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A Proof and derivation of manifold-related ingredients
The concrete computations of the optimization-related ingredients presented in the paper are discussed below.

The total space is M := St(r1, n1) × St(r2, n2) × St(r3, n3) × Rr1×r2×r3 . Each element x ∈ M has the ma-
trix representation (U1,U2,U3,G). Invariance of Tucker decomposition under the transformation (U1,U2,U3,G) 7→
(U1O1,U2O2,U3O3,G×1OT

1×2OT
2×3OT

3 ) for all Od ∈ O(rd), the set of orthogonal matrices of size of rd×rd results in
equivalence classes of the form [x] = [(U1,U2,U3,G)] := {(U1O1,U2O2,U3O3,G×1OT

1×2OT
2×3OT

3 ) : Od ∈ O(rd)}.

A.1 Tangent space characterization and the Riemannian metric
The tangent space, TxM, at x given by (U1,U2,U3,G) in the total spaceM is the product space of the tangent spaces of
the individual manifolds. From (Absil et al., 2008), the tangent space has the matrix characterization

TxM = {(ZU1 ,ZU2 ,ZU3 ,ZG) ∈ Rn1×r1 × Rn2×r2 × Rn3×r3 × Rr1×r2×r3
: UTd ZUd

+ ZTUd
Ud = 0, for d ∈ {1, 2, 3}}. (A.1)

The proposed metric gx : TxM× TxM→ R is

gx(ξx, ηx) = 〈ξU1
, ηU1

(G1GT
1 )〉+ 〈ξU2

, ηU2
(G2GT

2 )〉+ 〈ξU3
, ηU3

(G3GT
3 )〉+ 〈ξG , ηG〉, (A.2)

where ξx, ηx ∈ TxM are tangent vectors with matrix characterizations (ξU1
, ξU2

, ξU3
, ξG) and (ηU1

, ηU2
, ηU3

, ηG), respec-
tively and 〈·, ·〉 is the Euclidean inner product.

A.2 Characterization of the normal space

Given a vector in Rn1×r1 × Rn2×r2 × Rn3×r3 × Rr1×r2×r3 , its projection onto the tangent space TxM is obtained by
extracting the component normal, in the metric sense, to the tangent space. This section describes the characterization of
the normal space, NxM.

Let ζx = (ζU1
, ζU2

, ζU3
, ζG) ∈ NxM, and ηx = (ηU1

, ηU2
, ηU3

, ηG) ∈ TxM. Since ζx is orthogonal to ηx, i.e.,
gx(ζx, ηx) = 0, the conditions

Trace(GdGT
d ζ

T
Ud
ηUd

) = 0, for d ∈ {1, 2, 3} (A.3)

must hold for all ηx in the tangent space. Additionally from (Absil et al., 2008), ηUd
has the characterization

ηUd
= UdΩ + Ud⊥K, (A.4)
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where Ω is any skew-symmetric matrix, K is a any matrix of size (nd − rd)× rd, and Ud⊥ is any nd × (nd − rd) that is
orthogonal complement of Ud. Let ζ̃Ud

= ζUd
GdGT

d and let ζ̃Ud
is defined as

ζ̃Ud
= UdA + Ud⊥B (A.5)

without loss of generality, where A ∈ Rrd×rd and B ∈ R(nd−rd)×rd are to be characterized from (A.3) and (A.4). A few
standard computations show that A has to be symmetric and B = 0. Consequently, ζ̃Ud

= UdSUd
, where SUd

= STUd
.

Equivalently, ζUd
= UdSUd

(GdGT
d )−1 for a symmetric matrix SUd

. Finally, the normal space NxM has the characteriza-
tion

NxM = {(U1SU1(G1GT
1 )−1,U2SU2(G2GT

2 )−1,U3SU3(G3GT
3 )−1, 0)

: SUd
∈ Rrd×rd ,STUd

= SUd
, for d ∈ {1, 2, 3}}. (A.6)

A.3 Characterization of the vertical space
The horizontal space projector of a tangent vector is obtained by removing the component along the vertical direction. This
section shows the matrix characterization of the vertical space Vx.

Vx is the defined as the linearization of the equivalence class [(U1,U2,U3,G)] at x = [(U1,U2,U3,G)]. Equivalently, Vx is
the linearization of (U1O1,U2O2,U3O3,G×1OT

1 ×2OT
2 ×3OT

3 ) along Od ∈ O(rd) at the identity element for d ∈ {1, 2, 3}.
From the characterization of linearization of an orthogonal matrix (Absil et al., 2008), we have the characterization for the
vertical space as

Vx = {(U1Ω1,U2Ω2,U3Ω3,−(G×1Ω1 + G×2Ω2 + G×3Ω3)) :
Ωd ∈ Rrd×rd ,ΩT

d = −Ωd for d ∈ {1, 2, 3}}. (A.7)

A.4 Characterization of the horizontal space
The characterization of the horizontal spaceHx is derived from its orthogonal relationship with the vertical space Vx.

