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A. Proof of Theorem 1

‘We use a result implicit in the proof of Theorem 2 of Cortes
& Mohri (2014), for the case where H is the set of linear
hypotheses over a fixed representation ®. Cortes & Mobhri
(2014) state their result for the case of domain adaptation:
in our case, the factual distribution is the so-called “source
domain”, and the counterfactual distribution is the “target
domain”.

Theorem Al. [Cortes & Mohri (2014)] Using the notation

and assumptions of Theorem 1, for both Q = P¥ and Q =
PCF.'
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In their work, Cortes & Mohri (2014) assume the H
is a reproducing kernel Hilbert space (RKHS) for a
universal kernel, and they do not consider the role of
the representation ®. Since the RKHS hypothesis space
they use is much stronger than the linear space H;, it is
often reasonable to assume that the second term in the
bound 1 is small. We however cannot make this assump-
tion, and therefore we wish to explicitly bound the term
minge, % (Z:‘L:I |ng((I)7h) - yzF| + |:ngF(q)7h) - yzCF|)7
while using the fact that we have control over the represen-
tation .

Lemma 1. Let {(z;,t;,yf )}y, 2, € X, t; € {0,1} and
yF € Y C R We assume that X is a metric space with
metric d, and that there exist two function Yo(x) and Y1 ()
such that y¥' = ;Y1 (z;) + (1 — ¢;)Yo(z;), and in addition
we define y&F = (1 — t;)Y1(z;) + t;Yo(z;). We further

assume that the functions Yy(x) and Y1(x) are Lipschitz
continuous with constants Ky and K, respectively, such
that d(z4,xp) < ¢ = |Yi(z,) — Yi(ap)| < Kic. De-
fine j(i) € argminjc gy, g ¢;—1-1, A(x5,2:) 10 be the
nearest neighbor of x; among the group that received the
opposite treatment from unit i, for all i € {1...n}. Let
d;j = d(zi, z;)

Foranybe Y and h € H:

b=yl " < b -yl + Kie,dij

Proof. By the triangle inequality, we have that:

b=y I < 16—yl + lyi —v5 .

By the Lipschitz assumption on Yi_;, and since
d(zi, zj@;)) < dj (). we obtain that

i — v T = Yiw (50) = Yioe (2] < di oy K,

By definition y¢F = Y;_4 (z;). In addition, by def-
inition of j(i), we have tjty = 1 — t;, and therefore
ij( o =Yy, (7)), proving the equality. The inequality
is an immediate consequence of the Lipschitz property. [

We restate Theorem 1 and prove it.

Theorem 1. For a sample {(z;,t;,yf)},, = € X,
t; € {0,1} and y; € Y, recall that yI' = ;Y1 (x;) +
(1 — )Yo(z;), and in addition define y¢f = (1 —
t:)Y1(x;) + t;Yo(x;). For a given representation function
®: X = R ler P = (®(x1),t1), ..., (B(zn), ty),
PSE = (®(x1),1 —t1), ..., (P(zn),1 — t,). We assume
that X is a metric space with metric d, and that the poten-
tial outcome functions Yy(x) and Y1 (x) are Lipschitz con-
tinuous with constants Ko and K, respectively, such that
d(zq,2) < ¢ = |Yi(z,) — Yi(a)| < Kie
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Let H; C Rt be the space of linear functions, and
for ﬂ € Hi, let 'CP(ﬂ) = ]E(;c,t,y)wP [L(ﬁ(x,t),y)]
be the expected loss of 8 over distribution P. Let r =
maz (B ~pr [|[®(2), 1ll2], B mper ([[2(2), t]]2])-
For A > 0, let ¥ (®) = argmingcy, Lpr (B) + AlIBII3,
and BCF (®) similarly for PSF, ie. ¥ (®) and FCF (®)
are the ridge regression solutions for the factual and
counterfactual empirical distributions, respectively.

Let gle((I),h) = hT[(p(xi)vti} and QFF(q))h) =
RT[®(z;), 1 — t;] be the outputs of the hypothesis h € H,
over the representation ®(x;) for the factual and counter-
factual settings of t;, respectively. Finally, for each v €
{1...n}, ler j(i) € argmingeqy oy ¢,=1-¢, @), i)
be the nearest neighbor of x; among the group that received
the opposite treatment from unit i. Let d; ; = d(x;, x;).

Then for both Q = P¥ and Q = P°F we have:
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Proof. Inequality (2) is immediate by Theorem Al. In or-
der to prove inequality (3), we apply Lemma 1, setting
b= §¢'F and summing over the i. O

References

Cortes, Corinna and Mohri, Mehryar. Domain adaptation and
sample bias correction theory and algorithm for regression.
Theoretical Computer Science, 519:103-126, 2014.



