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Abstract

We propose a novel Riemannian manifold pre-

conditioning approach for the tensor completion

problem with rank constraint. A novel Rieman-

nian metric or inner product is proposed that ex-

ploits the least-squares structure of the cost func-

tion and takes into account the structured symme-

try that exists in Tucker decomposition. The spe-

cific metric allows to use the versatile framework

of Riemannian optimization on quotient mani-

folds to develop preconditioned nonlinear con-

jugate gradient and stochastic gradient descent

algorithms for batch and online setups, respec-

tively. Concrete matrix representations of var-

ious optimization-related ingredients are listed.

Numerical comparisons suggest that our pro-

posed algorithms robustly outperform state-of-

the-art algorithms across different synthetic and

real-world datasets.

1. Introduction

This paper addresses the problem of low-rank tensor com-

pletion when the rank is a priori known or estimated. We

focus on 3-order tensors in the paper, but the developments

can be generalized to higher order tensors in a straight-

forward way. Given a tensor Xn1×n2×n3 , whose entries

X ⋆
i1,i2,i3 are only known for some indices (i1, i2, i3) ∈

Ω, where Ω is a subset of the complete set of indices

{(i1, i2, i3) : id ∈ {1, . . . , nd}, d ∈ {1, 2, 3}}, the fixed-

rank tensor completion problem is formulated as

min
X∈Rn1×n2×n3

1

|Ω|
‖PΩ(X )−PΩ(X

⋆)‖2F

subject to rank(X ) = r,
(1)
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where the operator PΩ(X )i1,i2,i3 = Xi1,i2,i3 if

(i1, i2, i3) ∈ Ω and PΩ(X )i1,i2,i3 = 0 otherwise and

(with a slight abuse of notation) ‖ · ‖F is the Frobenius

norm. |Ω| is the number of known entries. rank(X )
(= r = (r1, r2, r3)), called the multilinear rank of X , is

the set of the ranks of for each of mode-d unfolding matri-

ces. rd ≪ nd enforces a low-rank structure. The mode is a

matrix obtained by concatenating the mode-d fibers along

columns, and mode-d unfolding of a D-order tensor X is

Xd ∈ R
nd×nd+1···nDn1···nd−1 for d = {1, . . . , D}.

Problem (1) has many variants, and one of those is ex-

tending the nuclear norm regularization approach from the

matrix case (Candès & Recht, 2009) to the tensor case.

This results in a summation of nuclear norm regularization

terms, each one corresponds to each of the unfolding ma-

trices of X . While this generalization leads to good results

(Liu et al., 2013; Tomioka et al., 2011; Signoretto et al.,

2014), its applicability to large-scale instances is not triv-

ial, especially due to the necessity of high-dimensional

singular value decomposition computations. A different

approach exploits Tucker decomposition (Kolda & Bader,

2009, Section 4) of a low-rank tensor X to develop large-

scale algorithms for (1), e.g., in (Filipović & Jukić, 2013;

Kressner et al., 2014).

The present paper exploits both the symmetry present

in Tucker decomposition and the least-squares struc-

ture of the cost function of (1) to develop competi-

tive algorithms. The multilinear rank constraint forms

a smooth manifold (Kressner et al., 2014). To this

end, we use the concept of manifold preconditioning.

While preconditioning in unconstrained optimization is

well studied (Nocedal & Wright, 2006, Chapter 5), pre-

conditioning on constraints with symmetries, owing to

non-uniqueness of Tucker decomposition (Kolda & Bader,

2009), is not straightforward. We build upon the re-

cent work (Mishra & Sepulchre, 2016) that suggests to

use preconditioning with a tailored metric (inner prod-

uct) in the Riemannian optimization framework on quo-
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tient manifolds (Absil et al., 2008; Edelman et al., 1998;

Mishra & Sepulchre, 2016). The differences with respect

to the work of Kressner et al. (2014), which also exploits

the manifold structure, are twofold. (i) Kressner et al.

(2014) exploit the search space as an embedded subman-

ifold of the Euclidean space, whereas we view it as a prod-

uct of simpler search spaces with symmetries. Conse-

quently, certain computations have straightforward inter-

pretation. (ii) Kressner et al. (2014) work with the stan-

dard Euclidean metric, whereas we use a metric that is

tuned to the least-squares cost function, thereby induc-

ing a preconditioning effect. This novel idea of using

a tuned metric leads to a superior performance of our

algorithms. They also connect to state-of-the-art algo-

rithms proposed in (Ngo & Saad, 2012; Wen et al., 2012;

Mishra & Sepulchre, 2014; Boumal & Absil, 2015).

The paper is organized as follows. Section 2 discusses the

two fundamental structures of symmetry and least-squares

associated with (1) and proposes a novel metric that cap-

tures the relevant second order information of the problem.

The optimization-related ingredients on the Tucker mani-

fold are developed in Section 3. The cost function specific

ingredients are developed in Section 4. The final formulas

are listed in Table 1, which allow to develop preconditioned

conjugate gradient descent algorithm in the batch setup and

stochastic gradient descent algorithm in the online setup. In

Section 5, numerical comparisons with state-of-the-art al-

gorithms on various synthetic and real-world benchmarks

suggest a superior performance of our proposed algorithms.

