
Doubly Robust Off-policy Value Evaluation for Reinforcement Learning

A. Proof of Theorem 1
Proof. For the base case t = H + 1, since V 0

DR =
V (sH+1) = 0, it is obvious that at the (H + 1)-th step
the estimator is unbiased with 0 variance, and the theorem
holds. For the inductive step, suppose the theorem holds for
step t+ 1. At time step t, we have:

Vt
[
V H+1−t

DR

]
= Et

[(
V H+1−t

DR

)2]− (Et[V (st)
])2

= Et
[(
V̂ (st) + ρt

(
rt + γV H−tDR − Q̂(st, at)

))2
− V (st)

2
]

+ Vt
[
V (st)

]
= Et

[(
ρtQ(st, at)− ρtQ̂(st, at) + V̂ (st)

+ ρt
(
rt + γV H−tDR −Q(st, at)

))2
− V (st)

2
]

+ Vt
[
V (st)

]
= Et

[(
− ρt∆(st, at) + V̂ (st) + ρt(rt −R(st, at))

+ ρtγ
(
V H−tDR − Et+1

[
V (st+1)

]))2
− V (st)

2
]

+ Vt
[
V (st)

]
(15)

= Et
[
Et
[(
− ρt∆(st, at) + V̂ (st)

)2 − V (st)
2
∣∣∣ st]]

+ Et
[
Et+1

[
ρ2t (rt −R(st, at))

2
]]

+ Vt
[
V (st)

]
+ Et

[
Et+1

[(
ρtγ
(
V H−tDR − Et+1

[
V (st+1)

]))2]]
= Et

[
Vt
[
− ρt∆(st, at) + V̂ (st)

∣∣ st]]+ Et
[
ρ2t Vt+1

[
rt
]]

+ Et
[
ρ2tγ

2 V
[
V H−tDR

∣∣ st, at]]+ Vt
[
V (st)

]
= Et

[
Vt
[
ρt∆(st, at)

∣∣ st]]+ Et
[
ρ2t Vt+1

[
rt
]]

+ Et
[
ρ2tγ

2 Vt+1

[
V H−tDR

]]
+ Vt

[
V (st)

]
.

This completes the proof. Note that from Eqn.(15) to the
next step, we have used the fact that conditioned on st
and at, rt − R(st, at) and V H−tDR − Et+1

[
V (st+1)

]
are

independent and have zero means, and all the other terms
are constants. Therefore, the square of the sum equals the
sum of squares in expectation.

B. Bias of DR-v2
Proof of Proposition 1. Let VDR-v2’ denote Eqn.(12) with
approximation P̂ = P . Since VDR-v2 is unbiased, the bias of
VDR-v2’ is then the expectation of VDR-v2’ − VDR-v2. Define

βt = Et
[
V H+1−t

DR-v2’ − V
H+1−t

DR-v2

]
.

Then, β1 is the bias we try to quantify, and is a con-
stant. In general, βt is a random variable that depends

on s1, a1, . . . , st−1, at−1. Now we have

βt = Et
[
ρtγ

(
V H−tDR-v2’ − V

H−t
DR-v2

)
− ρtγV̂ (st+1)

(
P̂ (st+1|st, at)
P (st+1|st, at)

− 1

)]
= Et

[
ρtγβt+1

]
− Et

[
ρtγV̂ (st+1)

(
P̂ (st+1|st, at)
P (st+1|st, at)

− 1

)]
.

In the second term of the last expression, the expectation is
taken over the randomness of at and st+1; we keep at as a
random variable and integrate out st+1, and get

Et
[
ρtγV̂ (st+1)

(
P̂ (st+1|st, at)
P (st+1|st, at)

− 1

)]
= Et

[
Et+1

[
ρtγV̂ (st+1)

(
P̂ (st+1|st, at)
P (st+1|st, at)

− 1

)]]
= Et

[
ρtγ

∑
s′

P (s′|st, at)V̂ (s′)

(
P̂ (s′|st, at)
P (s′|st, at)

− 1

)]
= Et

[
ρtγ

∑
s′

V̂ (s′)
(
P̂ (s′|st, at)− P (s′|st, at)

)]
.

Recall that the expectation of the importance ratio is always
1, hence

βt ≤ Et
[
ρtγ (βt+1 + εVmax)

]
= Et

[
ρtγβt+1

]
+ γεVmax.

With an abuse of notation, we reuse βt as its maximal abso-
lute magnitude over all sample paths s1, a1, . . . , st−1, at−1.
Clearly we have βH+1 = 0, and

βt ≤ γ(βt+1 + εVmax).

Hence, β1 ≤ εVmax

∑H
t=1 γ

t.