Let ξx = (ξU1 , ξU2 , ξU3 , ξG) ∈ Hx, and ζx = (ζU1 , ζU2 , ζU3 , ζG) ∈ Vx. Since ξx must be orthogonal to ζx, which is
equivalent to gx(ξx, ζx) = 0 in (A.2), the characterization for ξx is derived from (A.2) and (A.7).

gx(ξx, ζx) = 〈ξU1 , ζU1(G1GT
1 )〉+ 〈ξU2 , ζU2(G2GT

2 )〉+ 〈ξU3 , ζU3(G3GT
3 )〉+ 〈ξG , ζG〉

= 〈ξU, (U1Ω1)(G1GT
1 )〉+ 〈ξU2 , (U2Ω2)(G2GT

2 )〉+ 〈ξU3 , (U3Ω3)(G3GT
3 )〉

+〈ξG ,−(G×1Ω1 + G×2Ω2 + G×3Ω3)〉
(Switch to unfoldings of G.)

= Trace((G1GT
1 )ξTU1

(U1Ω1)) + Trace((G2GT
2 )ξTU2

(U2Ω2)) + Trace((G3GT
3 )ξTU3

(U3Ω3))

+Trace(ξG1
(−Ω1G1)T ) + Trace(ξG2

(−Ω2G2)T ) + Trace(ξG3
(−Ω3G3)T )

= Trace
[{

(G1GT
1 )ξTU1

U1 + ξG1
GT

1

}
Ω1

]
+ Trace

[{
(G2GT

2 )ξTU2
U2 + ξG2

GT
2

}
Ω2

]
+Trace

[{
(G3GT

3 )ξTU3
U3 + ξG3

GT
3

}
Ω3

]
,

where ξGd
is the mode-d unfolding of ξG . Since gx(ξx, ζx) above should be zero for all skew-matrices Ωd, ξx =

(ξU1
, ξU2

, ξU3
, ξG) ∈ Hx must satisfy

(GdGT
d )ξTUd

Ud + ξGd
GT
d is symmetric for d ∈ {1, 2, 3}. (A.8)

A.5 Proof of Proposition 1
We first introduce the following lemma:

Lemma 1. Let (U1,U2,U3,G) ∈ St(r1, n1) × St(r2, n2) × St(r3, n3) × Rr1×r2×r3 and ξ[(U1,U2,U3,G)] be a tan-
gent vector to the quotient manifold at [(U1,U2,U3,G)]. The horizontal lifts of ξ[(U1,U2,U3,G)] at (U1,U2,U3,G) and
(U1O1,U2O2,U3O3,G×1OT

1×2OT
2×3OT

3 ) are related for Od ∈ O(rd) as follows,

(ξU1O1
, ξU2O2

, ξU3O3
, ξG×1OT

1 ×2OT
2 ×3OT

3
) = (ξU1

O1, ξU2
O2, ξU3

O3, ξG×1OT
1×2OT

2×3OT
3 ). (A.9)
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Proof. Let f : (St(r1, n1)×St(r2, n2)×St(r3, n3)×Rr1×r2×r3/(O(r1)×O(r2)×O(r3)))→ R be an arbitrary smooth
function, and define

f̄ := f ◦ π : (St(r1, n1)× St(r2, n2)× St(r3, n3)× Rr1×r2×r3/(O(r1)×O(r2)×O(r3)))→ R,

where π is the mapping π :M→M/ ∼ defined by x 7→ [x].

Consider the mapping

h : (U1,U2,U3,G) 7→ (U1O1,U2O2,U3O3,G×1OT
1×2OT

2×3OT
3 ),

where Od ∈ O(rd). Since π(h(U1,U2,U3,G)) = π(U1,U2,U3,G) for all (U1,U2,U3,G), we have

f̄(h(U1,U2,U3,G)) = f̄(U1,U2,U3,G).

By taking the differential of both sides,

Df̄(h(U1,U2,U3,G))[Dh(U1,U2,U3,G)[(ξU1
, ξU2

, ξU3
, ξG)]] = Df̄(U1,U2,U3,G)[(ξU1

, ξU2
, ξU3

, ξG)]. (A.10)

By noting the definition of (ξU1
, ξU2

, ξU3
, ξG), i.e., Dπ(U1,U2,U3,G)[ξU1

, ξU2
, ξU3

, ξG ] = ξ[(ξU1
,ξU2

,ξU3
,ξG)], the right

side of (A.10) is

Df̄(U1,U2,U3,G)[(ξU1 , ξU2 , ξU3 , ξG)] = Df(π(U1,U2,U3,G))[Dπ(U1,U2,U3,G)[(ξU1 , ξU2 , ξU3 , ξG)]
= Df(π(U1,U2,U3,G))[ξ[(U1,U2,U3,G)]],

where the chain rule is applied to the first equality.

Moreover, from the directional derivatives of the mapping h, the bracket of the left side of (A.10) is obtained as

Dh(U1,U2,U3,G)[(ξU1
, ξU2

, ξU3
, ξG)] = (ξU1

O1, ξU2
O2, ξU3

O3, ξG×1OT
1×2OT

2×3OT
3 ).