Our proposed algorithms are implemented in the Matlab

toolbox Manopt (Boumal et al., 2014). The concrete proofs

of propositions, development of optimization-related ingre-

dients, and additional numerical experiments are shown in

Sections A and B, respectively, of the supplementary mate-

rial file. The Matlab codes for first and second order imple-

mentations, e.g., gradient descent and trust-region meth-

ods, are available at https://bamdevmishra.com/

codes/tensorcompletion/.

2. Exploiting the problem structure

Construction of efficient algorithms depends on properly

exploiting the problem structure. To this end, we focus on

two fundamental structures in (1): symmetry in the con-

straints and the least-squares structure of the cost function.

Finally, a novel metric is proposed.

The symmetry structure in Tucker decomposition. The

Tucker decomposition of a tensor X ∈ R
n1×n2×n3 of rank

r (=(r1, r2, r3)) is

X = G×1U1×2U2×3U3, (2)

where Ud ∈ St(rd, nd) for d ∈ {1, 2, 3} belongs to the

Stiefel manifold of matrices of size nd × rd with orthog-

onal columns and G ∈ R
r1×r2×r3 (Kolda & Bader, 2009).

Here, W×dV ∈ R
n1×···nd−1×m×nd+1×···nD computes the

d-mode product of a tensor W ∈ R
n1×···×nD and a matrix

V ∈ R
m×nd . Tucker decomposition (2) is not unique as X

remains unchanged under the transformation

(U1,U2,U3,G) 7→

(U1O1,U2O2,U3O3,G×1OT
1 ×2OT

2 ×3OT
3 )

(3)

for all Od ∈ O(rd), which is the set of orthogonal ma-

trices of size of rd × rd. The classical remedy to remove

this indeterminacy is to have additional structures on G like

sparsity or restricted orthogonal rotations (Kolda & Bader,

2009, Section 4.3). In contrast, we encode the transforma-

tion (3) in an abstract search space of equivalence classes,

defined as,

[(U1,U2,U3,G)] := {(U1O1,U2O2,U3O3,

G×1OT
1 ×2OT

2 ×3OT
3 ) : Od ∈ O(rd)}.

(4)

The set of equivalence classes is the quotient manifold

(Lee, 2003)

M/∼:= M/(O(r1)×O(r2)×O(r3)), (5)

where M is called the total space (computational space)

that is the product space

M := St(r1, n1)× St(r2, n2)× St(r3, n3)× R
r1×r2×r3 .

(6)

Due to the invariance (3), the local minima of (1) in M
are not isolated, but they become isolated on M/∼. Con-

sequently, the problem (1) is an optimization problem on

a quotient manifold for which systematic procedures are

proposed in (Absil et al., 2008; Edelman et al., 1998). A

requirement is to endow endow M/∼ with a Riemannian

structure, which conceptually translates (1) into an uncon-

strained optimization problem over the search spaceM/∼.

We call M/∼, defined in (5), the Tucker manifold as it re-

sults from Tucker decomposition.

The least-squares structure of the cost function. In un-

constrained optimization, the Newton method is interpreted

as a scaled steepest descent method, where the search space

is endowed with a metric (inner product) induced by the

Hessian of the cost function (Nocedal & Wright, 2006).

This induced metric (or its approximation) resolves conver-

gence issues of first order optimization algorithms. Analo-

gously, finding a good inner product for (1) is of profound

consequence. Specifically for the case of quadratic opti-

mization with rank constraint (matrix case), Mishra and

Sepulchre (Mishra & Sepulchre, 2016) propose a family of

Riemannian metrics from the Hessian of the cost function.

Applying this approach directly for the particular cost func-

tion of (1) is computationally costly. To circumvent the

https://bamdevmishra.com/codes/tensorcompletion/
https://bamdevmishra.com/codes/tensorcompletion/
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issue, we consider a simplified cost function by assum-

ing that Ω contains the full set of indices, i.e., we focus

on ‖X − X ⋆‖2F to propose a metric candidate. Applying

the metric tuning approach of (Mishra & Sepulchre, 2016)

to the simplified cost function leads to a family of Rie-

mannian metrics. A good trade-off between computational

cost and simplicity is by considering only the block diag-

onal elements of the Hessian of ‖X − X ⋆‖2F . It should

be noted that the cost function ‖X − X ⋆‖2F is convex

and quadratic in X . Consequently, it is also convex and

quadratic in the arguments (U1,U2,U3,G) individually.

Equivalently, the block diagonal approximation of the Hes-

sian of ‖X −X ⋆‖2F in (U1,U2,U3,G) is

((G1GT
1 )⊗ In1 , (G2GT

2 )⊗ In2 , (G3GT
3 )⊗ In3 , Ir1r2r3),

(7)

where Gd is the mode-d unfolding of G and is assumed to

be full rank. ⊗ is the Kronecker product. The terms GdGT
d

for d ∈ {1, 2, 3} are positive definite when r1 ≤ r2r3, r2 ≤
r1r3, and r3 ≤ r1r2, which is a reasonable assumption.

