(λ2 − λ2
t ).

We simply notice that g(x?) ≤ 0 to obtain a lower bound
−g(x?)

∑T
t=1 λt to complete the proof after summing both

sides over rounds t = 1, · · · , T .
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Lemma 3. Assume C1 and C3 hold. Let at , ‖xt − x‖2.
For any σ, θt ≥ 0, we have∑T

t=1
1

2ηt

[
at − at+1

]
− σ

2 at ≤

R2

2 δη + 1
2

∑T
t=2 at

[
1
ηt
− 1

ηt−1
− σ

]
≤ R2

2 δη +R2Uη,

and ∑T
t=1

1
2µt

[
bt − bt+1

]
− θt

2 bt ≤

λ2

2 δµ + 1
2

∑T
t=2 bt

[
1
µt
− 1

µt−1
− θt

]
≤ λ2

2 δµ,

where we have used δη , 1
η1
− σ and δµ , 1

µ1
− θ1.

Proof. Shifting indices in the sums for terms that depend
on at+1/ηt, bt+1/µt and collecting terms that depend on
at, bt, we then use a1 = ‖x1 − x‖22 = ‖x‖22 ≤ R2, at ≤
2R2 for t > 1 and b1 = (λ− λ1)2 = λ2 to conclude.

We now present the key lemma of the analysis.

Lemma 4. [Cumulative regret bound] Let x? ∈
arg minx∈X

∑T
t=1 ft(x) and assume C1, C2 and C3 hold.

Define RfT , R2

2 δη + G2Sη + D2Sµ + R2Uη , where
we have introduced Sη ,

∑T
t=1 ηt, Sµ ,

∑T
t=1 µt and

Sθ ,
∑T
t=1 θt. Then, it holds that∑T

t=1 ∆ft ≤ RfT ,
and∑T

t=1 g(xt) ≤
√

2(Sθ + δµ)(RfT + FT ).

Proof. Using the triangle inequality, we have
‖∇xLt(x, λt)‖22 ≤ 2G2(1 + λ2

t ) and
(
∇λLt(x, λt)

)2 ≤
2(D2 + θ2

tλ
2
t ). Starting from Lt(xt, λ) − Lt(x∗, λt) =

Lt(xt, λ)−Lt(xt, λt) +Lt(xt, λt)−Lt(x∗, λt), we sum
over t = 1 . . . T , and combine Lemmas 1-2 so as to upper
bound

∑T
t=1[Lt(xt, λ)− Lt(x∗, λt)] by

RfT +

T∑
t=1

λ2
t

[
ηtG

2 + µtθ
2
t

]
+
λ2

2
δµ.

Lemma 3 along with the previous equation leads to

∑T
t=1 ∆ft + λ

∑T
t=1 g(xt)− λ2

2

[
Sθ + δµ

]
≤

RfT +
∑T
t=1 λ

2
t

[
ηtG

2 + µtθ
2
t − 1

2θt

]
, RfT +MT .

Maximizing the left-hand side with respect to λ≥0, we get∑T
t=1 ∆ft +

[∑T
t=1 g(xt)

]2
+
/(2
[
Sθ + δµ

]
) ≤ RfT+MT ,

where we have used [s]2+/2α = maxv≥0{sv − αv2/2} for
α > 0. The regret bound on the loss is obtained by using

C2 and [
∑T
t=1 g(xt)]

2
+/(2[Sθ + δµ]) ≥ 0. The bound on

constraint violations is obtained as above, but by substitut-
ing the lower bound

∑
t ∆ft ≥ −FT .

In order to discuss the scaling of our regret bounds, we state
the next simple lemma without proof:

Lemma 5. Let β ∈ (0, 1). Then
∑T
t=1

1
tβ
≤ T 1−β

1−β .