Therefore, (A.10) yields

Df̄(U1O1,U2O2,U3O3,G×1OT
1×2OT

2×3OT
3 )[(ξU1

O1, ξU2
O2, ξU3

O3, ξG×1OT
1×2OT

2×3OT
3 )]

= Df(π(U1O1,U2O2,U3O3,G×1OT
1×2OT

2×3OT
3 ))[ξ[(U1,U2,U3,G)]],

(A.11)

where we address the equivalence class π(U1,U2,U3,G) = π(U1O1,U2O2,U3O3,G×1OT
1×2OT

2×3OT
3 ). The left side

of (A.11) is further transformed by the chain rule as

Df̄(U1O1,U2O2,U3O3,G×1OT
1×2OT

2×3OT
3 )[(ξU1O1, ξU2O2, ξU3O3, ξG×1OT

1×2OT
2×3OT

3 )]

= Df(π(U1O1,U2O2,U3O3,G×1OT
1×2OT

2×3OT
3 ))[Dπ(U1O1,U2O2,U3O3,G×1OT

1×2OT
2×3OT

3 )]

[(ξU1
O1, ξU2

O2, ξU3
O3, ξG×1OT

1×2OT
2×3OT

3 )].
(A.12)

By comparing the right sides of (A.11) and (A.12), since this equality holds for any smooth function f , it implies that

Dπ(U1O1,U2O2,U3O3,G×1OT
1×2OT

2×3OT
3 )[(ξU1

O1, ξU2
O2, ξU3

O3, ξG×1OT
1×2OT

2×3OT
3 )]

= ξ[(U1,U2,U3,G)].
(A.13)

Finally, we check whether (ξU1O1, ξU2O2, ξU3O3, ξG×1OT
1×2OT

2×3OT
3 ) is an element of

H(U1O1,U2O2,U3O3,G×1OT
1 ×2OT

2 ×3OT
3 ). Addressing that the mode-1 unfolding of G×1OT

1×2OT
2×3OT

3 is
OT

1 G1(OT
3 ⊗ OT

2 )T , plugging (ξU1
O1, ξU2

O2, ξU3
O3, ξG×1OT

1×2OT
2×3OT

3 ) into (GdGT
d )ξTUd

Ud + ξGd
GT
d in (A.8)

yields

(OT
1 G1(OT

3 ⊗OT
2 )T )

(
OT

1 G1(OT
3 ⊗OT

2 )T
)T

(ξU1
O1)T (U1O1) + (OT

1 )T ξG1
(OT

3 ⊗OT
2 )(OT

1 G1(OT
3 ⊗OT

2 )T )T

= OT
1 G1GT

1 O1 + OT
1 ξG1GT

1 O1

= OT
1 ((G1GT

1 )ξTU1
U1 + ξG1

GT
1 )O1.

(A.14)
Since (ξU1

, ξU2
, ξU3

, ξG) is a symmetric matrix, the obtained result is also symmetric. Therefore,
(ξU1O1, ξU2O2, ξU3O3, ξG×1OT

1×2OT
2×3OT

3 ) is a horizontal vector at (U1O1,U2O2,U3O3,G×1OT
1×2OT

2×3OT
3 ).

This implies that (ξU1
O1, ξU2

O2, ξU3
O3, ξG×1OT

1×2OT
2×3OT

3 ) is the horizontal lift of ξ at
(U1O1,U2O2,U3O3,G×1OT

1×2OT
2×3OT

3 ), and the proof is completed.
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Now, the proof of Proposition 1 is given below using the result (A.9) in Lemma 1.

Proof. Plugging ξ
′

U1
= ξU1O1 , η

′

U1
= ηU1O1 , and G

′

1 = OT
1 G1(OT

3 ⊗OT
2 ) into the first term of (A.2) yields

〈ξU1O1 , ηU1O1(G
′

1G
′T
1 ))〉 = Trace(ξTU1O1

ηU1O1(G
′

1G
′T
1 ))

(A.9)
= Trace((ξU1O1)T ηU1O1(G

′

1G
′T
1 ))

= Trace

[
(ξU1

O1)T (ηU1
O1)(OT

1 G1(OT
3 ⊗OT

2 )T )
(

OT
1 G1(OT

3 ⊗OT
2 )T

)T]
= Trace

[
(ξU1

O1)T (ηU1
O1)OT

1 G1(OT
3 ⊗OT

2 )T (OT
3 ⊗OT

2 )GT
1 O1

]
= Trace

[
OT

1 ξ
T
U1
ηU1

O1OT
1 G1GT

1 O1

]
= Trace

[
ξTU1

ηU1
G1GT

1

]
= 〈ξU1

, ηU1
(G1GT

1 )〉.

Since the same equalities against the each term in the metric (A.2) corresponding to U2, U3 and G hold, we finally obtain
the invariant property that the proposition claims;

g(U1,U2,U3,G)((ξU1
, ξU2

, ξU3
, ξG), (ηU1

, ηU2
, ηU3

, ηG))
= g(U1O1,U2O2,U3O3,G×1OT

1 ×2OT
2 ×3OT

3 )((ξU1O1
, ξU2O2

, ξU3O3
, ξG×1OT

1 ×2OT
2 ×3OT

3
),

(ηU1O1
, ηU2O2

, ηU3O3
, ηG×1OT

1 ×2OT
2 ×3OT

3
)).

A.6 Proof of Proposition 2 (derivation of the tangent space projector)
Proof. The tangent space TxM projector is obtained by extracting the component normal to TxM in the ambient space.
The normal space NxM has the matrix characterization shown in (A.6). The operator Ψx : Rn1×r1 ×Rn2×r2 ×Rn3×r3 ×
Rr1×r2×r3 → TxM : (YU1

,YU2
,YU3

,YG) 7→ Ψx(YU1
,YU2

,YU3
,YG) has the expression

Ψx(YU1,YU2,YU3,YG) = (YU1−U1SU1(G1GT
1 )−1,YU2−U2SU2(G2GT

2 )−1,YU3−U3SU3(G3GT
3 )−1,YG).