A novel Riemannian metric. An element x in the total

space M has the matrix representation (U1,U2,U3,G).
Consequently, the tangent space TxM is the Cartesian

product of the tangent spaces of the individual mani-

folds of (6), i.e., TxM has the matrix characterization

(Edelman et al., 1998)

TxM = {(ZU1 ,ZU2 ,ZU3 ,ZG)
∈ R

n1×r1 × R
n2×r2 × R

n3×r3 × R
r1×r2×r3 :

UT
d ZUd

+ ZT
Ud

Ud = 0, for d ∈ {1, 2, 3}}.
(8)

From the earlier discussion on symmetry and least-squares

structure, we propose the novel metric or inner product gx :
TxM× TxM → R

gx(ξx, ηx) = 〈ξU1
, ηU1

(G1GT
1 )〉+ 〈ξU2

, ηU2
(G2GT

2 )〉

+〈ξU3
, ηU3

(G3GT
3 )〉 + 〈ξG , ηG〉,

(9)

where ξx, ηx ∈ TxM are tangent vectors with matrix

characterizations, shown in (8), (ξU1 , ξU2 , ξU3 , ξG) and

(ηU1
, ηU2

, ηU3
, ηG), respectively and 〈·, ·〉 is the Euclidean

inner product. It should be emphasized that the proposed

metric (9) is induced from (7).

Proposition 1. Let (ξU1
, ξU2

, ξU3
, ξG) and

(ηU1
, ηU2

, ηU3
, ηG) be tangent vectors to the

quotient manifold (5) at (U1,U2,U3,G), and

(ξU1O1
, ξU2O2

, ξU3O3
, ξG×1OT

1 ×2OT

2 ×3OT

3
) and

(ηU1O1 , ηU2O2 , ηU3O3 , ηG×1OT

1 ×2OT

2 ×3OT

3
) be tan-

gent vectors to the quotient manifold (5) at

(U1O1,U2O2,U3O3,G×1OT
1 ×2OT

2 ×3OT
3 ). The metric

(9) is invariant along the equivalence class (4), i.e.,

g(U1,U2,U3,G)((ξU1
, ξU2

, ξU3
, ξG), (ηU1

, ηU2
, ηU3

, ηG))
= g(U1O1,U2O2,U3O3,G×1OT

1 ×2OT

2 ×3OT

3 )

((ξU1O1
, ξU2O2

, ξU3O3
, ξG×1OT

1 ×2OT

2 ×3OT

3
),

(ηU1O1 , ηU2O2 , ηU3O3 , ηG×1OT

1 ×2OT

2 ×3OT

3
)).

3. Notions of manifold optimization

y

x

x+

Vx
Hx

TxM = Hx ⊕ VxM

[x] T[x](M/ ∼)

ξ[x]

[x+] [Rx(ξx)]
M/∼

ξx

Rx(ξx)

Figure 1. Riemannian optimization framework: geometric ob-

jects, shown in dotted lines, on quotient manifold M/∼ call for

matrix representatives, shown in solid lines, in the total space M.

Each point on a quotient manifold represents an entire

equivalence class of matrices in the total space. Abstract

geometric objects on the quotient manifold M/∼ call for

matrix representatives in the total space M. Similarly, al-

gorithms are run in the total space M, but under appro-

priate compatibility between the Riemannian structure of

M and the Riemannian structure of the quotient manifold

M/ ∼, they define algorithms on the quotient manifold.

The key is endowing M/∼ with a Riemannian structure.

Once this is the case, a constraint optimization problem,

for example (1), is conceptually transformed into an uncon-

strained optimization over the Riemannian quotient mani-

fold (5). Below we briefly show the development of various

geometric objects that are required to optimize a smooth

cost function on the quotient manifold (5) with first order

methods, e.g., conjugate gradients.

Quotient manifold representation and horizontal lifts.

Figure 1 illustrates a schematic view of optimization with

equivalence classes, where the points x and y in M belong

to the same equivalence class (shown in solid blue color)

and they represent a single point [x] := {y ∈ M : y ∼ x}
on the quotient manifold M/ ∼. The abstract tangent

space T[x](M/ ∼) at [x] ∈ M/ ∼ has the matrix repre-

sentation in TxM, but restricted to the directions that do

not induce a displacement along the equivalence class [x].
This is realized by decomposing TxM into two comple-

mentary subspaces, the vertical and horizontal subspaces.

The vertical space Vx is the tangent space of the equiva-

lence class [x]. On the other hand, the horizontal space

Hx is the orthogonal subspace to Vx in the sense of the

metric (9). Equivalently, TxM = Vx ⊕Hx. The horizon-

tal subspace Hx provides a valid matrix representation to
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the abstract tangent space T[x](M/ ∼). An abstract tan-

gent vector ξ[x] ∈ T[x](M/∼) at [x] has a unique element

ξx ∈ Hx that is called its horizontal lift.

A Riemannian metric gx : TxM × TxM → R at x ∈
M defines a Riemannian metric g[x] : T[x](M/ ∼) ×
T[x](M/ ∼) → R, i.e., g[x](ξ[x], η[x]) := gx(ξx, ηx) on

the quotient manifold M/∼, if gx(ξx, ηx) does not depend

on a specific representation along the equivalence class [x].
Here, ξ[x] and η[x] are tangent vectors in T[x](M/∼), and

ξx and ηx are their horizontal lifts in Hx at x, respectively.

Equivalently, the definition of the Riemannian metric is

well posed when gx(ξx, ζx) = gx(ξy , ζy) for all x, y ∈ [x],
where ξx, ζx ∈ Hx and ξy , ζy ∈ Hy are the horizontal

lifts of ξ[x], ζ[x] ∈ T[x](M/ ∼) along the same equiva-

lence class [x]. This holds true for the proposed metric (9)

as shown in Proposition 1. From (Absil et al., 2008), en-

dowed with the Riemannian metric (9), the quotient man-

ifold M/∼ is a Riemannian submersion of M. The sub-

mersion principle allows to work out concrete matrix rep-

resentations of abstract object on M/∼, e.g., the gradient

of a smooth cost function (Absil et al., 2008).

