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Abstract
We introduce anytime Explore-m, a pure explo-
ration problem for multi-armed bandits (MAB)
that requires making a prediction of the top-
m arms at every time step. Anytime Explore-
m is more practical than fixed budget or fixed
confidence formulations of the top-m problem,
since many applications involve a finite, but un-
predictable, budget. However, the development
and analysis of anytime algorithms present many
challenges. We propose AT-LUCB (AnyTime
Lower and Upper Confidence Bound), the first
nontrivial algorithm that provably solves anytime
Explore-m. Our analysis shows that the sample
complexity of AT-LUCB is competitive to any-
time variants of existing algorithms. Moreover,
our empirical evaluation on AT-LUCB shows
that AT-LUCB performs as well as or better
than state-of-the-art baseline methods for any-
time Explore-m.

1. Introduction
We consider the top-m arms identification problem for
multi-armed bandits (MAB). Suppose we have n stochas-
tic arms. When an arm i is pulled, a reward is drawn i.i.d.
from a distribution νi whose support is in [0, 1].1 We define
the expected reward of arm i as µi := EX∼νiX . Without
loss of generality, we assume µ1 ≥ µ2 ≥ · · · ≥ µm >
µm+1 ≥ · · · ≥ µn. The goal is to find the set of m arms
with the highest expected rewards (µ1, . . . , µm) through ef-
ficient sampling decisions.

The top-m arms identification problem for MABs has a
long history dating back to the ’50s (Bechhofer, 1958;
Paulson, 1964). The vast majority of the recent studies fall

1This can be generalized to a sub-Gaussian distribution while
keeping the means in [0, 1].
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under either the fixed confidence or the fixed budget set-
ting. The fixed confidence setting asks an algorithm to take
a failure rate δ and recommend the top-m arms with proba-
bility at least 1− δ using as few samples as possible (Even-
dar et al., 2002; Kalyanakrishnan et al., 2012; Karnin et al.,
2013; Jamieson et al., 2014). The fixed budget setting asks
an algorithm to sample B times only and then recommend
the top-m with the highest possible confidence (Audibert
et al., 2010; Karnin et al., 2013; Bubeck et al., 2013). In
both settings, the user provides an algorithm with δ or B
based on which the algorithm adjusts the level of aggres-
siveness in its adaptive sampling strategy.

Deviating from the two settings above, we introduce a
new setting where an algorithm must recommend the top-
m arms after every time step, which we call anytime
Explore-m. Anytime Explore-m generalizes the anytime
setting of (Bubeck et al., 2009) from identifying the best
arm to the top-m arms. Specifically, an algorithm for any-
time Explore-m must perform at each time step t the fol-
lowing two tasks. First, the algorithm must choose which
arm to pull (It) based on the samples collected so far. Af-
ter receiving a reward from arm It, second, the algorithm
must choose and output a set J(t) of m arms that are be-
lieved to be the top-m. The user does not provide a de-
sired failure rate δ nor a budgetB; an algorithm must adapt
its aggressiveness of the sampling over time. Note that
anytime Explore-m asks a strictly harder question than the
fixed budget setting in that an anytime algorithm can per-
form under the fixed budget setting but not vice versa.

Anytime Explore-m is more challenging than the fixed con-
fidence and budget settings, but it is a better fit for many
practical problems. For example, The New Yorker cartoon
caption contest2 uses crowdsourcing to collect ratings for
the hundreds or thousands of captions submitted for each
week’s cartoon. The ratings are used to select the top-
m captions (e.g., m = 50) to be advanced to the final
round of in-depth evaluation. The crowdsourcing system is
based on NEXT (Jamieson et al., 2015), and it adaptively
selects captions for ratings using a fixed-confidence algo-

2http://contest.newyorker.com

http://contest.newyorker.com


Anytime Exploration for Multi-armed Bandits using Confidence Information

rithm (Jamieson et al., 2014) in order to home-in on the top
captions as quickly as possible. In this application, how-
ever, the total number of ratings that will be collected is
both limited and unknown ahead of time (specifically, the
crowdsourcing is carried out over a fixed period of time,
but the number of responses collected in that time is un-
predictable). Since the number of ratings is limited, fixed-
confidence algorithms are not ideal, and since the number
of ratings is unknown, fixed-budget algorithms are not ap-
propriate. The New Yorker crowdsourcing task is precisely
the anytime Explore-m problem.

Let J? := {1, 2, . . . ,m}, the true top-m set. We are inter-
ested in bounding the misidentification probability

P(J(t) 6= J?)

for every t ≥ 1 and we would like the bound to decay
with t. (Bubeck et al., 2009) introduced anytime Explore-
1 and analyzed the expected simple regret E[µ1 − µJ(t)]
instead of the misidentification probability. For m = 1, the
two quantities are closely related, and the misidentification
probability can be easily derived from the analyses therein;
see our supplementary material.

There exists a trivial way to construct an anytime algorithm
with a fixed-budget algorithm such as Successive Accepts
and Rejects (SAR) (Bubeck et al., 2013); apply the so-
called “doubling trick” on the budget. That is, for stage
s = 1, 2, . . ., run SAR with budget 2s−1n while recom-
mending at each time step the empirical top-m arms from
the end of the previous stage rather than from the current
time step. One can easily show that this trick yields an
anytime algorithm with essentially the same performance
guarantees at time t = B as standard SAR with budget
B; see our supplementary material. However, this trick is
a rather trivial extension and does not exploit confidence
bound information, which we argue can be quite helpful.
Fixed-confidence algorithms also exist in top-m identifi-
cation, but we are not aware of confidence-based anytime
algorithms.3

We propose a new algorithm AT-LUCB that solves any-
time Explore-m. AT-LUCB is a variant of the LUCB al-
gorithm (Kalyanakrishnan et al., 2012) that adapts the fail-
ure rate parameter δ over time in a data-dependent manner.
Put another way, we repeatedly run LUCB while geometri-
cally reducing δ after each run. The analysis is not as triv-
ial as doubling the budget of the fixed-budget algorithms
since the length of each LUCB run is stochastic. We elab-
orate why the analysis is not trivial in Section 2 as well
as present and analyze AT-LUCB. Furthermore, our exper-

3UCB-E (Audibert et al., 2010) and KL-LUCB-E (Kaufmann
& Kalyanakrishnan, 2013) that works for the fixed budget setting
use the confidence bounds but requires the problem hardness pa-
rameter as an input, which is unrealistic. UCB (Bubeck et al.,
2009) is for m = 1 only.

Algorithm Sample complexity

Uniform O

(
n
(

∆
〈m〉
m

)−2

ln
(
n
δ

))
Doubling

SAR O
(
H
〈m〉
2 ln(n) ln

(
n
δ

))
AT-LUCB O

(
H〈m〉max

{
ln

(
H〈m〉

δ

)
,

ln2( 1
δ )

ln(H〈m〉)

})
Table 1. Comparison of anytime Explore-m algorithms

iments in Section 3 show that AT-LUCB performs as well
as or better than algorithms based on the budget doubling
trick.