(A.15)

From the definition of the tangent space in (A.1), Ud should satisfy

ηTUd
Ud + UTd ηUd

= (YUd
− UdSUd

(GdGT
d )−1)TUd + UTd (YUd

− UdSUd
(GdGT

d )−1)

= YTUd
Ud − (GdGT

d )−1STUd
UTd Ud + UTd YUd

− UTd UdSUd
(GdGT

d )−1

= YTUd
Ud − (GdGT

d )−1SUd
+ UTd YUd

− SUd
(GdGT

d )−1

= 0.

Multiplying (GdGT
d ) from the right and left sides results in

(GdGT
d )−1SUd

+ SUd
(GdGT

d )−1 = YTUd
Ud + UTd YUd

SUd
GdGT

d + GdGT
d SUd

= GdGT
d (YTUd

Ud + UTd YUd
)GdGT

d .

Finally, we obtain the Lyapunov equation as

SUd
GdGT

d + GdGT
d SUd

= GdGT
d (YTUd

Ud + UTd YUd
)GdGT

d for d ∈ {1, 2, 3}, (A.16)

that are solved efficiently with the Matlab’s lyap routine.
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A.7 Proof of Proposition 3 (derivation of the horizontal space projector)
Proof. We consider the projection of a tangent vector ηx = (ηU1 , ηU2 , ηU3 , ηG) ∈ TxM into a vector ξx =
(ξU1

, ξU2
, ξU3

, ξG) ∈ Hx. This is achieved by subtracting the component in the vertical space Vx in (A.7) as
ηU1 = ηU1 − U1Ω1︸ ︷︷ ︸

=ξU1
∈Hx

+ U1Ω1︸ ︷︷ ︸
∈Vx

,

ηU2 = ηU2 − U2Ω2 + U2Ω2,
ηU3 = ηU3 − U3Ω3 + U3Ω3,
ηG = ηG − (−(G×1Ω1 + G×2Ω2 + G×3Ω3)) + (−(G×1Ω1 + G×2Ω2 + G×3Ω3)).

As a result, the horizontal operator Πx : TxM→Hx : ηx 7→ Πx(ηx) has the expression

Πx(ηx) = (ηU1 − U1Ω1, ηU2 − U2Ω2, ηU3 − U3Ω3, ηG−(−(G×1Ω1 + G×2Ω2 + G×3Ω3))), (A.17)

where ηx = (ηU1 , ηU2 , ηU3 , ηG) ∈ TxM and Ωd is a skew-symmetric matrix of size rd × rd. The skew-matrices Ωd for
d = {1, 2, 3} that are identified based on the conditions (A.8).

It should be noted that the tensor G×1Ω1 + G×2Ω2 + G×3Ω3 in (A.7) has the following equivalent unfoldings.

G×1Ω1 + G×2Ω2 + G×3Ω3
mode−1⇐===⇒ Ω1G1 + G1(Ir3 ⊗Ω2)T + G1(Ω3 ⊗ Ir2)T

mode−2⇐===⇒ G2(Ir3 ⊗Ω1)T + Ω2G2 + G2(Ω3 ⊗ Ir1)T

mode−3⇐===⇒ G3(Ir2 ⊗Ω1)T + G3(Ω2 ⊗ Ir1)T + Ω3G3.

Plugging ξU1 = ηU1 −U1Ω1 and ξG1 = ηG1 +Ω1G1 + G1(Ir3 ⊗Ω2)T + G1(Ω3⊗ Ir2)T into (A.8) and using the relation
(A⊗ B)T = AT ⊗ BT results in

(G1GT
1 )ξTU1

U+ξG1
GT

1 = (G1GT
1 )(ηU1

− U1Ω1)TU1 +
{
ηG1 + (Ω1G1 + G1(Ir3 ⊗Ω2)T + G1(Ω3 ⊗ Ir2)T )

}
GT

1

= (G1GT
1 )ηTU1

U1 − (G1GT
1 )(U1Ω1)TU1 + ηG1

GT
1 + Ω1G1GT

1 + G1(Ir3 ⊗Ω2)TGT
1

+G1(Ω3 ⊗ Ir2)TGT
1

= (G1GT
1 )ηTU1

U1 + (G1GT
1 )Ω1 + ηG1

GT
1 + Ω1G1GT

1 −G1(Ir3 ⊗Ω2)GT
1 −G1(Ω3 ⊗ Ir2)GT

1 ,

which should be a symmetric matrix due to (A.8), i.e., (G1GT
1 )ξTU1

U+ξG1
GT

1 = ((G1GT
1 )ξTU1

U+ξG1
GT

1 )T .

Subsequently,

(G1GT
1 )ηTU1

U1 + (G1GT
1 )Ω1 + ηG1

GT
1 + Ω1G1GT

1 −G1(Ir3 ⊗Ω2)GT
1 −G1(Ω3 ⊗ Ir2)GT

1

= UT1 ηU1
(G1GT

1 )−Ω1G1GT
1 + G1η

T
G1
−G1GT

1 Ω1 + G1(Ir3 ⊗Ω2)GT
1 + G1(Ω3 ⊗ Ir2)GT

1 ,

which is equivalent to

G1GT
1 Ω1 + Ω1G1GT

1 −G1(Ir3 ⊗Ω2)GT
1 −G1(Ω3 ⊗ Ir2)GT

1 = Skew(UT1 ηU1
G1GT

1 ) + Skew(G1η
T
G1

).