Starting from an arbitrary matrix (with appropriate dimen-

sions), two linear projections are needed: the first projec-

tion Ψx is onto the tangent space TxM, while the second

projection Πx is onto the horizontal subspace Hx. The

computation cost of these is O(n1r
2
1 + n2r

2
2 + n3r

2
3).

The tangent space TxM projection is obtained by extract-

ing the component normal to TxM in the ambient space.

The normal space NxM has the matrix characterization

{(U1SU1
(G1GT

1 )
−1,U2SU2

(G2GT
2 )

−1,U3SU3
(G3GT

3 )
−1, 0) :

SUd
∈ R

rd×rd , ST
Ud

= SUd
, for d ∈ {1, 2, 3}}.

Symmetric matrices SUd
for all d ∈ {1, 2, 3} pa-

rameterize the normal space. Finally, the operator

Ψx : Rn1×r1 ×R
n2×r2 ×R

n3×r3 ×R
r1×r2×r3 → TxM :

(YU1 ,YU2 ,YU3 ,YG) 7→ Ψx(YU1 ,YU2 ,YU3 ,YG) is given

as follows.

Proposition 2. The quotient manifold (5) endowed with the

metric (9) admits the tangent space projector defined as

Ψx(YU1
,YU2

,YU3
,YG) = (YU1

−U1SU1
(G1GT

1 )
−1,

YU2
−U2SU2

(G2GT
2 )

−1,YU3
−U3SU3

(G3GT
3 )

−1,YG),
(10)

where SUd
is the solution to the Lyapunov equation

SUd
GdGT

d +GdGT
d SUd

= GdGT
d (Y

T
Ud

Ud+UT
d YUd

)GdGT
d

for d ∈ {1, 2, 3}.

The Lyapunov equations in Proposition 2 are solved effi-

ciently with the Matlab’s lyap routine.

The horizontal space projection of a tangent vector is ob-

tained by removing the component along the vertical space.

The vertical space Vx has the matrix characterization

{(U1Ω1,U2Ω2,U3Ω3,−(G×1Ω1+G×2Ω2+G×3Ω3)) :

Ωd ∈ R
rd×rd ,ΩT

d = −Ωd for d ∈ {1, 2, 3}}. Skew sym-

metric matrices Ωd for all d ∈ {1, 2, 3} parameterize the

vertical space. Finally, the horizontal projection operator

Πx : TxM :→ Hx : ηx 7→ Πx(ηx) is given as follows.

Proposition 3. The quotient manifold (5) endowed with the

metric (9) admits the horizontal projector defined as

Πx(ηx) = (ηU1
− U1Ω1, ηU2

− U2Ω2, ηU3
− U3Ω3,

ηG−(−(G×1Ω1+G×2Ω2+G×3Ω3))),

where ηx = (ηU1
, ηU2

, ηU3
, ηG) ∈ TxM and Ωd is a skew-

symmetric matrix of size rd × rd that is the solution to the

coupled Lyapunov equations



























































G1GT
1 Ω1 +Ω1G1GT

1

−G1(Ir3 ⊗Ω2)G
T
1 − G1(Ω3 ⊗ Ir2)G

T
1

= Skew(UT
1 ηU1

G1GT
1 ) + Skew(G1η

T
G1
),

G2GT
2 Ω2 +Ω2G2GT

2

−G2(Ir3 ⊗Ω1)G
T
2 − G2(Ω3 ⊗ Ir1)G

T
2

= Skew(UT
2 ηU2G2GT

2 ) + Skew(G2η
T
G2
),

G3GT
3 Ω3 +Ω3G3GT

3

−G3(Ir2 ⊗Ω1)G
T
3 − G3(Ω2 ⊗ Ir1)G

T
3

= Skew(UT
3 ηU3

G3GT
3 ) + Skew(G3η

T
G3
),

(11)

where Skew(·) extracts the skew-symmetric part of a

square matrix, i.e., Skew(D) = (D − DT )/2.

The coupled Lyapunov equations (11) are solved efficiently

with the Matlab’s pcg routine that is combined with a spe-

cific symmetric preconditioner resulting from the Gauss-

Seidel approximation of (11). For the variable Ω1, the pre-

conditioner is of the form G1GT
1 Ω1+Ω1G1GT

1 . Similarly,

for the variables Ω2 and Ω3.

Retraction. A retraction is a mapping that maps vec-

tors in the horizontal space to points on the search space

M and satisfies the local rigidity condition (Absil et al.,

2008). It provides a natural way to move on the manifold

along a search direction. Because the total space M has

the product nature, we can choose a retraction by combin-

ing retractions on the individual manifolds, i.e., Rx(ξx) =
(uf(U1+ξU1), uf(U2+ξU2), uf(U3+ξU3),G+ξG), where

ξx ∈ Hx and uf(·) extracts the orthogonal factor of a full

column rank matrix, i.e., uf(A) = A(AT A)−1/2. The

retraction Rx defines a retraction R[x](ξ[x]) := [Rx(ξx)]
on the quotient manifold M/ ∼, as the equivalence class

[Rx(ξx)] does not depend on specific matrix representa-

tions of [x] and ξ[x], where ξx is the horizontal lift of the

abstract tangent vector ξ[x] ∈ T[x](M/ ∼).