C. Cramer-Rao bound for discrete DAG
MDPs

Here, we prove a lower bound for the relaxed setting where
the MDP is a layered Directed Acyclic Graph instead of a
tree. In such MDPs, the regions of the state space reachable
in different time steps are disjoint (just as tree MDPs), but
trajectories that separate in early steps can reunion at a same
state later.

Definition 2 (Discrete DAG MDP). An MDP is a discrete
Directed Acyclic Graph (DAG) MDP if:
• The state space and the action space are finite.
• For any s ∈ S, there exists a unique t ∈ N such that,

maxπ:S→A P (st = s
∣∣ π) > 0. In other words, a state

only occurs at a particular time step.
• As a simplification, we assume γ = 1, and non-zero

rewards only occur at the end of each H-step long tra-

Doubly Robust Off-policy Value Evaluation for Reinforcement Learning

jectory. We use an additional state sH+1 to encode the
reward randomness so that reward function R(sH+1)
is deterministic and the domain can be solely parame-
terized by transition probabilities.

Theorem 3. For discrete DAG MDPs, the variance of any
unbiased estimator is lower bounded by

H+1∑
t=1

E
[P1(st−1, at−1)2

P0(st−1, at−1)2
Vt
[
V (st)

]]
,

where for trajectory τ ,
P0(τ) = µ(s1)π0(a1|s1)P (s2|s1, a1) . . . P (sH+1|sH , aH),
and P0(st, at) is its marginal probability; P1(·) is similarly
defined for π1.

Remark Compared to Theorem 2, the cumulative im-
portance ratio ρ1:t−1 is replaced by the state-action occu-
pancy ratio P1(st−1, at−1)/P0(st−1, at−1) in Theorem 3.
The two ratios are equal when each state can only be
reached by a unique sample path. In general, how-
ever, E

[
P1(st−1, at−1)2/P0(st−1, at−1)2Vt

[
V (st)

]]
≤

E
[
ρ21:t−1Vt

[
V (st)

]]
, hence DAG MDPs are easier than

tree MDPs for off-policy value evaluation.

Below we give the proof of Theorem 3, which is almost
identical to the proof of Theorem 2.

Proof of Theorem 3. We parameterize the MDP by µ(s1)
and P (st+1|st, at) for t = 1, . . . ,H . For convenience
we will treat µ(s1) as P (s1|∅), so all the parameters
can be represented as P (st+1|st, at) (for t = 0 there
is a single s0 and a). These parameters are subject
to the normalization constraints that have to be taken
into consideration in the Cramer-Rao bound, namely
∀t, st, at,

∑
st+1

P (st+1|st, at) = 1.
1 · · · 1

1 · · · 1
. . .

1 · · · 1

 θ =

1
1
...
1

 (16)

where θst,at,st+1 = P (o|st, at). The matrix on the left is
effectively the Jacobian of the constraints, which we denote
as F . We index its rows by (st, at), so F(st,at),(st,at,st+1) =
1 and other entries are 0. Let U be a matrix whose column
vectors consist an orthonormal basis for the null space of F .
From Moore Jr (2010, Eqn. (3.3) and Corollary 3.10), we
have the Constrained Cramer-Rao Bound (CCRB) being2

2In fact, existing literature on Contrained Cramer-Rao Bound
does not deal with the situation where the unconstrained param-
eters break the normalization constraints (which we are facing).
However, this can be easily tackled by changing the model slightly
to P (o|h, a) = θhao/

∑
o′ θhao′ , which resolves the issue and

gives the same result.

(the dependence on θ in all terms are omitted):

KU(U>IU)−1U>K>, (17)

where I is the Fisher Information Matrix (FIM), and K is
the Jacobian of the quantity we want to estimate; they are
computed below. We start with I , which is

I = E
[(∂ logP0(τ)

∂θ

)(
∂ logP0(τ)

∂θ

)>]
. (18)

To calculate I , we define a new notation g(τ), which is a
vector of indicator functions and g(τ)st,at,st+1

= 1 when
(st, at, st+1) appears in trajectory τ . Using this notation,
we have

∂ logP0(τ)

∂θ
= θ◦−1 ◦ g(τ), (19)

where ◦ denotes element-wise power/multiplication. Then
we can rewrite the FIM as

I = E
[
[θ−1i θ−1j]ij ◦ (g(τ)g(τ)>)

]
= [θ−1i θ−1j]ij ◦ E

[
(g(τ)g(τ)>)

]
, (20)

where [θ−1i θ−1j]ij is a matrix expressed by its (i, j)-th ele-
ment. Now we compute E

[
g(τ)g(τ)>

]
. On the diagonal,

it is P0(st, at, st+1), so the diagonal of I is P0(st,at)
P (st+1|st,at) ;

for non-diagonal entries whose row indexing and column
indexing tuples are at the same time step, the value is 0;
in other cases, suppose row is (st, at, st+1) and column is
st′ , at′ , st′+1, and without loss of generality assume t′ < t,
then the entry is P0(st′ , at′ , st′+1, st, at, st+1), with the cor-
responding entries in I being P0(st′ ,at′ ,st′+1,st,at,st+1)

P (st′+1|st′ ,at′)P (st+1|st,at) =

P0(st′ , at′)P0(st, at|st′+1).

