Supplementary Material for 'Efficient Private Empirical Risk Minimization for High-dimensional Learning'

Shiva Prasad Kasiviswanathan Samsung Research America, Mountain View, CA 94043

Hongxia Jin

Samsung Research America, Mountain View, CA 94043

A. Proof of Claim 2.1

Proof of Claim 2.1. Consider $\theta_a, \theta_b \in C$, $\mathbf{x} \in \mathbb{R}^d$ with $\|\mathbf{x}\| \leq 1, y \in \mathbb{R}$ with $|y| \leq 1$,

$$\begin{aligned} &|\ell(\langle \mathbf{x}, \theta_a \rangle; y) - \ell(\langle \mathbf{x}, \theta_b \rangle; y)| \\ &= |\ell(\langle \mathbf{x}, \theta_a \rangle; y) - \ell(\langle \mathbf{x}, \theta_a \rangle + \langle \mathbf{x}, \theta_b - \theta_a \rangle; y)| \\ &\leq |\lambda_\ell \langle \mathbf{x}, \theta_b - \theta_a \rangle| \leq \lambda_\ell ||\theta_a - \theta_b||. \end{aligned}$$

Since this holds for every x and y in the chosen domain, this completes the proof.

B. Missing Proofs from Section 3

Proof of Lemma 3.3. We first investigate the function $\ell(\langle \Phi \mathbf{x}_i, \vartheta \rangle; y_i)$. Consider $\vartheta_a, \vartheta_b \in \Phi \mathcal{C}$,

 $\begin{aligned} &|\ell(\langle \Phi \mathbf{x}_i, \vartheta_a \rangle; y_i) - \ell(\langle \Phi \mathbf{x}_i, \vartheta_b \rangle; y_i)| \\ &= |\ell(\langle \Phi \mathbf{x}_i, \vartheta_a \rangle; y_i) - \ell(\langle \Phi \mathbf{x}_i, \vartheta_a \rangle + \langle \Phi \mathbf{x}_i, \vartheta_b - \vartheta_a \rangle; y_i)| \\ &\leq |\lambda_\ell \langle \Phi \mathbf{x}_i, \vartheta_b - \vartheta_a \rangle|. \end{aligned}$

Using Theorem 3.1, if

$$m = \Theta((\psi^4/\gamma^2) \max\{\log n, \log(1/\beta)\})$$

then with probability at least $1 - \beta$, $\|\Phi \mathbf{x}_i\| \le (1 + \gamma) \|\mathbf{x}_i\| \le 2\|\mathbf{x}_i\| \le 2$. Therefore, with probability at least $1 - \beta$,

$$|\ell(\langle \Phi \mathbf{x}_i, \vartheta_a \rangle; y_i) - \ell(\langle \Phi \mathbf{x}_i, \vartheta_b \rangle; y_i)| \le 2\lambda_\ell \|\vartheta_b - \vartheta_a\|.$$

Taking a union bound over all *i*'s, with probability at least $1 - \beta n$, for all $i \in [n]$, $|\lambda_{\ell} \langle \Phi \mathbf{x}_i, \vartheta_b - \vartheta_a \rangle| \le 2\lambda_{\ell} ||\vartheta_b - \vartheta_a||$. Replacing β by β/n gives the proof.

Proof of Lemma 3.4. If S is the set of points $\mathbf{x}_1, \ldots, \mathbf{x}_n, \hat{\theta}$, then as mentioned above $w(S) = O(\sqrt{\log n})$. For any $i \in [n]$, using Corollary 3.2, with probability at least $1 - \beta$,

$$\ell(\langle \Phi \mathbf{x}_i, \Phi \theta \rangle; y_i) \le \ell(\langle \mathbf{x}_i, \theta \rangle; y_i) + \lambda_{\ell} \gamma \|\mathcal{C}\|_2.$$
(5)

KASIVISW@GMAIL.COM

HONGXIA.JIN@SAMSUNG.COM

Taking a union bound over all $i\mbox{'s}$ and replacing β by β/n completes the proof. $\hfill\square$