Vector transport. A vector transport on a manifold M is

a smooth mapping that transports a tangent vector ξx ∈
TxM at x ∈ M to a vector in the tangent space at a

point Rx(ηx). It is defined by the symbol Tηx
ξx. It gen-

eralizes the classical concept of translation of vectors in
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the Euclidean space to manifolds (Absil et al., 2008, Sec-

tion 8.1.4). The horizontal lift of the abstract vector trans-

port Tη[x]
ξ[x] on M/ ∼ has the matrix characterization

ΠRx(ηx)(Tηx
ξx) = ΠRx(ηx)(ΨRx(ηx)(ξx)), where ξx and

ηx are the horizontal lifts in Hx of ξ[x] and η[x] that belong

to T[x](M/∼). Ψx(·) and Πx(·) are projectors defined in

Propositions 2 and 3. The computational cost of transport-

ing a vector solely depends on the projection and retraction

operations.

4. Riemannian algorithms for (1)

We propose two Riemannian preconditioned algorithms

for the tensor completion problem (1) that are based on

the developments in Section 3. The preconditioning ef-

fect follows from the specific choice of the metric (9).

In the batch setting, we use the off-the-shelf conjugate

gradient implementation of Manopt for any smooth cost

function (Boumal et al., 2014). A complete description

of the Riemannian nonlinear conjugate gradient method

is in (Absil et al., 2008, Chapter 8). In the online set-

ting, we use the stochastic gradient descent implementation

(Bonnabel, 2013). For fixed rank, theoretical convergence

of the Riemannian algorithms are to a stationary point, and

the convergence analysis follows from (Sato & Iwai, 2015;

Ring & Wirth, 2012; Bonnabel, 2013). However, as simu-

lations show, convergence to global minima is observed in

many challenging instances.

In addition to the manifold-related ingredients in Section 3,

the ingredients needed are the cost function specific ones.

To this end, we show the computation of the Riemannian

gradient as well as a way to compute an initial guess for the

step-size, which is used in the conjugate gradient method.

The concrete formulas are shown in Table 1.

Riemannian gradient computation. Let f(X ) =
‖PΩ(X ) − PΩ(X

⋆)‖2F /|Ω| be the mean square error

function of (1), and S = 2(PΩ(G×1U1×2U2×3U3) −
PΩ(X

⋆))/|Ω| be an auxiliary sparse tensor variable that

is interpreted as the Euclidean gradient of f in R
n1×n2×n3 .

The partial derivatives of f with respect to (U1,U2,U3,G)
are computed in terms of the unfolding matrices Sd. Due

to the specific scaled metric (9), the partial derivatives are

further scaled by ((G1GT
1 )

−1, (G2GT
2 )

−1, (G3GT
3 )

−1,I),
denoted as egradxf (after scaling). Finally, from the

Riemannian submersion theory (Absil et al., 2008, Sec-

tion 3.6.2), the horizontal lift of grad[x]f is equal to

gradxf = Ψ(egradxf). The total numerical cost of com-

puting the Riemannian gradient depends on computing the

partial derivatives, which is O(|Ω|r1r2r3).

Proposition 4. The cost function (1) at (U1,U2,U3,G) un-

der the quotient manifold (5) endowed with the Riemannian

metric (9) admits the horizontal lift of the Riemannian gra-

dient

(S1(U3 ⊗ U2)G
T
1 (G1GT

1 )
−1 − U1BU1

(G1GT
1 )

−1,

S2(U3 ⊗ U1)G
T
2 (G2GT

2 )
−1 − U2BU2

(G2GT
2 )

−1,

S3(U2 ⊗ U1)G
T
3 (G3GT

3 )
−1 − U3BU3

(G3GT
3 )

−1,

S ×1 UT
1 ×2 UT

2 ×3 UT
3 ),

(12)

where BUd
for d ∈ {1, 2, 3} are the solutions to the Lya-

punov equations






























BU1
G1GT

1 + G1GT
1 BU1

= 2Sym(G1GT
1 UT

1 (S1(U3 ⊗ U2)G
T
2 ),

BU2
G2GT

2 + G2GT
2 BU2

= 2Sym(G2GT
2 UT

2 (S2(U3 ⊗ U1)G
T
2 ),

BU3
G3GT

3 + G3GT
3 BU3

= 2Sym(G3GT
3 UT

3 (S3(U2 ⊗ U1)G
T
3 ),

where Sym(·) extracts the symmetric part of a matrix.

Initial guess for the step-size. Following

(Mishra & Sepulchre, 2014; Vandereycken, 2013;

Kressner et al., 2014), the least-squares structure of

the cost function in (1) is exploited to compute a linearized

step-size guess efficiently along a search direction by

considering a polynomial approximation of degree 2 over

the manifold. Given a search direction ξx ∈ Hx, the step-

size guess is argmins∈R+
‖PΩ(G×1U1×2U2×3U3 +

sG×1ξU1
×2U2×3U3 + sG×1U1×2ξU2

×3U3 +
sG×1U1×2U2×3ξU3

+ sξG×1U1×2U2×3U3) −
PΩ(X

⋆)‖2F , which has a closed-form expression and

the numerical cost of computing it is O(|Ω|r1r2r3).