With the above lemmas, we now prove Theorem 1:

Proof of Theorem 1. For the proposed choices of θt, µt and
ηt, we can verify that C1, C2 and C3 hold. Here we fo-
cus on the convex case (the strongly convex one follows
along the same lines). First, we can easily see that C1 is
true as long as θt is non-increasing. Then, we can notice
that, given the choice of µt, condition C2 is implied by the
stronger condition ηt ≤ θt

6G2 (satisfied by the choice of ηt
and θt in Table 1). This results in

Sµ =

T∑
t=1

1

θt(t+ 1)
≤

T∑
t=1

tβ

6RGt
≤ T β

6βRG
.

Sη =

T∑
t=1

ηt ≤
R

G

T 1−β

1− β
, Sθ =

T∑
t=1

6RG

tβ
≤ 6RG

1− β
T 1−β ,

along with 1/µ1 − θ1 = 6RG and 1/η1 − σ = G/R. The
term Uη can be obtained by summing the series 1/ηt −
1/ηt−1 = (G/R)(tβ − (t − 1)β) over t, which directly
simplifies by telescoping for the σ = 0 case, and is identi-
cally equal to zero for σ > 0. As a result, we obtain from
Lemma 4 for both the cost and constraint
T∑
t=1

∆ft≤RfT ,
[
RG+

D2

6βRG

]
T β+

RG

1− β
T 1−β+

RG

2

T∑
t=1

g(xt) ≤

√
2(RfT + FT )

[
6RG

1− β
T 1−β + 6RG

]
.

We obtain the desired conclusion by noticing that for any
T ≥ 1 and β ∈ (0, 1), we have T 1−β

1−β ≥ 1.

3.3. Towards No Violation of Constraints

Next, we show that our results apply to the specific case
considered in Section 3.2 of (Mahdavi et al., 2012a), where
additional assumptions on the gradient of g can translate
into the absence of constraint violations. Assume that there
exist γ ≥ 0 and r > 0 such that the variations of g are
lower bounded as

min
x∈Rd:g(x)+γ=0

‖∇g(x)‖2 ≥ r. (4)

Let us denote Xγ , {x ∈ Rd : g(x) + γ ≤ 0} ⊆ X .
Assumption (4) is better understood in light of the optimal-
ity conditions of the offline problem: λ can be shown to be
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inversely proportional to the norm of the gradient defined
in (4), hence lower bounding this norm makes it possible to
upper bound λ. In turn, the gap between the optimal value
of the original optimization problem and that of the prob-
lem over Xγ can be well-controlled as a function of (γ, r),
as proved by Theorem 7 in Mahdavi et al. (2012a)∣∣∣∑T

t=1 ft(x
?)−

∑T
t=1 ft(xγ)

∣∣∣ ≤ G
r Tγ, (5)

where x? and xγ are solutions of minx∈X
∑T
t=1 ft(x) and

minx∈Xγ
∑T
t=1 ft(x) respectively. Examples where (4)

holds include the positive semi-definite cone, as described
in Section 4 of Mahdavi et al. (2012c). For lack of space,
we state our result in a simplified form and only provide a
sketch of proof along the same lines as the proof in Sec-
tion 3.2.

Corollary 1. Assume (4) holds. Consider the convex case
(σ = 0) and some instantiations of the sequences µt, ηt and
θt for some β ∈ (0, 1), differing from Table 1 up to con-
stants. There exist c0 and c1 depending on {D,G,R, F, r}
such that setting γ , c1T

−β/2, we have for any T ≥ c0∑T
t=1 ∆ft ≤ O(max{T β , T 1−β , T 1−β/2}),

and no constraint violations
∑T
t=1 g(xt) ≤ 0.