Define the gap parameters ∆
〈m〉
i := µi − µm+1,∀i ≤ m

and ∆
〈m〉
i := µm − µi,∀i ≥ m + 1. Let σ be a permu-

tation that sorts the arms in increasing order of the gaps:
∆
〈m〉
σ(1) = ∆

〈m〉
σ(2) ≤ ∆

〈m〉
σ(3) ≤ . . . ≤ ∆

〈m〉
σ(n). We define the

problem hardness parameters H〈m〉 :=
∑n
i=1(∆

〈m〉
i )−2

andH〈m〉2 := maxi∈{1,...,n} i
(

∆
〈m〉
σ(i)

)−2

. H〈m〉 andH〈m〉2

are closely related (explained below). Sample complexity is
the smallest number T of samples required to achieve the
target level δ of misidentification probability: P(J(T ) 6=
J?) ≤ δ. For comparing algorithms, it is more straight-
forward to discuss the sample complexity rather than the
misidentification probability. Table 1 compares the sample
complexities of the various anytime algorithms.

Uniform is a trivial algorithm that samples the least pulled
arm at each time step. The bounds in Table 1 show that
AT-LUCB is better than Uniform since n(∆

〈m〉
m )−2 =

nmaxi((∆
〈m〉
i )−2) is much larger than H〈m〉 in general.

We claim that the sample complexity of AT-LUCB is bet-
ter than or equal to that of doubling SAR. In Section 2,
we show that for even small problems like n = 10 the
first term in the max of AT-LUCB’s complexity domi-
nates the second. Thus, the sample complexity of AT-
LUCB is practically O(H〈m〉 ln(H〈m〉/δ)). To illustrate
the difference between the complexities of AT-LUCB and
Doubling SAR, suppose, for example, that the gaps fol-
low ∆

〈m〉
σ(i) ∝ (i/n)β ,∀i ≥ 2 for some β > 0. If

β < 1/2, then H〈m〉 = O(n). If β = 1/2, then
H〈m〉 = O(n lnn). If β > 1/2, then H〈m〉 = O(n2β).
In all these cases, ln(H〈m〉) = O(ln(n)), which is bet-
ter than O(ln2(n)) that appear in doubling SAR. One can
also show that H〈m〉/ ln(2n) ≤ H

〈m〉
2 ≤ H〈m〉. If

H
〈m〉
2 ≈ H〈m〉/ ln(2n), then the sample complexities of

AT-LUCB and SAR are of the same order. However, if
H
〈m〉
2 ≈ H〈m〉, then AT-LUCB is ln(n) factor better.

For the special case ofm = 1, we mention a few related al-
gorithms. The UCB algorithm of (Bubeck et al., 2009) with
exploration parameter α ← 2 has the sample complexity
O
(

max
{
n(∆

〈1〉
1 )−2 ln(n(∆

〈1〉
1 )−2), n

3
2 (1/δ)

1
2 , n2

})
.

This is suboptimal due to the polynomial dependence on
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1/δ (rather than logarithmic) and the term n(∆
〈1〉
1 )−2

rather than H〈m〉. Also, one can apply the same
doubling trick to Successive Halving (SH) (Karnin
et al., 2013). Doubling SH has the sample complexity
O
(
H
〈1〉
2 ln(n) ln

(
lnn
δ

) )
, which is slightly better than

doubling SAR with m = 1. Under the polynomial decay
model for the gaps considered above, the sample complex-
ity of AT-LUCB with m = 1 can be slightly inferior to
doubling SH (by a factor of at most ln(n)/ ln ln(n)) or can
be ln(ln(n)) factor better, depending on H〈m〉2 . The details
on deriving the sample complexities of Uniform, UCB,
and doubling SH are found in our supplementary material.

2. AT-LUCB Algorithm
We propose AT-LUCB and prove its anytime guarantee.
AT-LUCB uses the LUCB algorithm (Kalyanakrishnan
et al., 2012) as a subroutine. We first review LUCB. LUCB
is a fixed-confidence algorithm that, given a failure rate δ,
performs adaptive sampling in order to identify the top-m
arms with probability at least 1−δ. LUCB uses a deviation
function

β(u, t, δ) :=

√
1

2u
ln

(
k1nt4

δ

)
, where k1 =

5

4
.

Alternatively, one can use a tighter bound described
in (Kaufmann & Kalyanakrishnan, 2013) for a better per-
formance. We define β(0, t, δ) := ∞ for convenience. We
also define the following.

Key Quantities
µ̂ta and uta, the empirical mean and number of samples

of arm a, respectively, at the end of time t− 1

Lta(δ) := µ̂ta − β(uta, t, δ), lower confidence bound

U ta(δ) := µ̂ta + β(uta, t, δ), upper confidence bound

Hight, empirical top-m arms at the end of time t− 1

ht∗(δ) := arg min
a∈Hight L

t
a(δ)

`t∗(δ) := arg max
a6∈Hight U

t
a(δ)

At each time step t, the algorithm pulls both ht∗(δ) and
`t∗(δ). This means that the total number of samples are
twice the number of time steps proceeded. Define the
terminating condition

Termt(δ, ε) := {U t`t∗(δ)(δ)− L
t
ht∗(δ)

(δ) < ε}, (1)

where ε ≥ 0. Let J?ε := {a ∈ Arms | µa ≥ µm−ε}. When
Termt(δ, ε) is satisfied, LUCB terminates and outputs the
empirical top-m arms whose means are guaranteed to be
at least µm − ε with probability at least 1 − δ: P(J(t) 6⊆
J?ε | Termt(δ, ε)) ≤ δ. We refer to (Kalyanakrishnan et al.,
2012) for details on LUCB.

We focus on the case ε = 0. Then, J? = J?0 and so

Algorithm 1 AT-LUCB
1: Input: n arms, m: the target number of top arms, δ1 ≤

[1/200, n], α ∈ [1/50, 1), ε ≥ 0
2: Output: m arms.
3: t← 1, S(0)← 1, δs ← δ1α

s−1,∀s ≥ 1
4: while True do
5: if Termt(δS(t−1), ε) then
6: S(t)← max{s′ ≥ S(t−1)+1 : ¬Termt(δs′ , ε)}
7: J(t)← {the empirical top-m arms}
8: else
9: S(t)← S(t− 1)

10: J(t) ← J(t − 1) (or the empirical top-m arms if
S(t) = 1)

11: end if
12: Pull ht∗(δS(t)) and `t∗(δS(t))
13: Recommend J(t).
14: t← t+ 1
15: end while

P(J(t) 6⊆ J?0 ) = P(J(t) 6= J?). However, we carry the
symbol ε for generality.

The main idea of AT-LUCB is to repeatedly run LUCB
while geometrically reducing the failure rate parameter δ
after each run. Let

δs := δ1α
s−1, (2)

where s ≥ 1 is the stage index, δ1 ∈ [1/200, n] is the ini-
tial failure rate and α ∈ [1/50, 1) is the discount factor.
For stage s = 1, 2, . . ., we run LUCB with failure rate δs
until satisfying the stopping criterion Termt(δs, ε). Note
that the length of the stage is not deterministic but stochas-
tic. In any stage, empirical means are computed based the
samples collected so far including all the previous stages.
Recall that an anytime Explore-m algorithm must predict
the top-m arms at every time t. Let S(t) be the stage to
which time step t belongs. At every time step t, AT-LUCB
recommends the empirical top-m arms computed at the end
of the previous stage S(t)−1. If S(t) = 1, then AT-LUCB
recommends the current empirical top-m arms. We present
the pseudocode of AT-LUCB in Algorithm 1.