Then, we calculate (U>IU)−1. To avoid the difficulty of
taking inverse of this non-diagonal matrix, we apply the
following trick to diagonalize I: note that for any matrix X
with matching dimensions,

U>IU = U>(F>X> + I +XF)U, (21)

because by definition U is orthogonal to F . We can design
X so that D = F>X> + I + XF is a diagonal matrix,
and D(st,at,st+1),(st,at,st+1) = I(st,at,st+1),(st,at,st+1) =
P0(st,at)

P (st+1|st,at) . This is achieved by having XF elimi-
nate all the non-diagonal entries of I in the upper trian-
gle without touching anything on the diagonal or below,
and by symmetry F>X> will deal with the lower trian-
gle. The particular X we take is X(st′ ,at′ ,st′+1),(st,at)

=
−P0(st′ , at′)P0(st, at|st′+1)I(t′ < t), and it is not hard to
verify that this construction diagonalizes I .

With the diagonalization trick, we have (U>IU)−1 =
(U>DU)−1. Since CCRB is invariant to the choice of
U , and we observe that the rows of F are orthogonal, we
choose U as follows: let n(st,at) be the number of 1’s in
F(st,at),(·), andU(st,at) be the n(st,at)×(n(st,at)−1) matrix

Doubly Robust Off-policy Value Evaluation for Reinforcement Learning

with orthonormal columns in the null space of
[
1 . . . 1

]
(n(st,at) 1’s); finally, we choose U to be a block diag-
onal matrix U = diag({U(st,at)}), where U(st,at)’s are
the diagonal blocks, and it is easy to verify that U is
column orthonormal and FU = 0. Similarly, we write
D = diag({D(st,at)}) where D(st,at) is a diagonal matrix
with (D(st,at))st+1,st+1

= P0(st, at)/P (st+1|st, at), and

U(U>IU)−1U> = U(U>DU)−1U>

= U(diag({U>(st,at)})diag({D(st,at)})diag({U(st,at)}))
−1U

= Udiag({
(
U>(st,at)D(st,at)U(st,at)

)−1})U
= diag({U(st,at)

(
U>(st,at)D(st,at)U(st,at)

)−1
U>(st,at)}).

(22)

Notice that each block in Eqn.(22) is simply 1/P0(st, at)
times the CCRB of a multinomial distribution P (·|st, at).
The CCRB of a multinomial distribution p can be eas-
ily computed by an alternative formula (Moore Jr, 2010,
Eqn. (3.12))), which gives diag(p)− pp>, so we have,

U(st,at)

(
U>(st,at)D(st,at)U(st,at)

)−1
U>(st,at)

=
diag(P (·|st, at))− P (·|st, at)P (·|st, at)>

P0(st, at)
. (23)

We then calculate K. Recall that we want to estimate

v = vπ1,H =
∑
s1

µ(s1)
∑
a1

π1(a1|s1) . . .∑
sH+1

P (sH+1|sH , aH)R(sH+1) , (24)

and its Jacobian is K = (∂v/∂θt)
>, with

K(st,at,st+1) = P1(st, at)V (st+1), where P1(τ) =
µ(s1)π1(a1) . . . P (sH+1|sH , aH) and P1(st, at) is the
marginal probability.

Finally, putting all the pieces together, we have Eqn.(17)
equal to∑

st,a

P1(st, at)
2

P0(st, at)

(∑
st+1

P (st+1|st, at)V (st+1)2

−
(∑
st+1

P (st+1|st, at)V (st+1)
)2)

=

H∑
t=0

∑
st

P0(st, at)
P1(st, at)

2

P0(st, at)2
V
[
V (st+1)

∣∣ st, a]
=

H∑
t=0

E
[P1(st, at)

2

P0(st, at)2
Vt+1

[
V (st+1)

]]
=

H+1∑
t=1

E
[P1(st−1, at−1)2

P0(st−1, at−1)2
Vt
[
V (st)

]]
.