Here Skew(·) extracts the skew-symmetric part of a square matrix, i.e., Skew(D) = (D− DT )/2.

Finally, we obtain the coupled Lyapunov equations

G1GT
1 Ω1 + Ω1G1GT

1 −G1(Ir3 ⊗Ω2)GT
1 −G1(Ω3 ⊗ Ir2)GT

1

= Skew(UT1 ηU1
G1GT

1 ) + Skew(G1η
T
G1

),

G2GT
2 Ω2 + Ω2G2GT

2 −G2(Ir3 ⊗Ω1)GT
2 −G2(Ω3 ⊗ Ir1)GT

2

= Skew(UT2 ηU2
G2GT

2 ) + Skew(G2η
T
G2

),

G3GT
3 Ω3 + Ω3G3GT

3 −G3(Ir2 ⊗Ω1)GT
3 −G3(Ω2 ⊗ Ir1)GT

3

= Skew(UT3 ηU3
G3GT

3 ) + Skew(G3η
T
G3

),

(A.18)

that are solved efficiently with the Matlab’s pcg routine that is combined with a specific preconditioner resulting from the
Gauss-Seidel approximation of (A.18).
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A.8 Proof of Proposition 4 (derivation of the Riemannian gradient formula)

Proof. Let f(X ) = ‖PΩ(X ) − PΩ(X ?)‖2F /|Ω| and S = 2(PΩ(G×1U1×2U2×3U3) − PΩ(X ?))/|Ω| be an auxiliary
sparse tensor variable that is interpreted as the Euclidean gradient of f in Rn1×n2×n3 .

The partial derivatives of f(U1,U2,U3,G) are

∂f1(U1,U2,U3,G1)

∂U1
=

2

|Ω|
(PΩ(U1G1(U3 ⊗ U2)T )−PΩ(X?1))(U3 ⊗ U2)GT

1

= S1(U3 ⊗ U2)GT
1 ,

∂f2(U1,U2,U3,G2)

∂U2
=

2

|Ω|
(PΩ(U2G2(U3 ⊗ U1)T )−PΩ(X?2))(U3 ⊗ U1)GT

2

= S2(U2 ⊗ U1)GT
2 ,

∂f3(U1,U2,U3,G3)

∂U3
=

2

|Ω|
(PΩ(U3G3(U2 ⊗ U1)T )−PΩ(X?3))(U2 ⊗ U1)GT

3

= S3(U2 ⊗ U1)GT
3 ,

∂f(U1,U2,U3,G)

∂G =
2

|Ω|
(PΩ(G×1U1×2U2×3U3)−PΩ(X ?))×1 UT1 ×2 UT2 ×3 UT3

= S ×1 UT1 ×2 UT2 ×3 UT3 ,

where X?d is mode-d unfolding of X ? and

S1 =
2

|Ω|
(PΩ(U1G1(U3 ⊗ U2)T )−PΩ(X?1))

S2 =
2

|Ω|
(PΩ(U2G2(U3 ⊗ U1)T )−PΩ(X?2))

S3 =
2

|Ω|
(PΩ(U3G3(U2 ⊗ U1)T )−PΩ(X?3))

S =
2

|Ω|
(PΩ(G×1U1×2U2×3U3)−PΩ(X ?)).

Due to the specific scaled metric (A.2), the partial derivatives of f are further scaled by
((G1GT

1 )−1, (G2GT
2 )−1, (G3GT

3 )−1,I), denoted as egradxf (after scaling), i.e.,

egradxf = (S1(U3 ⊗ U2)GT
1 (G1GT

1 )−1,S2(U3 ⊗ U1)GT
2 (G2GT

2 )−1,S3(U2 ⊗ U1)GT
3 (G3GT

3 )−1,

S ×1 UT1 ×2 UT2 ×3 UT3 ).

Consequently, from the relationship that horizontal lift of grad[x]f is equal to gradxf = Ψ(egradxf), we obtain that,
using (A.15),

the horizontal lift of grad[x]f = (S1(U3 ⊗ U2)GT
1 (G1GT

1 )−1 − U1BU1(G1GT
1 )−1,

S2(U3 ⊗ U1)GT
2 (G2GT

2 )−1 − U2BU2
(G2GT

2 )−1,

S3(U2 ⊗ U1)GT
3 (G3GT

3 )−1 − U3BU3
(G3GT

3 )−1,

S ×1 UT1 ×2 UT2 ×3 UT3 ),

From the requirements in (A.16) for a vector to be in the tangent space, we have the following relationship for mode-1.

BU1
G1GT

1 + G1GT
1 BU1

= G1GT
1 (YTU1

U1 + UT1 YU1
)G1GT

1 ,

where YU1 = (S1(U3 ⊗ U2)GT
1 (G1GT

1 )−1.