Stochastic gradient descent in online setting. In the on-

line setting, we update (U1,U2,U3,G) every time a frontal

slice, i.e., a matrix ∈ R
n1×n2 , is randomly sampled from

X ⋆
i1,i2,i3

. Equivalently, we assume that the tensor grows

along the third dimension. More concretely, we calculate

the rank-one Riemannian gradient (12) for the input slice.

(U1,U2,U3,G) are updated by taking a step along the neg-

ative Riemannian gradient direction. Subsequently, we re-

tract using Rx. A popular formula for the step-size γk at

k-th update is γk = γ0/(1 + γ0λk), where γ0 is the ini-

tial step-size and λ is a fixed reduction factor. Following

(Bottou, 2012), we select γ0 in the pre-training phase us-

ing a small sample size of a training set. λ is fixed to 10−7.

Computational cost. The total computational cost per it-

eration of our proposed conjugate gradient implementation

is O(|Ω|r1r2r3), where |Ω| is the number of known en-

tries. It should be stressed that the computational cost of

our conjugate gradient implementation is equal to that of

(Kressner et al., 2014). In the online setting, each stochas-

tic gradient descent update costs O(|Ωslice|r1r2 + n1r
2
1 +

n2r
2
2 + Tr23 + r1r2r3), where |Ωslice| is the number of

known entries of the current frontal slice of the incomplete

tensor X ⋆
i1,i2,i3

, and T is the number of slices that we have

seen along n3 direction.
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Table 1. Tucker manifold related optimization ingredients for (1)

Matrix representation x = (U1,U2,U3,G)
Computational space M St(r1, n1)× St(r2, n2)× St(r3, n3)× R

r1×r2×r3

Group action {(U1O1,U2O2,U3O3,G×1OT
1 ×2OT

2 ×3OT
3 ) : Od ∈ O(rd), for d ∈ {1, 2, 3}}

Quotient space M/∼ St(r1, n1)× St(r2, n2)× St(r3, n3)× R
r1×r2×r3 /(O(r1)×O(r2)×O(r3))

Ambient space R
n1×r1 × R

n2×r2 × R
n3×r3 × R

r1×r2×r3

Tangent vectors in TxM {(ZU1 ,ZU2 ,ZU3 ,ZG) ∈ R
n1×r1 × R

n2×r2 × R
n3×r3 × R

r1×r2×r3

: UT
d ZUd

+ ZT
Ud

Ud = 0, for d ∈ {1, 2, 3}}

Metric gx(ξx, ηx) for 〈ξU1
, ηU1

(G1GT
1 )〉+〈ξU2

, ηU2
(G2GT

2 )〉+〈ξU3
, ηU3

(G3GT
3 )〉+〈ξG , ηG〉

any ξx, ηx ∈ TxM
Vertical tangent vectors in Vx {(U1Ω1,U2Ω2,U3Ω3,−(G×1Ω1 + G×2Ω2 + G×3Ω3)) :

Ωd ∈ R
rd×rd ,ΩT

d = −Ωd, for d ∈ {1, 2, 3}}

Horizontal tangent vectors in Hx {(ζU1
, ζU2

, ζU3
, ζG) ∈ TxM : (GdGT

d )ζ
T
Ud

Ud + ζGd
GT

d is symmetric, for d ∈ {1, 2, 3}}

Ψ(·) projects an ambient (YU1
− U1SU1

(G1GT
1 )

−1,YU2
− U2SU2

(G2GT
2 )

−1,
vector (YU1

,YU2
,YU3

,YG) YU3
− U3SU3

(G3GT
3 )

−1,YG), where SUd
for d ∈ {1, 2, 3} are computed

onto TxM by solving Lyapunov equations as in (10).

Π(·) projects a tangent vector ξ (ξU1
− U1Ω1, ξU2

− U2Ω2, ξU3
− U3Ω3,

onto Hx ξG − (−(G×1Ω1 + G×2Ω2 + G×3Ω3))), Ωd is computed in (11).

First order derivative of f(x) (S1(U3 ⊗ U2)G
T
1 , S2(U3 ⊗ U1)G

T
2 , S3(U2 ⊗ U1)G

T
3 ),S ×1 UT

1 ×2 UT
2 ×3 UT

3 ),
where S = 2

|Ω|
(PΩ(G×1U1×2U2×3U3)−PΩ(X

⋆)).

Retraction Rx(ξx) (uf(U1 + ξU1
),uf(U2 + ξU2

),uf(U3 + ξU3
),G + ξG)

Horizontal lift of the ΠRx(ηx)(ΨRx(ηx)(ξx))
vector transport Tη[x]

ξ[x]

5. Numerical comparisons

In the batch setting, we show a number of numerical

comparisons of our proposed conjugate gradient algo-

rithm with state-of-the-art algorithms that include TOpt

(Filipović & Jukić, 2013) and geomCG (Kressner et al.,

2014), for comparisons with Tucker decomposition

based algorithms, and HaLRTC (Liu et al., 2013), Latent

(Tomioka et al., 2011), and Hard (Signoretto et al., 2014)

as nuclear norm minimization algorithms. In the on-

line setting, we compare our proposed stochastic gradient

descent algorithm with CANDECOMP/PARAFAC based

TeCPSGD (Mardani et al., 2015) and OLSTEC (Kasai,

2016). All simulations are performed in Matlab on a 2.6

GHz Intel Core i7 machine with 16 GB RAM. For specific

operations with unfoldings of S, we use the mex interfaces

for Matlab that are provided by the authors of geomCG. For

large-scale instances, our algorithm is only compared with

geomCG as others cannot handle them. Cases S and R are

for batch instances, whereas Case O is for online instances.