A simple, but naive, bound on P(J(t) 6= J?) could be ob-
tained from Corollary 7 in (Kalyanakrishnan et al., 2012),
as follows. That corollary shows that when t is sufficiently
large, the probability of LUCB not terminating after t time
steps is upperbounded by 4δ/t2. Consider

P(J(t) 6= J?) =
∑
s≥1

P(J(t) 6= J? | S(t) = s)P(S(t) = s),

and note that the bound above only guarantees that
P (S(t) ≤ 1) ≤ 4δ1/t

2. Clearly, this is insufficient, since
the bound only decays polynomially in t, rather than expo-
nentially as in doubling SAR.
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Main results Let x ∨ y := max{x, y}. We define ε-

tolerant problem hardnessHε/2 :=
∑n
a=1

(
∆
〈m〉
a ∨ ε

2

)−2

,

which is equivalent to H〈m〉 when ε = 0. Define

γ∗s := max

3

4
, 1−

ln
(

12k1nH
ε/2

δ1

)
ln
(

12k1nHε/2

δs

)
 and (3)

T ∗s :=

⌈
24Hε/2

1− γ∗s
ln

(
12k1

1− γ∗s
nHε/2

δs

)⌉
. (4)

Here is the intuition for our analysis of AT-LUCB. Let
T 0
s := d146Hε/2 ln(Hε/2/δs)e. We know from the theory

of the standard LUCB with parameter δs that with proba-
bility at least 1 − δs it will terminate within T 0

s time steps
and be correct with the same probability. With this in mind,
after T 0

s time steps we wish to show that AT-LUCB has fin-
ished the stage s with probability at least 1− δs. That is, at
that time step, AT-LUCB is performing about as well as the
δs-confidence LUCB algorithm. Showing that all earlier
stages (≤ s) of AT-LUCB have terminated with probability
at least 1− δs is quite delicate and is the main contribution
of our analysis. In doing so, we replace T 0

s with T ∗s , which
is slightly larger than T 0

s due to a technical reason.

Theorem 1 states that T ∗s is a sufficient number of time
steps that guarantees the misidentification probability to be
under 2δs. Define [a..b] := {a, a+ 1, . . . , b}.
Theorem 1. In AT-LUCB, ∀s ≥ 1,∀t ∈ [T ∗s ..(T

∗
s+1− 1)],

P(J(t) 6⊆ J?ε ) ≤ 2δs .

Proof. We present the sketch of the proof here; refer to
Section 4 for detail. Let t ∈ [T ∗s ..(T

∗
s+1 − 1)] for some

s ≥ 1. Note that
P(J(t) 6⊆ J?ε )

= P(S(t) ≥ s+ 1)P(J(t) 6⊆ J?ε | S(t) ≥ s+ 1)+

P(S(t) ≤ s)P(J(t) 6⊆ J?ε | S(t) ≤ s) .
≤ 1 · P(J(t) 6⊆ J?ε | S(t) ≥ s+ 1) + P(S(t) ≤ s) · 1.

We claim that P(J(t) 6⊆ J?ε | S(t) ≥ s+ 1) ≤ δs. Suppose
S(t) = s + 1 for simplicity. When the previous stage s
ended (say at time t′), the output J(t′) (the same as J(t))
is not the true top-m arms with probability at most δs due
to the stage-terminating condition Termt(δs, ε).

Then, it remains to show that ∀s ≥ 1,
t ∈ [T ∗s ..(T

∗
s+1 − 1)] =⇒ P(S(t) ≤ s) ≤ δs . (5)

One can show (5) for s = 1 using Lemma 5 of (Kalyanakr-
ishnan et al., 2012). However, proving (5) for s ≥ 2 is
nontrivial. Let us consider s = 2 first. Lemma 5 therein
introduces a “bad” event with the parameter δ (fixed) and
bounds its probability. We replace the δ by δS(t) which is
now a random variable and show (5) for s = 2 where we
need the fact that (5) is true with s = 1. We generalize this
idea and apply induction to prove (5) for every s ≥ 1.

Note that Theorem 1 bounds the misidentification proba-
bility by a piecewise constant function. To make it easier
to comprehend, Corollary 1 finds a strictly decreasing (in
t) upperbound of the piecewise constant function.
Corollary 1. In AT-LUCB, for all t ≥ T ∗1 ,

P(J(t) 6⊆ J?ε ) ≤ max

{
96k1nH

ε/2

α
exp

(
− t− 1

96Hε/2

)
,

24k1nH
ε/2

α
exp

(
−
√

(t− 1) ln(12k1nHε/2/δ1)

36Hε/2

)}
.

(6)

Corollary 1 shows that the misidentification probability
bound behaves like exp(−t) for smaller t and exp(−

√
t)

for larger t. We claim that such a transition of the bound
happens only after the bound becomes too small to care. To
see this, verify that t ≤ 1+256Hε/2 ln(12k1nH

ε/2/δ1) =:
t′ implies that the max in (6) is achieved with the first ele-

ment. When t = t′, the maximum is 8δ
8/3
1

α(12k1nHε/2)5/3
. Even

for a small problem like n = 10, the maximum is extremely
small. For example, plugging in Hε/2 ← n, α← 1/2, and
δ1 ← n implies that the bound is less than 10−10. In other
words, the second element of the max in (6) dominates only
after the bound becomes smaller than 10−10.

Assuming δ1 and α are independent of n, one can obtain
the sample complexity of AT-LUCB as follows: equate the
second element in the max operator in (6) to a target fail-
ure rate δ and solve it for t. Using n ≤ Hε/2, this re-
sults in O

(
Hε/2 max

{
log
(
Hε/2

δ

)
,

log2( 1
δ )

log(Hε/2)

})
. Apply-

ing the same trick on the first element of the max results
in O

(
Hε/2 log

(
Hε/2/δ

))
. We claim that the sample com-

plexity of AT-LUCB is practically
O
(
Hε/2 log

(
Hε/2/δ

))
since the first element of the max operator in (6) dominates
virtually everywhere as explained above.

Note the condition t ≥ T ∗1 of Corollary 1 is not a disadvan-
tage when compared to the guarantees of other algorithms
such as doubling SAR since the probability bounds are all
vacuous (> 1) until reaching a reasonably large t.

3. Experiments
We demonstrate the empirical performance of AT-LUCB
by comparing it to the state-of-the-art baseline methods.
All the following methods except DSAR-Naive recom-
mends at each time step the empirical top-m arms based
on all the samples collected so far.
• Uniform: we sample the least pulled arm at each time

step.

• DSAR: we apply the doubling trick to SAR (Bubeck
et al., 2013); for stage s = 1, 2, . . ., run SAR with
budget 2s−1n.
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Figure 1. Anytime Explore-m results

• DSAR-Naive: a variant of DSAR where we recom-
mend the empirical top-m from the end of the previ-
ous stage (motivation explained later).

• AT-LUCB: we run AT-LUCB with δ1 = 1/2, α =
.99, and ε = 0.

• UCB (Bubeck et al., 2009) (m = 1 only): we set the
exploration parameter α of UCB as 2.