Subsequently,

G1GT
1 (YTU1

U1 + UT1 YU1
)G1GT

1 = G1GT
1

{
((S1(U3 ⊗ U2)GT

1 (G1GT
1 )−1)TU1

+ UT1 (S1(U3 ⊗ U2)GT
1 (G1GT

1 )−1
}

G1GT
1

= ((S1(U3 ⊗ U2)GT
1 )TU1G1GT

1 + G1GT
1 UT1 (S1(U3 ⊗ U2)GT

1

= (G1GT
1 UT1 (S1(U3 ⊗ U2)GT

1 )T + G1GT
1 UT1 (S1(U3 ⊗ U2)GT

1

= 2Sym(G1GT
1 UT1 (S1(U3 ⊗ U2)GT

1 ).
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Finally, BUd
for d ∈ {1, 2, 3} are obtained by solving the Lyapunov equations

BU1
G1GT

1 + G1GT
1 BU1

= 2Sym(G1GT
1 UT1 (S1(U3 ⊗ U2)GT

2 ),

BU2
G2GT

2 + G2GT
2 BU2

= 2Sym(G2GT
2 UT2 (S2(U3 ⊗ U1)GT

2 ),

BU3G3GT
3 + G3GT

3 BU3 = 2Sym(G3GT
3 UT3 (S3(U2 ⊗ U1)GT

3 ),

where Sym(·) extracts the symmetric part of a square matrix, i.e., Sym(D) = (D+DT )/2. The above Lyapunov equations
are solved efficiently with the Matlab’s lyap routine.

B Additional numerical comparisons
In addition to the representative numerical comparisons in the paper, we show additional numerical experiments spanning
synthetic and real-world datasets.

Experiments on synthetic datasets:

Case S1: comparison with the Euclidean metric. We first show the benefit of the proposed metric (A.2) over the
conventional choice of the Euclidean metric that exploits the product structure ofM and symmetry. We compare steepest
descent algorithms with Armijo backtracking linesearch for both the metric choices. Figure A.1 shows that the algorithm
with the metric (A.2) gives a superior performance in test error than that of the conventional metric choice.

Case S2: small-scale instances. We consider tensors of size 100 × 100 × 100, 150 × 150 × 150, and 200 × 200 × 200
and ranks (5, 5, 5), (10, 10, 10), and (15, 15, 15). OS is {10, 20, 30}. Figures A.2(a)-(c) and Figures A.3(a)-(c) show the
convergence behavior of different algorithms on a train set Ω and on a test set Γ, where Figures A.3(b) is identical to the
figure in the manuscript paper. Figures A.2(d)-(f) and A.3(d)-(f) show the mean square error on Ω and Γ on each algorithm.
Furthermore, Figure A.2(g)-(i) and Figure A.3(g)-(i) show the mean square error on Ω and Γ when OS is 10 in all the five
runs. From Figures A.2 and Figures A.3, our proposed algorithm is consistently competitive or faster than geomCG,
HalRTC, and TOpt. In addition, the mean square errors on a train set Ω and a test set Γ are consistently competitive or
lower than those of geomCG and HalRTC, especially for lower sampling ratios, e.g, for OS 10.

Case S3: large-scale instances. We consider large-scale tensors of size 3000 × 3000 × 3000, 5000 × 5000 × 5000, and
10000×10000×10000 and ranks r=(5, 5, 5) and (10, 10, 10). OS is 10. We compare our proposed algorithm to geomCG.
Figure A.4 and Figure A.5 show the convergence behavior of the algorithms. The proposed algorithm outperforms geomCG
in all the cases.

Case S4: influence of low sampling. We look into problem instances which result from scarcely sampled data. The test
requires completing a tensor of size 10000 × 10000 × 10000 and rank r=(5, 5, 5). Figure A.6 and Figure A.7 show the
convergence behavior when OS is {8, 6, 5}. The case of OS = 5 is particularly interesting. In this case, while the mean
square errors on Ω and Γ increase for geomCG, the proposed algorithm stably decreases the error in all the five runs.

Case S5: influence of ill-conditioning and low sampling. We consider the problem instance of Case S4 with OS = 5.
Additionally, for generating the instance, we impose a diagonal core G with exponentially decaying positive values of
condition numbers (CN) 5, 50, and 100. Figure A.8 shows that the proposed algorithm outperforms geomCG for all the
considered CN values on a train set Ω.

Case S6: influence of noise. We evaluate the convergence properties of algorithms under the presence of noise The tensor
size and rank are same as in Case S4 and OS is 10. Figure A.9 shows that the train error on a train set Ω for each ε is
almost identical to the ε2‖PΩ(X ?)‖2F , but our proposed algorithm converges faster than geomCG.

Case S7: rectangular instances. We consider instances where dimensions and ranks along certain modes are different
than others. Two cases are considered. Case (7.a) considers tensors size 20000× 7000× 7000, 30000× 6000× 6000, and
40000 × 5000 × 5000 and rank r = (5, 5, 5). Case (7.b) considers a tensor of size 10000 × 10000 × 10000 with ranks
r = (7, 6, 6), (10, 5, 5), and (15, 4, 4). Figures A.10(a)-(c) and Figures A.11(a)-(c) show that the convergence behavior of
our proposed algorithm is superior to that of geomCG on Ω and Γ, respectively. Our proposed algorithm also outperforms
geomCG for the asymmetric rank cases as shown in Figure A.10(d)-(f) and Figure A.11(d)-(f).