D. Experiment Details
Here, we provide full details on the experiments that are
omitted in the main paper due to space limit.

D.1. Mountain Car

Domain Description Mountain car is a widely used
benchmark problem for RL with a 2-dimensional contin-
uous state space (position and velocity) and determinis-
tic dynamics (Singh & Sutton, 1996). The state space is
[−1.2, 0.6]× [−0.07, 0.07], and there are 3 discrete actions.
The agent receives −1 reward every time step with a dis-
count factor 0.99, and an episode terminates when the first
dimension of state reaches the right boundary. The initial
state distribution is set to uniformly random, and behavior
policy is uniformly random over the 3 actions. The typical
horizon for this problem is 400, which can be too large for
IS and its variants, therefore we accelerate the dynamics
such that given (s, a), the next state s′ is obtained by calling
the original transition function 4 times holding a fixed, and
we set the horizon to 100. A similar modification was taken
by Thomas (2015), where every 20 steps are compressed as
one step.

Model Construction The model we construct for this
domain uses a simple discretization (state aggregation): the
two state variables are multiplied by 26 and 28 respectively
and the rounded integers are treated as the abstract state. We
then estimate the model parameters from data using a tabular
approach. Unseen aggregated state-action pairs are assumed
to have reward Rmin = −1 and a self-loop transition. Both
the models that produces πtrain and that used for off-policy
evaluation are constructed in the same way.

Data sizes & other details The dataset sizes are
|Dtrain| = 2000 and |Deval| = 5000. We split Deval such
that Dtest ∈ {10, 100, 1000, 2000, 3000, 4000, 4900, 4990}.
DR-bsl uses the step-dependent constant function

Q̂(st, at) =
Rmin(1− γH−t+1)

1− γ
.

Since the estimators in the IS family typically has a
highly skewed distribution, the estimates can occasion-
ally go largely out of range, and we crop such outliers in
[Vmin, Vmax] to ensure that we can get statistically signifi-
cant experiment results within a reasonable number of simu-
lations. The same treatment is also applied to the experiment
on Sailing.

D.2. Sailing

Domain Description The sailing domain (Kocsis &
Szepesvári, 2006) is a stochastic shortest-path problem,
where the agent sails on a grid (in our experiment, a map
of size 10 × 10) with wind blowing in random directions,

Doubly Robust Off-policy Value Evaluation for Reinforcement Learning

aiming at the terminal location on the top-right corner. The
state is represented by 4 integer variables, representing ei-
ther location or direction. At each step, the agent chooses to
move in one of the 8 directions, (moving against the wind or
running off the grid is prohibited), and receives a negative re-
ward that depends on moving direction, wind direction, and
other factors, ranging fromRmin = −3−4

√
2 toRmax = 0

(absorbing). The problem is non-discounting, and we use
γ = 0.99 for easy convergence when computing πtrain.

Model Construction We apply Kernel-based Reinforce-
ment Learning (Ormoneit & Sen, 2002) and supply a
smoothing kernel in the joint space of states and actions.
The kernel we use takes the form exp(−‖ · ‖/b), where ‖ · ‖
is the `2-distance in S ×A,3 and b is the kernel bandwidth,
set to 0.25.

Data sizes & other details The data sizes are |Dtrain| =
1000 and |Deval| = 2500, and we split Deval such that
Dtest ∈ {5, 50, 500, 1000, 1500, 2000, 2450, 2495}. DR-
bsl uses the step-dependent constant function

Q̂(st, at) =
Rmin

2

1− γH−t+1

1− γ
,

for the reason that in Sail Rmin is rarely reached hence too
pessimistic as a rough estimate of the magnitude of reward
obtained per step.

D.3. KDD Cup 1998 Donation Dataset

Here are further details for experiments with the KDD do-
nation dataset:

1. The size of dataset generated from the simulator for off-
policy evaluation is equal to that of the true dataset (the
one we use to fit the simulator at the very beginning;
there are 3754 trajectories in that dataset).

2. The policy πtrain is generated by training a recurrent
neural network on the original data to fit a Q-value
function (Li et al., 2015b).

3. Since there are many possible next-states for each
state-action pair, for computational efficiency we use a
sparse-sample approach when estimating Q̂ using the
fitted model M̂ : for each (s, a), we randomly sample
several next-states from P̂ (·|s, a), and cache them as
a particle representation for the next-state distribution.
The number of particles is set to 5 which is enough to
ensure high accuracy.

3The difference of two directions is defined as the angle be-
tween them (in degrees) divided by 45◦. For computational ef-
ficiency, the kernel function is cropped to 0 whenever two state-
action pairs deviate more than 1 in any of the dimensions.