• DSH (m = 1 only): we apply the doubling trick to
SH (Karnin et al., 2013).

We omit UCB that recommends the most played
arm (Bubeck et al., 2009) in experiments since it was al-
ways outperformed by UCB that recommends the empiri-
cal best arm.

3.1. Toy MAB Instance

We consider toy MAB instances with n = 1000 where each
arm is a Gaussian distribution with variance 1/4. Although
the rewards are not necessarily in [0,1], the theoretical re-
sults of all the methods hold true. We consider two MAB
instances: Linear and Polynomial. Linear increases its gap
linearly: µi = .9

(
n−i
n−1

)
,∀i. Polynomial increases its gaps

polynomially: µ1 = .9 and µi = .9(1−
√
i/n),∀i ≥ 2.

We run each method 200 times with m ∈ {10, 50}. The
misidentification probability P(J(t) 6= J?) on which al-
gorithms are analyzed does not lead to a meaningful com-
parison since all are equally bad — it takes a long time to
exactly find the top-m. Instead, we compare the smallest
mean mini∈J(t) µi and the sum of the means

∑
i∈J(t) µi

on Linear and Polynomial; see Figure 1. AT-LUCB out-
performs both Uniform and DSAR overall. We observe
a periodic performance fluctuation of DSAR in every ex-
periment. Such a behavior stems from their elimination-
based approach. For example, consider running DSAR
with m = 1 and n = 1000 for ease of exposition. The first
stage pulls each arm once. In the second stage (2000 bud-

get), about 800 arms are pulled only once then eliminated.
Suppose that at the end of the second stage the empirical
best arm is truly the best one. At this point, the best arm is
pulled about 73 times whereas 857 arms are pulled twice.
In the third stage, the empirical means of those twice-pulled
arms vary a lot when pulled, so we are likely to have one
of them as the empirical best. At the end of the third stage,
however, DSAR is likely to have the true best arm as the
empirical best arm again since it keeps pulling the empiri-
cal best arm. In words, recommending the empirical top-m
in the middle of a stage could be harmful. DSAR-Naive is
a quick fix that prevents the fluctuation but is often worse
than DSAR. While we found no easy fix4, such a behav-
ior is not found in methods based on confidence bound like
AT-LUCB and UCB since they do not eliminate arms; the
risk of less pulled arms being the empirical best is taken
care of gradually. Note that in Polynomial DSAR performs
slightly better than AT-LUCB in the end, but its unstable
behavior in earlier stages makes it less attractive.

Anytime Explore-1 We run each method 200 times with
m = 1. We estimate the misidentification probability
P(J(t) 6= J?) and compute the mean of the recommended
arm µJ(t). We introduce a MAB instance called Sparse
that has one and only one outstanding arm; µ1 = .5 and
µi = 0,∀i ≥ 2. The result is summarized in Figure 2.
We omit DSAR-Naive for brevity. We make two observa-
tions. First, AT-LUCB performs better than all the other
baselines in Sparse and Linear. We also observe the per-
formance fluctuation from DSH just like DSAR due to its
elimination-based approach. Second, AT-LUCB is out-
performed by DSAR and DSH in Polynomial. The su-
periority of DSAR and DSH in Polynomial is attributed
to the fact that their performance depends on H〈1〉2 rather
than H〈1〉. Recall that the sample complexity of DSAR

4We tried recommending the most pulled arm while breaking
ties with empirical mean, but it worsened the overall performance.
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Figure 2. Anytime Explore-1 results

is O(H
〈m〉
2 ln(n) ln(n/δ)) and that H〈m〉2 ≤ H〈m〉 ≤

H
〈m〉
2 ln(2n). Although H

〈m〉
2 is close to H〈m〉 in gen-

eral, H〈m〉2 can be as small as H〈m〉 log(2n). Indeed,
H〈1〉/H

〈1〉
2 is 1 for Sparse and 1.32 for Linear, but 6.99

for Polynomial. The same argument applies to DSH, too.
Note that for m ∈ {10, 50}, H〈m〉/H〈m〉2 of Polynomial
drops below 1.6, which explains why we did not observe
the superiority of DSAR in the previous experiments.

3.2. Application: Cartoon Caption Contest

The New Yorker cartoon caption contest5 gives readers a
chance to take their best shot at writing the funniest cap-
tion for a given cartoon. After receiving a large set of cap-
tion entries, the staffs have to sort through the entries to
find the funniest one, which is a monumental task. The
New Yorker recently started using a crowdsourcing system
NEXT (Jamieson et al., 2015) to rate the degree of fun-
niness of each caption entry with “not funny”, “somewhat
funny”, or “funny”. Each volunteers rates at most 25 cap-
tions. After one day, the staff selects the top-50 captions
based on the average rating, and then performs a qualita-
tive evaluation to choose the best one, which drastically
saves the staffs’ time and effort. A good crowdsourcing
system should adaptively choose captions for rating so as
to identify top-50 more quickly and accurately. The nature
of the application is that the sampling budget (number of

5http://contest.newyorker.com/
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Figure 3. Results on cartoon caption contest data

volunteers and the number of ratings from each) is limited
and unknown. Anytime Explore-m is the right fit rather
than the fixed budget setting that requires known budget
or the fixed confidence setting that assumes one can obtain
as many samples as necessary for the desired confidence.
Presently, their crowdsourcing uses a fixed-confidence al-
gorithm, such as lil’UCB (Jamieson et al., 2014), to choose
which caption to rate next. We expect that AT-LUCB will
be a better alternative.

We use the New Yorker dataset.6 The data consists of
n = 496 captions with ∼100K ratings. There were ∼4.5K
volunteers where each rated∼22 captions on average. Each
caption received at least 100 ratings. We map “not funny”
to 0, “somewhat funny” to 1/2, and “funny” to 1. We then
create a MAB instance where each caption’s reward distri-
bution is a multinomial over {0, 1/2, 1} that is estimated
by the MLE. We run each method 200 times on the synthe-
sized MAB instance withm = 50. Figure 3 shows the any-
time performance w.r.t. the smallest mean mini∈J(t) µi and
the sum of the means

∑
i∈J(t) µi. In terms of the smallest

mean, AT-LUCB outperforms DSAR whereas in terms of
the sum of the means AT-LUCB and DSAR are on par. In
both cases, however, DSAR suffers from the performance
oscillation under insufficient sample size. Again, there is
no easy fix for this issue. We also run lil’ UCB despite the
mismatch in the setting (top-1, fixed-confidence) since it
is currently being used by the system. lil’ UCB performs
worse than both AT-LUCB and DSAR, and even shows a
similar performance to Uniform in the end.

4. Proof of Theorem 1
It suffices to prove (5). We introduce our notations. Let
Arms := [1..n] be the set of n arms. Define c =
(µm + µm+1)/2, Abovet(δ) := {a ∈ Arms : Lta(δ) >
c}, Belowt(δ) := {a ∈ Arms : U ta(δ) < c}, and
Middlet(δ) := Arms \ (Abovet(δ) ∪ Belowt(δ)). We de-
fine event

Crossta(δ) :=

{
a ∈ Belowt(δ) if a ∈ [1..m]

a ∈ Abovet(δ) if a ∈ [m+ 1..n]
,

which means that the arm a is “disguising” to be a member
of the opposite side, and

6Dataset number 499 from https://github.com/
nextml/NEXT-data/.

http://contest.newyorker.com/
https://github.com/nextml/NEXT-data/
https://github.com/nextml/NEXT-data/
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Needyta(δ) := (a ∈ Middlet(δ)) ∧
(
β(uta, t, δ) >

ε

2

)
,

which means the arm a needs to be pulled.