Since the dimension of the space of a tensor ∈ R
n1×n2×n3

of rank r = (r1, r2, r3) is dim(M/∼) =
∑3

d=1(ndrd −
r2d)+r1r2r3, we randomly and uniformly select known en-

tries based on a multiple of the dimension, called the over-

sampling (OS) ratio, to create the train set Ω. Algorithms

are initialized randomly, as suggested in (Kressner et al.,

2014), and are stopped when either the mean square error

(MSE) on the train set Ω is below 10−12 or the number of

iterations exceeds 250. We also evaluate the mean square

error on a test set Γ, which is different from Ω. Five runs

are performed in each scenario and the plots show all of

them. The time plots are shown with standard deviations.

It should be noted that we show most numerical compar-

isons on the test set Γ as it allows to compare with nuclear

norm minimization algorithms, which optimize a different

(training) cost function. Additional plots are provided as

supplementary material.

Case S1: comparison with the Euclidean metric. We

first show the benefit of the proposed metric (9) over the

conventional choice of the Euclidean metric that exploits

the product structure of M and symmetry (3). This is

defined by combining the individual natural metrics for

St(rd, nd) and R
r1×r2×r3 . For simulations, we randomly

generate a tensor of size 200 × 200 × 200 and rank r =
(10, 10, 10). OS is 10. For simplicity, we compare gradient

descent algorithms with Armijo backtracking linesearch for

both the metric choices. Figure 2(a) shows that the algo-

rithm with the metric (9) gives a superior performance in

train error than that of the conventional metric choice.

Case S2: small-scale instances. Small-scale tensors of

size 100× 100× 100, 150× 150× 150, and 200× 200×
200 and rank r = (10, 10, 10) are considered. OS is

{10, 20, 30}. Figure 2(b) shows that our proposed algo-

rithm has faster convergence than others. In Figure 2(c),

the lowest test errors are obtained by our proposed algo-

rithm and geomCG.

Case S3: large-scale instances. We consider large-scale

tensors of size 3000× 3000× 3000, 5000× 5000× 5000,

and 10000 × 10000 × 10000 and ranks r = (5, 5, 5) and
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(a) Case S1: comparison between metrics
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(b) Case S2: r = (10, 10, 10).
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(c) Case S2: r = (10, 10, 10).
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0 50 100 150 200

10
−10

10
−5

10
0

Time in seconds

M
ea

n
 s

q
u

ar
e 

er
ro

r 
o

n
 Γ

 

 

Proposed
geomCG

(e) Case S4: OS = 4.
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(f) Case S5: CN = {5, 50, 100}.
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(g) Case S6: noisy data.
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(i) Case R1: Ribeira, OS = 11.

Figure 2. Experiments on synthetic and real datasets.

(10, 10, 10). OS is 10. Our proposed algorithm outper-

forms geomCG in Figure 2(d).

Case S4: influence of low sampling. We look into prob-

lem instances from scarcely sampled data, e.g., OS is 4.

The test requires completing a tensor of size 10000 ×
10000 × 10000 and rank r = (5, 5, 5). Figure 2(e) shows

the superior performance of the proposed algorithm against

geomCG. Whereas the test error increases for geomCG, it

decreases for the proposed algorithm.

Case S5: influence of ill-conditioning and low sam-

pling. We consider the problem instance of Case S4 with

OS = 5. Additionally, for generating the instance, we im-

pose a diagonal core G with exponentially decaying posi-

tive values of condition numbers (CN) 5, 50, and 100. Fig-

ure 2(f) shows that the proposed algorithm outperforms ge-

omCG for all the considered CN values.

Case S6: influence of noise. We evaluate the conver-

gence properties of algorithms under the presence of noise

by adding scaled Gaussian noise PΩ(E) to PΩ(X
⋆) as

in (Kressner et al., 2014). The different noise levels are

ǫ = {10−4, 10−6, 10−8, 10−10, 10−12}. In order to eval-

uate for ǫ = 10−12, the stopping threshold on the MSE

of the train set is lowered to 10−24. The tensor size and

rank are same as in Case S4 and OS is 10. Figure 2(g)

shows that the test error for each ǫ is almost identical to the

ǫ2‖PΩ(X
⋆)‖2F (Kressner et al., 2014), but our proposed

algorithm converges faster than geomCG.

Case S7: rectangular instances. We consider instances

where the dimensions and ranks along certain modes are

different than others. Two cases are considered. Case (7.a)

considers tensors size 20000×7000×7000,30000×6000×
6000, and 40000 × 5000 × 5000 with rank r = (5, 5, 5).
Case (7.b) considers a tensor of size 10000×10000×10000
with ranks (7, 6, 6), (10, 5, 5), and (15, 4, 4). In all the

cases, the proposed algorithm converges faster than ge-

omCG as shown in Figure 2(h).