Proof of Lemma 3.5. Since $\hat{\theta} \in C$, by definition,

$$\min_{\theta \in \mathcal{C}} \mathcal{L}_{\text{comp}}(\theta; (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n); \Phi)$$
$$\leq \mathcal{L}_{\text{comp}}(\hat{\theta}; (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n); \Phi). \quad (6)$$

From Lemma 3.4, with probability at least $1 - \beta$,

$$\mathcal{L}_{\text{comp}}(\hat{\theta}; (\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{n}, y_{n}); \Phi)$$

$$\stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \Phi \mathbf{x}_{i}, \Phi \hat{\theta} \rangle; y_{i})$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \mathbf{x}_{i}, \hat{\theta} \rangle; y_{i}) + \lambda_{\ell} \gamma \|\mathcal{C}\|_{2},$$

where we used the fact that $\|\hat{\theta}\| \le \|\mathcal{C}\|_2$. Using the above inequality with (6) completes the proof.

Proof of Proposition 3.7. We discuss the proof for the case of (ϵ, δ) -differential privacy (the proof for the case of ϵ -differential privacy proceeds similarly by using Theorem 3.6, Part 2).

Since the inputs $\Phi \mathbf{x}_i$'s are *m*-dimensional, from guarantees of Theorem 3.6 (Part 1), we know that with probability at least $1 - \beta$,

$$\frac{1}{n} \sum_{i=1}^{n} \ell(\langle \Phi \mathbf{x}_{i}, \vartheta^{\mathrm{priv}} \rangle; y_{i}) - \min_{\vartheta \in \Phi \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \Phi \mathbf{x}_{i}, \vartheta \rangle; y_{i}) = O\left(\frac{\lambda_{\mathcal{L}_{\mathrm{comp}}} \sqrt{m} \|\Phi \mathcal{C}\|_{2} \log^{3/2}(n/\delta) \sqrt{\log(\frac{1}{\delta})} \operatorname{polylog}(\frac{1}{\beta})}{n\epsilon}\right).$$
(7)

Notice that by definition,

$$\min_{\vartheta \in \Phi \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \Phi \mathbf{x}_i, \vartheta \rangle; y_i) \\ \equiv \min_{\theta \in \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \Phi \mathbf{x}_i, \Phi \theta \rangle; y_i)$$

Also by construction in Step 2 of Mechanism PROJERM, $\vartheta^{\text{priv}} = \Phi \theta^{\text{priv}}$. Substituting these two identities in (7) provides, that with probability at least $1 - \beta$,

$$\begin{aligned} \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \Phi \mathbf{x}_{i}, \Phi \theta^{\mathrm{priv}} \rangle; y_{i}) & \\ & -\min_{\theta \in \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \Phi \mathbf{x}_{i}, \Phi \theta \rangle; y_{i}) & \\ & = O(\frac{\lambda_{\mathcal{L}_{\mathrm{comp}}} \sqrt{m} \| \Phi \mathcal{C} \|_{2} \log^{3/2}(n/\delta) \sqrt{\log(1/\delta)} \operatorname{polylog}(1/\beta)}{n\epsilon}) \end{aligned}$$

Using the bound from Lemma 3.5, gives that with probability at least $1 - 2\beta$,

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \Phi \mathbf{x}_{i}, \Phi \theta^{\text{priv}} \rangle; y_{i}) & \Pi \\ &- \min_{\theta \in \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \Phi \mathbf{x}_{i}, \Phi \theta \rangle; y_{i}) \\ &= O\left(\frac{\lambda_{\mathcal{L}_{\text{comp}}} \sqrt{m} \| \Phi \mathcal{C} \|_{2} \log^{3/2}(n/\delta) \sqrt{\log(1/\delta)} \operatorname{polylog}(1/\beta)}{n\epsilon} \\ &+ O(\lambda_{\ell} \gamma \| \mathcal{C} \|_{2}). \end{split} \end{split}$$

Replacing β by $\beta/2$ completes the proof.