Case S8: medium-scale instances. We additionally consider medium-scale tensors of size 500 × 500 × 500, 1000 ×
1000× 1000, and 1500× 1500× 1500 and ranks r = (5, 5, 5), (10, 10, 10), and (15, 15, 15). OS is {10, 20, 30, 40}. Our
proposed algorithm and geomCG are only compared as the other algorithms cannot handle these scales efficiently. Figures
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A.12(a)-(c) and A.13(a)-(c) show the convergence behavior on Ω and Γ, respectively. Figures A.12(d)-(f) and Figures
A.13(d)-(f) also show the mean square error on Ω and Γ of rank r = (15, 15, 15) in all the five runs. The proposed
algorithm performs better than geomCG in all the cases.

Experiments on real-world datasets:

Case R1: hyperspectral image. We also show the performance of our algorithm on the hyperspectral image “Ribeira”.
We show the mean square error on Ω and Γ when OS is {11, 22} in Figure A.14 and Figure A.15, where Figure A.15(a)
is identical to the figure in the manuscript paper. Our proposed algorithm gives lower test errors than those obtained by the
other algorithms. We also show the image recovery results. Figures A.16 and A.17 show the reconstructed images when
OS is {11, 22}, respectively. From these figures, we find that the proposed algorithm shows a good performance, especially
for the lower sampling ratio.

Case R2: MovieLens-10M. Figure A.18 and Figure A.19 show the convergence plots for all the five runs of ranks r =
(4, 4, 4), (6, 6, 6), (8, 8, 8) and (10, 10, 10) on Ω and Γ, respectively. These figures show the superior performance of our
proposed algorithm.

Experiments for online algorithms:

Case O: online instances. Figure A.20 and A.21 show the convergence plots for all the five runs on tensors of ranks
100 × 100 × 5000, and 100 × 100 × 10000 with rank r = (5, 5, 5) on Ω and Γ, respectively. These figures show that
the proposed stochastic gradient descent algorithm gives similar or faster convergence than the proposed batch gradient
descent algorithm.

Figure A.22 and A.23 show the convergence speed comparisons in the train error and the test error of the proposed online
and batch algorithms with TeCPSGD and OLSTEC with rank r = (5, 5, 5) on the real-world video sequence Airport Hall
dataset. These figures show that the proposed stochastic gradient descent algorithm gives similar or faster convergence than
the proposed batch algorithm. In addition, Table B shows that the final train and test MSEs show the superior performance
of the proposed algorithms.
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Figure A.1. Case S1: comparison between metrics (test error)
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(a) r = (5, 5, 5).
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(b) r = (10, 10, 10).
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(c) r = (15, 15, 15).
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(d) r = (5, 5, 5).

10 20 30 10 20 30 10 20 30

10
−10

10
0

OS

M
e
a
n

 s
q

u
a
re

 e
rr

o
r 

o
n

 Ω

 

 

100 × 100 × 100 150 × 150 × 150 200 × 200 × 200

Proposed geomCG HaLRTC TOpt Latent Hard

(e) r = (10, 10, 10).
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(f) r = (15, 15, 15).
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(g) 200× 200× 200, OS = 10,

r = (5, 5, 5).
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(h) 200× 200× 200, OS = 10,

r = (10, 10, 10).
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(i) 200× 200× 200, OS = 10,

r = (15, 15, 15).

Figure A.2. Case S2: small-scale comparisons on Ω (train error).
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(a) r = (5, 5, 5).
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(b) r = (10, 10, 10).
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(c) r = (15, 15, 15).
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(d) r = (5, 5, 5).
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(e) r = (10, 10, 10).

10 20 30 10 20 30 10 20 30

10
−10

10
0

OS

M
e
a
n

 s
q

u
a
re

 e
rr

o
r 

o
n

 Γ

 

 

100 × 100 × 100 150 × 150 × 150 200 × 200 × 200

Proposed geomCG HaLRTC TOpt Latent Hard

(f) r = (15, 15, 15).
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(g) 200× 200× 200, OS = 10,

r = (5, 5, 5).

0 1000 2000 3000
10

−15

10
−10

10
−5

10
0

10
5

Time in seconds

M
e
a
n

 s
q

u
a
re

 e
rr

o
r 

o
n

 Γ

 

 

Proposed
geomCG
HaLRTC
TOpt
Latent
Hard

(h) 200× 200× 200, OS = 10,

r = (10, 10, 10).
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(i) 200× 200× 200, OS = 10,

r = (15, 15, 15).

Figure A.3. Case S2: small-scale comparisons on Γ (test error).
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(a) 3000× 3000× 3000,

r = (5× 5× 5).
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(b) 5000× 5000× 5000,

r = (5× 5× 5).

0 100 200 300

10
−10

10
−5

10
0

Time in seconds

M
e
a
n

 s
q

u
a
re

 e
rr

o
r 

o
n

 Ω

 

 

Proposed
geomCG

(c) 10000× 10000× 10000,

r = (5× 5× 5).
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(d) 3000× 3000× 3000,

r = (10× 10× 10).
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(e) 5000× 5000× 5000,

r = (10× 10× 10).
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(f) 10000× 10000× 10000,

r = (10× 10× 10).

Figure A.4. Case S3: large-scale comparisons on Ω (train error).
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(a) 3000× 3000× 3000,

r = (5× 5× 5).
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(b) 5000× 5000× 5000,

r = (5× 5× 5).
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(c) 10000× 10000× 10000,

r = (5× 5× 5).
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(d) 3000× 3000× 3000,

r = (10× 10× 10).
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(e) 5000× 5000× 5000,

r = (10× 10× 10).
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(f) 10000× 10000× 10000,

r = (10× 10× 10).