Sketch of proof. We can apply the same analysis as before
to the function gγ(x) , g(x)+γ, replacingD byD+γ and
adapting the constants in both C2 (i.e., ηtG2+ 3

2µtθ
2
t− 1

2θt)
as well as for the instantiations of µt, ηt and θt. The regret
bound on

∑T
t=1 ∆ft is identical as earlier, with additional

additive terms 3γ2Sµ/2 and GTγ/r introduced as a result
of (5). As for

∑T
t=1 g(xt), the term [

∑T
t=1 g(xt)]

2
+ be-

comes here [
∑T
t=1 g(xt) + γT ]2+, which in turn leads to

the same regret bound as previously stated, minus the con-
tribution −γT . We cancel out the constraint violations—
scaling in O(T 1−β/2) according to Theorem 1—by choos-
ing γ= c1T

−β/2. Note that c0 is set by studying when the
extra term 3γ2Sµ/2 is upper bounded by those inRfT .

The regret bound presented in Corollary 1 is minimized for
β = 2/3, leading to a regret of O(T 2/3) with no constraint
violations. This result extends Theorem 8 and Corollary
13 from (Mahdavi et al., 2012a) in that it holds for general
convex domains X (as opposed to only polyhedral ones).

4. Experiments
We ran two sets of experiments to assess the performance
for our adaptive algorithms for OCO with long-term con-
straints and compare to the algorithms proposed by Mah-
davi et al. (2012a). First, we examine the problem of online
estimation of doubly-stochastic matrices where the convex

domain of interest X is polyhedral but whose projection
operator is difficult to compute (Helmbold and Warmuth,
2009; Fogel et al., 2013). Second, we consider the prob-
lem of sparse online binary classification based on the elas-
tic net penalty (Zou and Hastie, 2005). This is a standard
benchmark problem for large-scale online learning, where
the constraint set is defined over a non-polyhedral domain.

We shall refer to our adaptive online gradient descent for
convex ft (i.e., σ=0) as Convex A-OGD and for strongly
convex ft (i.e., σ > 0) as Strongly convex A-OGD,
which enjoy the same regret guarantees of O(T 2/3) for the
loss and constraint for β = 2/3. The method of Mahdavi
et al. (2012a, see Algorithm 1), which can handle general
convex domains X , will be referred to as Convex OGD.
The mirror prox method of Mahdavi et al. (2012a, see Al-
gorithm 2), which is only applicable to polyhedral domains,
will be referred to as Convex mirror prox. The pa-
rameters of Convex OGD and Convex mirror prox
are instantiated according to (Mahdavi et al., 2012a). The
sequence of losses {ft}Tt=1 in the experiments are gener-
ated stochastically.

4.1. Doubly-Stochastic Matrices

Doubly-stochastic (DS) matrices appear in many machine
learning and optimization problems, such as clustering
applications (Zass and Shashua, 2006) or learning per-
mutations (Helmbold and Warmuth, 2009; Fogel et al.,
2013). Consider a sequence of random permutation ma-
trices {Yt}Tt=1 in Rp×p. Since permutation matrices are
known to constitute the extreme points of the set of DS ma-
trices (Birkhoff, 1946), we try to find the closest DS matrix
X by solving the following optimization problem online:

min
X∈Rp×p

T∑
t=1

1

2
‖Yt −X‖2F (6)

subject to the (doubly-stochastic) linear constraints X1 =
1,X>1 = 1 and the element-wise inequality X ≥ 0. We
have d = p2, ft(X) = 1

2‖Yt −X‖2F and m = p2 + 4p to
describe all the linear constraints. More specifically there
are p2 non-negativity constraints, along with 4p inequal-
ities to model the 2p equality constraints. This leads to
the following instantiations of the parameters controlling
ft and g: R =

√
p, G = 2R and D = R. Note that we

can apply a) Strongly convex A-OGD (since ft is by
construction strongly convex with parameter σ = 1), and
b) Convex mirror prox since X is polyhedral. The
cumulative regret for the loss and the long-term constraint
are shown in Figures 1 and 2. They are computed over
T = 1000 iterations with d = 64, and are averaged over
10 random sequences {Yt}Tt=1. The standard deviations
are not shown as we found experimentally that they were
negligible. The offline solutions of (6) required for various
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Figure 1. Cumulative regret of the loss function for the estimation
of doubly-stochastic matrices. We display the mean computed
over 10 random sequences {Yt}Tt=1. (Best viewed in colour.)

t ∈ {1, · · · , T} to compute the regret are obtained using
CVXPY (Diamond et al., 2014).