The following lemma states that if the event Crossta(δS(t))
does not happen for any arm a, then at least one of the two
arms chosen by AT-LUCB is in the middle and needs to be
pulled. We present the proof in our supplementary material.

Lemma 1. In AT-LUCB,
∩a∈Arms ¬Crossta(δS(t)) =⇒

Needytht∗(δS(t))
(δS(t)) ∨ Needyt`t∗(δS(t))

(δS(t))

Let k1 = 5/4. Define

u∗(a, t, δ) :=

⌈
1

2
(
∆a ∨ ε

2

)2 ln

(
k1nt

4

δ

)⌉
,

a sufficiently large number of samples of arm a such that
β(u∗(a, t, δ), t, δ) is no greater than (∆a ∨ ε

2 ). The follow-
ing lemma consists of three parts. Part (i) and (ii) state that
the undesirable events are less likely to happen as t gets
larger, which extends Lemma 3 and 4 of (Kalyanakrishnan
et al., 2012) from the fixed δ to the random variable δS(t).
Then, part (iii) states that AT-LUCB finishes stage s with
sufficiently large probability if t ≥ T ∗s : P(S(t) ≤ s) ≤
δs

104αδ1
. This implies (5) using α ≥ 1/50 and δ1 ≥ 1/200,

which concludes the proof of Theorem 1.

Lemma 2. Let T ∗0 := 1. Under AT-LUCB1,
(i) (No crossing arms) ∀s ≥ 1,∀t ∈ [T ∗s−1..(T

∗
s − 1)],

P(∪a∈Arms Crossta(δS(t))) ≤
c3δs
k1t3

,where c3 =
4

3
. (7)

(ii) (No sticky arms) ∀s ≥ 1,∀t ∈ [T ∗s−1..(T
∗
s − 1)],

P(∪a∈Arms {u
t
a > 4u∗(a, t, δS(t))} ∧ Needyta(δS(t)))

≤ c3H
ε/2δs

k1nt4
,where c3 =

4

3
. (8)

(iii) For all stages s ≥ 2 and for every time t ∈
[T ∗s−1..(T

∗
s − 1)], the probability that AT-LUCB does not

enter the stage s until time step t is at most δs−1:

P(S(t) ≤ s− 1) ≤ δs−1

104αδ1
. (9)

Proof. The proof of (i), (ii), and (iii) are interdependent.
(i) and (ii) for s = 1 are implied by Lemma 3 and 4
of (Kalyanakrishnan et al., 2012). By induction, it suf-
fices to assume that (i) and (ii) are true for stage s ∈ [1..d]
and prove (iii) for s = d + 1 (step 1) and (i) and (ii) for
s = d + 1 (step 2). Now, assume (i) and (ii) are true for
stage s ∈ [1..d] with d ≥ 1.

Step 1: prove (iii) for s = d+ 1.
The proof of the step 1 extends the proof of Lemma 5
in (Kalyanakrishnan et al., 2012) to the case where the fail-
ure rate δ used by the algorithm is a random variable δS(t).

Let t ∈ [T ∗d ..(T
∗
d+1−1)]. Let t = dγ∗dtewhere γ∗d is defined

in (3). Define two events E1(τ) and E2(τ):

E1(τ) = ∪a∈Arms Crossτa(δS(τ))

E2(τ) = ∪a∈Arms
{
uτa > 4u∗(a, τ, δS(τ))

}
∧

Needyτa(δS(τ))

Step 1-1: show that if∩t−1
τ=t{¬E1(τ)∧¬E2(τ)} then AT-

LUCB must have finished stage d at time t (S(t) ≥ d+ 1).

Suppose that the algorithm has not entered stage d + 1 af-
ter sampling t − 1 times (S(t) ≤ d) since if it has, then
there is nothing left to prove. Consider the case where
there were no cross or sticky arms at time t, . . . , (t − 1):
∩t−1
τ=t

(¬E1(τ) ∧ ¬E2(τ)). Let #steps be the number
of additional number of time steps (twice the number of
samples) before entering stage d + 1. Let A∗(τ, δ) :=
{hτ∗(δ), `τ∗(δ)}. Then, by the assumption ∩t−1

τ=t
¬E1(δS(τ)),

#steps

=

t−1∑
τ=t

1
{

(S(τ) ≤ d) ∧ (∩a∈Arms¬Crossτa(δS(τ)))
}

(a)

≤
t−1∑
τ=t

1
{

(S(τ) ≤ d)∧(
Needyτhτ∗(δS(τ))

(δS(τ)) ∨ Needyτ`τ∗(δS(τ))
(δS(τ))

)}
≤

t−1∑
τ=t

∑
a∈Arms

1
{

(S(τ) ≤ d) ∧
(
a ∈ A∗(τ, δS(τ))

)
∧

Needyτa(δS(τ))
}

(b)

≤
t−1∑
τ=t

∑
a∈Arms

1
{

(S(τ) ≤ d) ∧
(
a ∈ A∗(τ, δS(τ))

)
∧

(uτa ≤ 4u∗(a, τ, δS(τ)))
}

≤
t−1∑
τ=t

∑
a∈Arms

1
{

(S(τ) ≤ d) ∧
(
a ∈ A∗(τ, δS(τ))

)
∧

(uτa ≤ 4u∗(a, t, δd))
}

≤
t−1∑
τ=t

∑
a∈Arms

1
{
uτa ≤ 4u∗(a, t, δd)

}
≤

∑
a∈Arms

4u∗(a, t, δd),

where (a) is due to Lemma 1 and (b) is due to
∩t−1
τ=t¬E2(τ). Then, t − 1 + #steps ≤ dγ∗dte − 1 +∑
a 4u∗(a, t, δd) < t, where the last inequality is by

Lemma 4 in our supplementary material. This concludes
step 1-1.

Step 1-2: show P
(
∪t−1
τ=tE1(τ) ∨ E2(τ)

)
≤ δd

104αδ1
.
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Define x∗ := log1/α
12k1nH

ε/2√e
δ1

. We prove the claim in
two cases: d ≤ dx∗e and d ≥ dx∗e + 1.

Case (a): d ≤ dx∗e
Using the union bound and t ≥ γ∗dt,
P
(
∪t−1
τ=tE1(τ) ∨ E2(τ)

)
≤

t−1∑
τ=t

(
c3δ1
k1τ3

+
c3H

ε/2δ1
k1nτ4

)
, by (7) and (8) with s = 1

≤ (1− γ∗d)t

(
c3δ1

k1t
3 +

c3H
ε/2δ1

k1nt
4

)
≤ (1− γ∗d)

c3
k1(γ∗d)3t2

(
1 +

Hε/2

nγ∗dt

)
δ1
δd
δd .