Case R1: hyperspectral image. We consider the hyper-
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Table 2. Cases R1 and R2: test MSE on Γ and time in seconds
Ribeira OS = 11 OS = 22

Algorithm Time MSE on Γ Time MSE on Γ

Proposed 33± 13 8.2095 · 10−4 ± 1.7 · 10−5 67 ± 43 6.9516 · 10−4 ± 1.1 · 10−5

geomCG 36 ± 14 3.8342 · 10−1 ± 4.2 · 10−2 150 ± 48 6.2590 · 10−3 ± 4.5 · 10−3

HaLRTC 46 ± 0 2.2671 · 10−3 ± 3.6 · 10−5 48 ± 0 1.3880 · 10−3 ± 2.7 · 10−5

TOpt 80 ± 32 1.7854 · 10−3 ± 3.8 · 10−4
27± 21 2.1259 · 10−3 ± 3.8 · 10−4

Latent 553 ± 3 2.9296 · 10−3 ± 6.4 · 10−5 558 ± 3 1.6339 · 10−3 ± 2.3 · 10−5

Hard 400 ± 5 6.5090 · 102 ± 6.1 · 101 402 ± 4 6.5989 · 102 ± 9.8 · 101

MovieLens-10M Proposed geomCG

r Time MSE on Γ Time MSE on Γ

(4, 4, 4) 1748± 441 0.6762± 1.5 · 10−3 2981 ± 40 0.6956 ± 2.8 · 10−3

(6, 6, 6) 6058± 47 0.6913± 3.3 · 10−3 6554 ± 655 0.7398 ± 7.1 · 10−3

(8, 8, 8) 11370± 103 0.7589± 7.1 · 10−3 13853 ± 118 0.8955 ± 3.3 · 10−2

(10, 10, 10) 32802± 52 1.0107± 2.7 · 10−2 38145 ± 36 1.6550 ± 8.7 · 10−2
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(a) Case O: synthetic dataset.
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(b) Case O: Airport Hall dataset.

Figure 3. Experiments on online instances.

spectral image “Ribeira” (Foster et al., 2007) discussed in

(Signoretto et al., 2011; Kressner et al., 2014). The tensor

size is 1017× 1340× 33, where each slice corresponds to

a particular image measured at a different wavelength. As

suggested in (Signoretto et al., 2011; Kressner et al., 2014),

we resize it to 203 × 268 × 33. We perform five ran-

dom samplings of the pixels based on the OS values 11
and 22, corresponding to the rank r=(15, 15, 6) adopted

in (Kressner et al., 2014). This set is further randomly

split into 80/10/10–train/validation/test partitions. The al-

gorithms are stopped when the MSE on the validation set

starts to increase. While OS = 22 corresponds to the ob-

servation ratio of 10% studied in (Kressner et al., 2014),

OS = 11 considers a challenging scenario with the obser-

vation ratio of 5%. Figures 2(i) shows the good perfor-

mance of our algorithm. Table 2 compiles the results.

Case R2: MovieLens-10M1. This dataset contains

10000054 ratings corresponding to 71567 users and 10681
movies. We split the time into 7-days wide bins results, and

finally, get a tensor of size 71567× 10681× 731. The frac-

tion of known entries is less than 0.002%. The completion

task on this dataset reveals periodicity of the latent genres.

We perform five random 80/10/10–train/validation/test par-

titions. The maximum iteration threshold is set to 500. In

Table 2, our proposed algorithm consistently gives lower

test errors than geomCG across different ranks.

1
http://grouplens.org/datasets/movielens/.

Case O: online instances. We compare the proposed

stochastic gradient descent algorithm with its batch coun-

terpart gradient descent algorithm and with TeCPSGD

(Mardani et al., 2015) and OLSTEC (Kasai, 2016). As the

implementations of TeCPSGD and OLSTEC are computa-

tionally more intensive than ours, our plots only show test

MSE against the number of outer iterations, i.e., the num-

ber of the passes through the data.

Figure 3(a) shows comparisons on a synthetic instance of

tensor size 100 × 100 × 10000 with rank r = (5, 5, 5).
γ0 is selected from the step-size list {8, 9, 10, 11, 12} in

the pre-training phase. 10% entries are randomly observed.

The pre-training uses 10% frontal slices of all the slices.

The maximum number of outer loops is set to 100. Figure

3(a) shows five different runs, where the online algorithm

has the same asymptotic convergence behavior as the batch

counterpart on a test dataset Γ. Figure 3(b) shows com-

parisons on the Airport Hall surveillance video sequence

dataset2 of size 176 × 144 with 1000 frames. γ0 is se-

lected from {30, 40, 50, 60, 70} and 10% frontal slices are

selected for pre-training. 2% of the entries are observed. In

Figure 3(b), both the proposed online and batch algorithms

achieve lower test errors than TeCPSGD and OLSTEC.

6. Conclusion

We have proposed preconditioned batch (conjugate gra-

dient) and online (stochastic gradient descent) algorithms

for the tensor completion problem. The algorithms stem

from the Riemannian preconditioning approach that ex-

ploits the fundamental structures of symmetry (due to non-

uniqueness of Tucker decomposition) and least-squares of

the cost function. A novel Riemannian metric (inner prod-

uct) is proposed that enables to use the versatile Rieman-

nian optimization framework. Numerical comparisons sug-

gest that our proposed algorithms have a superior perfor-

mance on different benchmarks.

2
http://perception.i2r.a-star.edu.sg/

bk_model/bk_index.html

http://grouplens.org/datasets/movielens/
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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