Proof of Lemma 3.10. Consider the set *S* as $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\} \cup C$, then $w(S) \le w(C) + \sqrt{\log n}$. Using an argument similar to Lemma 3.4 (based on Theorem 3.1), for $\theta^{\text{priv}} \in C$, with probability at least $1 - \beta$,

$$\mathcal{L}_{\text{comp}}(\theta^{\text{priv}}; (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n); \Phi)$$

$$\stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \ell(\langle \Phi \mathbf{x}_i, \Phi \theta^{\text{priv}} \rangle; y_i)$$

$$\geq \frac{1}{n} \sum_{i=1}^n \ell(\langle \mathbf{x}_i, \theta^{\text{priv}} \rangle; y_i) - \lambda_\ell \gamma \|\mathcal{C}\|_2.$$

This implies that with probability at least $1 - \beta$,

$$\mathcal{L}_{\text{comp}}(\theta^{\text{priv}}; (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n); \Phi)$$
$$\geq \frac{1}{n} \sum_{i=1}^n \ell(\langle \mathbf{x}_i, \theta^{\text{priv}} \rangle; y_i) - \lambda_{\ell} \gamma \|\mathcal{C}\|_2.$$

Using the definition of $\mathcal{L}(\theta^{\text{priv}}; (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))$ completes the proof.

Proof of Theorem 3.11. We first discuss the proof for the case of (ϵ, δ) -differential privacy (Part 1). Here, we set

$$\gamma = \frac{\psi\sqrt{w(\mathcal{C})}}{\sqrt{\epsilon n}},$$

and correspondingly set m as,

$$m = \Theta\left(\frac{\psi^2 \epsilon n (w(\mathcal{C}) + \sqrt{\log n})^2 \log(n/\beta)}{w(\mathcal{C})}\right)$$

With the choice of m, with probability $1 - \beta$, the diameter of ΦC ($\|\Phi C\|_2$) is at most $(1+\gamma)\|C\|_2 \le 2\|C\|_2$. Using this, along with Lemma 3.10 and Proposition 3.7 (Part 1) gives that with probability at least $1 - 3\beta$,

$$\mathcal{L}(\theta^{\text{priv}}; (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)) - \mathcal{L}(\hat{\theta}; (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))$$

$$= O\left(\frac{\lambda_{\mathcal{L}_{\text{comp}}} \sqrt{m} \|\mathcal{C}\|_2 \log^{3/2}(n/\delta) \sqrt{\log(\frac{1}{\delta})} \operatorname{polylog}(\frac{1}{\beta})}{n\epsilon}\right)$$

$$+ O\left(\lambda_{\ell} \gamma \|\mathcal{C}\|_2\right).$$

Using the bound on $\lambda_{\mathcal{L}_{comp}}$ from Lemma 3.3 gives that with probability at least $1 - 4\beta$,

$$\mathcal{L}(\theta^{\text{priv}}; (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)) - \mathcal{L}(\theta; (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))$$

$$= O\left(\frac{\lambda_{\ell} \sqrt{m} \|\mathcal{C}\|_2 \log^{3/2}(n/\delta) \sqrt{\log(\frac{1}{\delta})} \operatorname{polylog}(\frac{1}{\beta})}{n\epsilon}\right) + O\left(\lambda_{\ell} \gamma \|\mathcal{C}\|_2\right).$$

Replacing β by $\beta/5$, and simplifying the resulting expression completes the Part 1 of the proof.

For Part 2, we set $\gamma = \frac{\psi^{4/3} w(\mathcal{C})^{2/3}}{(\epsilon n)^{1/3}}$ and correspondingly set m as,

$$m = \Theta\left(\frac{\psi^{4/3}(n\epsilon)^{2/3}(w(\mathcal{C}) + \sqrt{\log n})^2 \log(n/\beta)}{w(\mathcal{C})^{4/3}}\right)$$

The proof follows along the same lines as the case of (ϵ, δ) differential privacy. Here we use Proposition 3.7 (Part 2).