Case (b): d ≥ dx∗e+ 1
Lemma 5 in our supplementary material shows that
T ∗d−dx∗e ≤ dγ∗dT ∗d e, which leads to t = dγ∗dte ≥
dγ∗dT ∗d e ≥ T ∗d−dx∗e ≥ T ∗d−dx∗e−1. Then, (7) and (8) with
s = d− dx∗e imply that

P
(
∪t−1
τ=tE1(τ) ∨ E2(τ)

)
≤

t−1∑
τ=t

(
c3δd−dx∗e

k1τ3
+
c3H

ε/2δd−dx∗e

k1nτ4

)

≤ (1− γ∗d)
c3

k1(γ∗d)3t2

(
1 +

Hε/2

nγ∗dt

)
δd−dx∗e

δd
δd .

Lemma 6 in our supplementary material shows that both δ1
δd

and δd−dx∗e
δd

above are no greater than 12k1nH
ε/2√e

αδ1
. This

implies

P
(
∪t−1
τ=tE1(τ) ∨ E2(τ)

)
≤ (1− γ∗d)

c3
k1(γ∗d)3t2

(
1 +

Hε/2

nγ∗dt

)
12k1nH

ε/2
√
e

αδ1
δd

≤ 16

27

c3
t2

(
1 +

Hε/2

nγ∗dt

)
12nHε/2

√
e

αδ1
δd , since γ∗d ≥ 3/4

≤ 16

27
c3

(
1 +

Hε/2

nγ∗dT
∗
d

)
12nHε/2

√
e

(T ∗d )2αδ1
δd .

Note that, since γ∗d ≥ 3/4, δd ≤ δ1 ≤ n and k1 = 5/4,

T ∗d ≥
24Hε/2

1/4
ln

(
12k1nH

ε/2

(1/4)δd

)
≥ 96Hε/2 ln(60Hε/2) .

Then,
Hε/2

nγ∗dT
∗
d

≤ Hε/2

n(3/4)96Hε/2 ln(60Hε/2)

≤ Hε/2

3(3/4)96Hε/2 ln(60 · 3)
, since Hε/2 ≥ n ≥ 3

< 1
1080 , since ln(180) > 5,

and with a similar reasoning

12nHε/2
√
e

(T ∗d )2αδ1
≤ 12nHε/2

√
e

962(Hε/2)2 ln2(60Hε/2)αδ1

≤ 12nHε/22

962(Hε/2)2 ln2(180)αδ1

<
12 · 2

96252αδ1
=

1

9600αδ1
.

Finally, using c3 = 4/3,
P
(
∪t−1
τ=tE1(τ) ∨ E2(τ)

)
≤ 16

27
c3

1081

1080

1

9600αδ1
δd

≤ δd
104αδ1

.

Step 2: prove (i) and (ii) for s = d+ 1.
Let t ∈ [T ∗d ..T

∗
d+1 − 1]. Define Crosst(δ) :=

∪a∈Arms Crossta(δ). It is not hard to see that, using
Lemma 7,

P(Crosst(δS(t)) | S(t) ≥ d+ 1) ≤ δd+1

k1t3
,

where we emphasize that the conditioning part is S(t) ≥
d+1 rather than S(t) = d+1. Similarly, P(Crosst(δS(t)) |
S(t) ≤ d) ≤ δ1

k1t3
. Then,

P(Crosst(δS(t)))

= P(S(t) ≥ d+ 1)P(Crosst(δS(t)) | S(t) ≥ d+ 1)+

P(S(t) ≤ d)P(Crosst(δS(t)) | S(t) ≤ d)

≤ 1 · δd+1

k1t3
+

δd
104αδ1

· δ1
k1t3

, since the step 1

=
δd+1

k1t3

(
1 +

1

104α2δ1
δ1

)
, since δd

δd+1
= 1

α

≤ 5

4

δd+1

k1t3
<

4

3

δd+1

k1t3
, since α ≥ 1/50 .

Similarly, define Stickyt(δ) :=
∪a∈Arms

{
uτa > 4u∗(a, t, δS(τ))

}
∧ Needyτa(δS(τ)).

P(Stickyt(δS(t)))

= P(S(t) ≥ d+ 1)P(Stickyt(δS(t)) | S(t) ≥ d+ 1)+

P(S(t) ≤ d)P(Stickyt(δS(t)) | S(t) ≤ d)

≤ 1 · 3Hε/2δd+1

4k1nt4
+

δd
104αδ1

· 3Hε/2δ1
4k1nt4

≤ 3Hε/2δd+1

4k1nt4

(
1 +

1

104α2δ1
δ1

)
≤ 15

16

Hε/2δd+1

k1nt4
<

4

3

Hε/2δd+1

k1nt4
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Supplementary Material

A. Misidentification Bounds of Uniform, UCB, SAR, and SH
We analyze the misidentification bounds of the Uniform and UCB algorithm. Note that UCB is for m = 1 only.

The Uniform Algorithm We consider the Uniform algorithm that outputs the empirical best arm at each round. Propo-
sition 1 bounds the probability of misidentification P(J(t) 6= J?), which is a byproduct of the proof of Proposition 1
of (Bubeck et al., 2009). Note the change of notation from (Bubeck et al., 2009); we use n in place of K and t in place of
n.

Proposition 1. The uniform allocation strategy associated with the recommendation given by the empirical best arm (at
round nbt/nc) ensures that

P(J(t) 6= J?) ≤
∑

i:∆i>0

exp

(
−∆2

i

⌊
t

n

⌋)
, ∀t ≥ n (10)

and also, for all η ∈ (0, 1) and all t ≥ max
{
n, n lnn

η2∆2
2

}
,

P(J(t) 6= J?) ≤ exp

(
− (1− η)2

2

⌊
t

n

⌋
∆2

2

)
(11)

Proof. Denote by µ̂i,t the empirical mean of arm i after t rounds of sampling. The proof of Proposition 1 of (Bubeck et al.,
2009) states that

P(µ̂i,n − µ̂1,n ≥ 0) ≤ exp

(
−
⌊
t

n

⌋
∆2
i

)
.

Thus,

P(J(t) 6= J?) =
∑

i:∆i>0

P(J(t) = i) ≤
∑

i:∆i>0

P(µ̂i,n − µ̂1,n ≥ 0) ≤
∑

i:∆i>0

exp

(
−
⌊
t

n

⌋
∆2
i

)
.

This concludes the first statement. For the second statement, the proof of Proposition 1 of (Bubeck et al., 2009) states that

P
(

max
i:∆i>0

µ̂i,t ≥ µ̂1,t

)
≤ exp

(
− (1− η)2

2

⌊
t

n

⌋
∆2

2

)
.

Noting that the LHS is an upperbound of P(J(t) 6= J?) completes the proof.

One can extend Proposition 1 to analyzing P(J(t) 6= J?) for Explore-m where we replace ∆2 with ∆σ(2), which is left as
an excercise.

Proposition 2. The sample complexity of Uniform is

O(n∆−2
2 ln (n/δ)).

Proof. Note that the second statement of Proposition 1 works for sufficiently large t only. Suppose η is a constant that is
independent of all other variables. One can derive the sample complexity of Uniform by taking the LHS of (11) to equal
and solve it for t. This gives us O(n∆−2

2 ln (1/δ)). However, notice that (11) is valid for t ≥ O(n ln(n)∆−2
2 ) only. Thus,

the lower bound on t must be added to the sample complexity, which completes the proof.