The results shown in Figure 1 and 2 indicate
that although the cumulative regret bounds for
Strongly convex A-OGD were not demonstrated to
be tighter in our analysis than those for Convex A-OGD,
they achieve a better cumulative regret for this problem,
especially with respect to the long-term constraint. Also,
while Convex mirror prox and Convex A-OGD
should theoretically exhibit the same behavior, the results
suggest that mirror prox is not able to decrease cumulative
regret at the same rate as our proposed method. We
surmise that this is due to the fact that the guarantees
for Convex mirror prox only hold for very large
T : Theorem 12 in (Mahdavi et al., 2012a) requires
T ≥ 164(m+ 1)2, which translates here into T > 107.

4.2. Sparse Online Binary Classification

Next, we examine the application of sparse online binary
classification. Our goal is to minimize the log-loss subject
to a constrained elastic-net penalty:

min
x∈Rd:‖x‖1+ 1

2‖x‖
2
2≤ρ

T∑
t=1

log(1 + e−ytx
>ut), (7)

where {yt,ut}Tt=1 denotes a sequence of label/feature-
vector pairs and ρ > 0 is a parameter that measures the
degree of the sparsity of the solutions of (7). While a penal-
ized formulation would be applicable, constrained formula-
tions with sparsity-inducing terms are sometimes preferred
in practice as they express a concrete physical budget (e.g.,
Xu et al. (2012) follow this route in the context of learning
predictors with low-latency).

Figure 2. Cumulative regret of the long-term constraint for the
estimation of doubly-stochastic matrices. We display the mean
computed over 10 random sequences {Yt}Tt=1. The embedded
graph is a zoom of the area of interest in the original figure.

We cast the problem in our framework by setting ft(x) =

log(1 + e−ytx
>ut) with m = 1, g(x) = ‖x‖1 + 1

2‖x‖
2
2 −

ρ, R =
√

1 + 2ρ − 1, G = max{
√
d + R,maxt ‖ut‖2}

and D =
√
dR + R2/2.1 The sequences {yt,ut}Tt=1 are

generated by drawing pairs at random with replacement.

We solve the above problem using the datasets ijcnn1
and covtype, consisting respectively of 49, 990 and
581, 012 samples of dimension d = 22 and d = 54 each.2

The parameter ρ is set to obtain approximately 30% of non-
zero variables. Moreover, and in order to best display cu-
mulative regret, we compute offline solutions of (7) based
on an implementation of Defazio et al. (2014).

The results are reported in Figures 3 and 4 and represent an
average over 10 random sequences {yt,ut}Tt=1. Again, we
do not show standard deviations because they were found
to be negligible. The number of iterations T is equal to the
number of samples in each dataset.

Interestingly, we observe that the constraint is not vio-
lated on average (i.e., via a negative cumulative regret)
and the iterates xt remain feasible within the domain
‖x‖1 + 1

2‖x‖
2
2 ≤ ρ. This tendency is more pronounced

for Convex OGD since a closer inspection of the sequence
{ηt}Tt=1 shows numerical values smaller than those of our
approach Convex A-OGD (by 2 to 3 orders of magni-
tude). As a result, starting from x1 = 0, we found that
the iterates generated by Convex OGD do not approach
the boundary of the domain, hence increasing regret on

1The value for R is found by noticing that ‖x‖1 + 1
2
‖x‖22 ≥

‖x‖2+ 1
2
‖x‖22 and solving the resulting second-order polynomial

inequality.
2www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html.