Figure A.5. Case S3: large-scale comparisons on Γ (test error).
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(a) OS = 8.
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(b) OS = 6.
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(c) OS = 5.

Figure A.6. Case S4: low-sampling comparisons on Ω (train error).
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(a) OS = 8.
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(b) OS = 6.
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(c) OS = 5.

Figure A.7. Case S4: low-sampling comparisons on Γ (test error).
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Figure A.8. Case S5: CN = {5, 50, 100} on Ω (train error).
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Figure A.9. Case S6: noisy data on Ω (train error).
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(a) 20000× 7000× 7000,

r = (5× 5× 5).
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(b) 30000× 60000× 60000,

r = (5× 5× 5).
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(c) 40000× 5000× 5000,

r = (5× 5× 5).
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(d) r = (7× 6× 6),

10000× 10000× 10000.
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(e) r = (10× 5× 5),

10000× 10000× 10000.
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(f) r = (15× 4× 4),

10000× 10000× 10000.

Figure A.10. Case S7: rectangular comparisons on Ω (train error).
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(a) 20000× 7000× 7000,

r = (5× 5× 5).
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(b) 30000× 60000× 60000,

r = (5× 5× 5).
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(c) 40000× 5000× 5000,

r = (5× 5× 5).
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(e) r = (10× 5× 5),
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(f) r = (15× 4× 4),

10000× 10000× 10000.

Figure A.11. Case S7: rectangular comparisons on Γ (test error).
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(b) r = (10× 10× 10).

10 20 30 40 10 20 30 40 10 20 30 40
0

500

1000

1500

2000

2500

3000

3500

500 × 500 × 500

1000 × 1000
× 1000

1500 × 1500
× 1500

T
im

e
 i
n

 s
e
c
o

n
d

s

OS

 

 

Proposed
geomCG

(c) r = (15× 15× 15).
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(d) 500× 500× 500,

r = (15× 15× 15).
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(e) 1000× 1000× 1000,

r = (15× 15× 15).
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(f) 1500× 1500× 1500,

r = (15× 15× 15).

Figure A.12. Case S8: medium-scale comparisons on Ω (train error).
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(b) r = (10× 10× 10).
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(c) r = (15× 15× 15).
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(d) 500× 500× 500,

r = (15× 15× 15).
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(f) 1500× 1500× 1500,

r = (15× 15× 15).

Figure A.13. Case S8: medium-scale comparisons on Γ (test error).
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(a) OS = 11.
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(b) OS = 22.

Figure A.14. Case R1: mean square error on Ω (train error).
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(a) OS = 11.
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(b) OS = 22.

Figure A.15. Case R1: mean square error on Γ (test error).
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(a) Original. (b) Sampled (4.98% observed). (c) Proposed. (d) geomCG.

(e) HaLRTC. (f) TOpt. (g) Latent. (h) Hard.

Figure A.16. Case R1: recovery results on the hyperspectral image “Ribeira” (frame = 16, OS = 11).

(a) Original. (b) Sampled (9.96% observed). (c) Proposed. (d) geomCG.

(e) HaLRTC. (f) TOpt. (g) Latent. (h) Hard.

Figure A.17. Case R1: recovery results on the hyperspectral image “Ribeira” (frame = 16, OS = 22).
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(a) r = (4× 4× 4).
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(b) r = (6× 6× 6).
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(c) r = (8× 8× 8).
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(d) r = (10× 10× 10).

Figure A.18. Case R2: mean square error on Ω (train error).
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(d) r = (10× 10× 10).

Figure A.19. Case R2: mean square error on Γ (test error).
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(a) Mean square error on Ω (train error).
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(b) Mean square error on Γ (test error).

Figure A.20. Case O: mean square error on synthetic instance of size 100× 100× 5000.
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(a) Mean square error on Ω (train error).
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(b) Mean square error on Γ (test error).

Figure A.21. Case O: mean square error on synthetic instance of size 100× 100× 10000.

Table A.1. Case O: mean square error (5 runs) on Airport Hall dataset.

Error type Algorithm run 1 run 2 run 3 run 4 run 5
Training error Proposed (Online) 7.210000 7.211718 7.205027 7.255203 7.230000

on Ω Proposed (Batch) 7.215763 7.211496 7.208463 7.282901 7.218042
TeCPSGD 7.335320 7.389269 7.364065 7.393318 7.390530
OLSTEC 7.922385 7.653096 8.150799 8.248936 7.753596

Test error Proposed (Online) 7.462097 7.440332 7.452799 7.443505 7.450065
on Γ Proposed (Batch) 7.471942 7.440508 7.446072 7.492786 7.218042

TeCPSGD 7.592109 7.601955 7.600740 7.579759 7.600621
OLSTEC 8.205765 7.840107 8.599819 8.625715 7.965405
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(a) Run 1.
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(b) Run 2.
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(c) Run 3.
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(d) Run 4.
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(e) Run 5.

Figure A.22. Case O: mean square error on the training set Ω of the Airport Hall dataset.
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Figure A.23. Case O: mean square error on Γ (test error) for the Aiport Hall dataset.
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