The UCB Algorithm Proposition 3 is a byproduct of the proof of Theorem 2 of (Bubeck et al., 2009) which states the
simple regret of UCB that outputs the most played arm. Note we do not discuss the result on UCB that outputs the empirical
best arm since the guarantee is less interesting.
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Proposition 3. For α > 1, the allocation strategy given by UCB(α) associated with the recommendation given by the most
played arm ensures that

P(J(t) 6= J?) ≤ n

α− 1

(
t

n
− 1

)2(1−α)

for all t sufficient large, e.g., such that t ≥ n+ 4nα∆−2
2 ln t and t ≥ n(n+ 2).

Proof. The proof of Theorem 2 of (Bubeck et al., 2009) also proves the statement above.

Proposition 4. The sample complexity of UCB-MPA with exploration parameter α > 1 is

O

(
max

{
nα∆−2

2 ln(nα∆−2
2 ), n2, n

(
n/(α− 1)

δ

) 1
2(α−1)

})

Proof. Set the misidentification probability bound to the target failure rate δ and solve it for t. This gives us

n

(
n/(α− 1)

δ

) 1
2(α−1)

. (12)

We now look at the condition on t. The condition t ≥ n + 4nα∆−2
2 ln t needs some work since t appears on the RHS as

well. We claim that
t ≥ n+ 8nα∆−2

2 ln(5nα∆−2
2 ) =⇒ t ≥ n+ 4nα∆−2

2 ln t.

To see that we prove its contrapositive. Suppose t < n+ 4nα∆−2
2 ln t. Then, using n ≤ nα∆−2

2

√
t and ln t ≤

√
t,

t < n+ 4nα∆−2
2 ln t

≤ nα∆−2
2

√
t+ 4nα∆−2

2

√
t

= 5nα∆−2
2

√
t

=⇒ t2 < 52n2α2∆−4
2 t

=⇒ t < 52n2α2∆−4
2

Then, t < n+ 4nα∆−2
2 ln t < n+ 4nα∆−2

2 ln(52n2α2∆−4
2 ). This completes the claim.

Thus, a stronger but simpler condition for the misidentification probability is that

t ≥ max{n+ 8nα∆−2
2 ln(5nα∆−2

2 ), n(n+ 2)} = O(max{nα∆−2
2 ln(nα∆−2

2 ), n2}),

which is combined with (12) to complete the proof.

Doubling Successive Accepts and Rejects (SAR) and Sequential Halving (SH) Note that SAR is for the top-m arms
identification problem whereas SH is for the best arm identification only.

Imagine that you perform a complete run of a fixed budget algorithm in stage s ∈ {1, 2, . . .} where the budget parameter
is set to 2s−1n. After every stage, throw away samples collected so far and start anew with a doubled budget. Let t be the
global round index rather than the stage-specific one. At every round t, the algorithm sets the recommended arms J(t) as
the output of the algorithm at the end of the previous stage.

We claim that for any t, J(t) is the output of the fixed budget algorithm based on the budget at least t/4. To see this, for
any t, (2k−1 − 1)n < t ≤ (2k − 1)n for some k. It is easy to see that the round t belongs to the stage k, and the previous
stage was run with 2k−2n budget. Then, t/4 ≤ 2k−2n−n/4 < 2k−2n, and thus J(t) is the result of running the algorithm
with budget at least t/4, which proves the claim.

Therefore, applying doubling trick to a fixed budget algorithm gives us an anytime guarantee on P(J(t) 6= J?) where the
bound is simply that of the fixed budget guarantee with t/4 in place of t.
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B. Proof of Corollary 1

Proof. Define A := 12k1nH
ε/2 and R∗s := 24Hε/2

1−γ∗s
ln
(

A
(1−γ∗s )δs

)
+ 1, an upperbound on T ∗s . Note that Theorem 1 says

that the probability of error after t rounds of sampling is bounded by a piecewise constant function:

P(J(t) 6⊆ J?ε ) ≤
∞∑
s=1

2δs1{T ∗s ≤ t < T ∗s+1}

≤
∞∑
s=1

2δs1{R∗s ≤ t < R∗s+1},

We would like to upperbound the RHS as a function of the number of rounds t. Specifically, we find a continuous decreasing
function f(t) such that f(R∗s+1) = 2δs,∀s ≥ 1. Then,

f−1(2δs) = R∗s+1 =
24Hε/2

1− γ∗s+1

ln

(
A

(1− γ∗s+1)δs+1

)
+ 1.

We now need to find f or its upperbound. Recall that γ∗s+1 is capped below at 3/4, which means that the functional form
of R∗s+1 changes when γ∗s+1 > 3/4.

Case 1. γ∗s+1 > 3/4

Note that

f−1(2δs) =
24Hε/2

1− γ∗s+1

ln

(
A

(1− γ∗s+1)δs+1

)
+ 1

= 24Hε/2 ln(A/δs+1)

ln(A/δ1)
ln

(
ln(A/δs+1)

ln(A/δ1)

A

δs+1

)
+ 1

= 24Hε/2 ln(A/δs+1)

ln(A/δ1)

(
ln

(
ln(A/δs+1)

ln(A/δ1)

)
+ ln

(
A

δs+1

))
+ 1

≤ 24Hε/2 ln(A/δs+1)

ln(A/δ1)

(
1

2

ln(A/δs+1)

ln(A/δ1)
+ ln

(
A

δs+1

))
+ 1 , by ln(x) ≤ 1

2x

≤ 36Hε/2 ln2(A/δs+1)

ln(A/δ1)
+ 1. , by 1

ln(A/δ1) ≤ 1

We invert the last line w.r.t. δs as follows:

36Hε/2 ln2(A/δs+1)

ln(A/δ1)
+ 1 = t

ln2

(
A

δsα

)
=

t− 1

36Hε/2
ln

(
A

δ1

)
A

δsα
= exp

(√
t− 1

36Hε/2
ln

(
A

δ1

))

2δs =
2A

α
exp

(
−
√

(t− 1) ln(A/δ1)

36Hε/2

)
.

Case 2. γ∗s+1 ≤ 3/4

Similarly,

R∗s+1 =
24Hε/2

1− γ∗s+1

ln

(
A

(1− γ∗s+1)δs+1

)
+ 1
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≤ 96Hε/2 ln

(
4A

δs+1

)
+ 1. , by γ∗s+1 ≤ 3/4

We find the inverse function of the last line as follows:

96Hε/2 ln

(
4A

δsα

)
+ 1 = t

2δs =
8A

α
exp

(
− t− 1

96Hε/2

)
.

The two cases imply that

P(J(t) 6⊆ J?ε ) ≤ f(t)

≤ max

{
8A

α
exp

(
− t− 1

96Hε/2

)
,

2A

α
exp

(
−
√

(t− 1) ln(A/δ1)

36Hε/2

)}

C. Proof of Lemma 1
We copy Lemma 2 of (Kalyanakrishnan et al., 2012) that implies a sufficient condition for a stage of AT-LUCB to terminate.