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure 3. Cumulative regret of the loss function for the sparse on-
line binary classification (left: ijcnn1, right: covtype). We
show the mean computed over 10 random sequences {yt,ut}Tt=1.

Figure 4. Cumulative regret of the constraint for the sparse online
binary classification (left: ijcnn1, right: covtype). We dis-
play the mean computed over 10 random sequences {yt,ut}Tt=1.

cumulative loss. We also note that the offline solutions
of (7) always saturate the constraint. Although our anal-
ysis predicts that the cumulative regret of Convex OGD
associated to the loss (i.e., O(T 1/2)) should be smaller
than that associated to Convex A-OGD (i.e., O(T 2/3)),
Convex A-OGD achieves a lower cumulative regret. This
observation may be explained by the same argument as the
one invoked previously, namely that the larger step sizes
{ηt}Tt=1 of Convex A-OGD enables us to make faster
progress.

5. Discussion
We conclude by discussing several generalizations.

Broader families of step sizes: We have assumed that the
updates of the primal variable x are driven by a projected
subgradient method step controlled through a single step
size ηt. Following (McMahan and Streeter, 2010; Duchi
et al., 2011), we could analyze the regret guarantees of our
algorithm when there is a diagonal matrix of step sizes,
such that each coordinate of x is updated adaptively. This
has for example been proven useful in practice when some

features are less frequently activated than others.

Strong convexity: Condition C2 couples the loss and con-
straint regrets, suggesting that a logarithmic regret for the
loss would result in a non-vanishing regret for the con-
straint. We conjecture that logarithmic regrets are unlikely
to be achieved, although this conjecture depends on both
the saddle-point formulation of the problem and the use of
a projected subgradient method. This does not preclude the
possibility of achieving logarithmic regret under different
and stronger assumptions.

Can we identify a better penalty? In the light of (3), it is
tempting to ask if we can find a penalty that would lead to
lower cumulative regret guarantees. To this end, we could
for example introduce a smooth, 1-strongly-convex func-
tion φ with domain Ω. The saddle-point formulation of the
new problem is then given by

Lt(x, λ) , ft(x) + λg(x)− θtφ(λ),

where {θt}Tt=1 is, as earlier, a sequence of non-negative
numbers to be specified subsequently for any λ ∈ Ω,x ∈
B. Interestingly, it can be shown that condition C2 be-
comes a first-order nonlinear ordinary differential inequal-
ity in this setting, leading to

ηtG
2λ2 + µtθ

2
t

[
dφ

dλ

]2

− θtφ(λ) ≤ 0, for all λ ∈ Ω.

Hence, the above differential inequality suggests a family
of penalty functions we could use. In particular, we see that
φ must grow at least quadratically and stay greater than its
squared first derivative, which rules out a softmax penalty
like λ 7→ log(1 + eλ). Moreover, the maximization with
respect to λ in the last step of Lemma 4 introduces the
Moreau envelope (Lemaréchal and Sagastizábal, 1997) of
the Fenchel conjugate of φ, namely

φ∗Sθ (u) , sup
λ∈Ω

[
λu− Sθφ(λ)− δµ

λ2

2

]
.

We can then find a feasible penalty φ of which the in-
verse mapping u 7→ [φ∗Sθ ]

−1(u) would minimize the re-
gret bound. For instance, the inverse mapping scales as

√
u

when using the squared `2 norm over Ω = R+. We defer to
future work the study of this admissible family of penalties.

Which enclosing set for X? Our current analysis relies on
the idea that instead of having to perform a projection on X
in each update (which could be computationally costly and
perhaps intractable in some cases), we restrict the iterates
xt to remain within a simpler convex set B ⊇ X . While we
assumed de facto an Euclidean ball for B, we could con-
sider sets enclosing X more tightly, while preserving the
appealing computational properties. Having a principled
methodology to choose B and assessing its impact on the
regret bounds is an interesting avenue for future research.
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