Lemma 3. (Kalyanakrishnan et al., 2012) ∀δ > 0,

(∀a ∈ Arms,¬Crossta(δ)) ∧ ¬Termt(δ, ε)

=⇒ Needytht∗(δ)(δ) ∨ Needyt`t∗(δ)(δ) (13)

Note that ¬Termt(δS(t), ε) is always true due to the way AT-LUCB updates S(t) at line 6 of Algorithm 1. Applying
Lemma 3 concludes the proof.

D. Technical Lemmas
We define Ts(γ) :=

⌈
24Hε/2

1−γ ln
(

12k1
1−γ

nHε/2

δs

)⌉
. With a suitable chose of γ, Ts(γ) becomes a sufficient number of rounds

to finish stage s. Specifically, T ∗s = Ts(γ
∗
s ). Lemma 4 is a technical lemma on what Ts(γ) rounds of sampling guarantee.

Lemma 5 provides the range of γ that is suitable for our purpose.

Lemma 4. Let γ ∈ [1/2, 1). Then,

t ≥ Ts(γ) =⇒ dγte − 1 +
∑
a

4u∗(a, t, δs) < t. (14)

Proof. Suppose not; dγte − 1 +
∑
a 4u∗(a, t, δs) ≥ t. Note that Ts(γ) ≥ T1(1/2) ≥ n, so t ≥ n. Assume n ≥ 3 since

n ≤ 2 is a trivial problem. Using δ1 ≤ n,

Hε/2 ln(k1nt
4/δs) ≥ n ln(n5/δ1) ≥ 4n ln(n) > 4n. (15)

Then,

t ≤ dγte − 1 +
∑

a∈Arms
4u∗(a, t, δs)

≤ γt+
∑
a

4

(
1

2(∆a ∨ ε
2 )2

ln

(
k1nt

4

δs

)
+ 1

)
≤ γt+ 4n+

∑
a

4

(
1

2(∆a ∨ ε
2 )2

ln

(
k1nt

4

δs

))
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= γt+ 4n+ 2Hε/2 ln

(
k1nt

4

δs

)
< γt+ 3Hε/2 ln

(
k1nt

4

δs

)
, by (15)

t <
3Hε/2

1− γ
ln

(
k1nt

4

δs

)
(16)

Using lnx ≤
√
x,

ln

(
k1nt

4

δs

)
≤ 4 ln

((
k1n

δs

)1/4

t

)
≤ 4

(
k1n

δs

)1/8√
t.

Then,

t <
12Hε/2

1− γ

(
k1n

δs

)1/8√
t

t2 <

(
12Hε/2

1− γ

)2(
k1n

δs

)1/4

t

t <

(
12Hε/2

1− γ

)2(
k1n

δs

)1/4

Plugging this into the RHS of (16),

t <
3Hε/2

1− γ
ln

((
k1n

δs

)2(
12Hε/2

1− γ

)8
)

=
24Hε/2

1− γ
ln

(
12

1− γ

(
k1n

δs

)1/4

Hε/2

)

<
24Hε/2

1− γ
ln

(
12

1− γ

(
k1n

δs

)
Hε/2

)
, by k1n

δs
≥ 1

≤ Ts(γ),

which is a contradiction.

Lemma 5. Let {γs} be a nondecreasing sequence such that γs ∈ [1/2, 1),∀s. If x >
1
2

ln( 1
α )

and γs ≥ 1− x ln( 1
α )− 1

2

ln

(
12k1nH

ε/2

δs

) ,

then
Ts−dxe(γs−dxe) ≤ dγsTs(γs)e.

Proof. Define A := 12k1nH
ε/2 and s′ = s − dxe for brevity. We prove the lemma by contradiction. Suppose not;

Ts′(γs′) > dγsTs(γs)e. Note that since {γs} is nondecreasing,

Ts′(γs′) ≤
24Hε/2

1− γs′
ln

(
A

(1− γs′)δ1αs′−1

)
+ 1

≤ 24Hε/2

1− γs
ln

(
A

(1− γs)δ1αs′−1

)
+ 1.

Then,

24Hε/2

1− γs
ln

(
A

(1− γs)δ1αs′−1

)
+ 1 > γs

24Hε/2

1− γs
ln

(
A

(1− γs)δs

)
ln

(
A

(1− γs)δ1αs−1

)
− dxe ln

(
1

α

)
+

1− γs
24Hε/2

> γs ln

(
A

(1− γs)δs

)
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(1− γs) ln

(
A

(1− γs)δs

)
+

1− γs
24Hε/2

> dxe ln

(
1

α

)
≥ x ln

(
1

α

)
(1− γs) ln

(
A

δs

)
+ (1− γs)

(
ln

(
1

1− γs

)
+

1

24Hε/2

)
> x ln

(
1

α

)
(1− γs) ln

(
A

δs

)
+ (1− γs)

(
ln

(
1

1− γs

)
+

1

72

)
> x ln

(
1

α

)
, by Hε/2 ≥ n ≥ 3

Note that (1−γs)
(

ln
(

1
1−γs

)
+ 1

72

)
is maximized at γs = 1− exp(−71/72) with the value of exp(−71/72) < 1

2 . Thus,

(1− γs) ln

(
A

δs

)
+

1

2
> x ln

(
1

α

)
γs < 1−

x ln
(

1
α

)
− 1

2

ln
(
A
δs

) ,

which is a contradiction.

We choose x and γs in Lemma 5 as

x∗ := log1/α

12k1nH
ε/2
√
e

δ1
and γ∗s := max

3

4
, 1−

ln
(

12k1nH
ε/2

δ1

)
ln
(

12k1nHε/2

δs

)
 . (17)

Note that by using δ1 ≤ n one can verify that x∗ > 1/2

ln( 1
α )

. Such a choice leads to Ts(γ∗s ) = T ∗s .

The following Lemma bounds the ratio of the failure rate δs of stage s and that of dx∗e stages before.
Lemma 6. Let x∗ be as in (17). Then,

s ≤ dx∗e =⇒ δ1
δs
≤ 12k1nH

ε/2
√
e

αδ1
(18)

s ≥ dx∗e+ 1 =⇒
δs−dx∗e

δs
≤ 12k1nH

ε/2
√
e

αδ1
(19)

Proof. For the first statement,

δ1
δs
≤ δ1
δdx∗e

=
1

αdx∗e−1
≤
(

1

α

)x∗
=

12k1nH
ε/2
√
e

δ1
<

12k1nH
ε/2
√
e

αδ1
.

For the second statement,

δs−dx∗e

δs
=
αs−dx

∗e−1

αs−1
= α−dx

∗e ≤
(

1

α

)x∗+1

=
12k1nH

ε/2
√
e

αδ1
.

The following two lemmas are direct consequences of the Lemma 3 and 4 of (Kalyanakrishnan et al., 2012), so we state
the lemmas without proofs.
Lemma 7. (No disguising arms) Under AT-LUCB,

P(∪a∈Arms Crossta(δS(t)) | S(t) = s) ≤ δs
k1t3

. (20)

Lemma 8. (No sticky arms) Under AT-LUCB,

P(∪a∈Arms (uta > 4u∗(a, t, δS(t))) ∧ Needyta(δS(t)) | S(t) = s) ≤ 3Hε/2δs
4k1nt4

. (21)


