Supplementary Material for 'Efficient Private Empirical Risk Minimization for High-dimensional Learning'

Shiva Prasad Kasiviswanathan

Samsung Research America, Mountain View, CA 94043

Hongxia Jin

Samsung Research America, Mountain View, CA 94043

KASIVISW@GMAIL.COM

HONGXIA.JIN@SAMSUNG.COM

A. Proof of Claim 2.1

Proof of Claim 2.1. Consider $\theta_{a}, \theta_{b} \in \mathcal{C}, \mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\| \leq 1, y \in \mathbb{R}$ with $|y| \leq 1$,

$$
\begin{aligned}
& \left|\ell\left(\left\langle\mathbf{x}, \theta_{a}\right\rangle ; y\right)-\ell\left(\left\langle\mathbf{x}, \theta_{b}\right\rangle ; y\right)\right| \\
& =\left|\ell\left(\left\langle\mathbf{x}, \theta_{a}\right\rangle ; y\right)-\ell\left(\left\langle\mathbf{x}, \theta_{a}\right\rangle+\left\langle\mathbf{x}, \theta_{b}-\theta_{a}\right\rangle ; y\right)\right| \\
& \leq\left|\lambda_{\ell}\left\langle\mathbf{x}, \theta_{b}-\theta_{a}\right\rangle\right| \leq \lambda_{\ell}\left\|\theta_{a}-\theta_{b}\right\| .
\end{aligned}
$$

Since this holds for every \mathbf{x} and y in the chosen domain, this completes the proof.

B. Missing Proofs from Section 3

Proof of Lemma 3.3. We first investigate the function $\ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta\right\rangle ; y_{i}\right)$. Consider $\vartheta_{a}, \vartheta_{b} \in \Phi \mathcal{C}$,

$$
\begin{aligned}
& \left|\ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta_{a}\right\rangle ; y_{i}\right)-\ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta_{b}\right\rangle ; y_{i}\right)\right| \\
& =\left|\ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta_{a}\right\rangle ; y_{i}\right)-\ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta_{a}\right\rangle+\left\langle\Phi \mathbf{x}_{i}, \vartheta_{b}-\vartheta_{a}\right\rangle ; y_{i}\right)\right| \\
& \leq\left|\lambda_{\ell}\left\langle\Phi \mathbf{x}_{i}, \vartheta_{b}-\vartheta_{a}\right\rangle\right|
\end{aligned}
$$

Using Theorem 3.1, if

$$
m=\Theta\left(\left(\psi^{4} / \gamma^{2}\right) \max \{\log n, \log (1 / \beta)\}\right)
$$

then with probability at least $1-\beta,\left\|\Phi \mathbf{x}_{i}\right\| \leq(1+\gamma)\left\|\mathbf{x}_{i}\right\| \leq$ $2\left\|\mathbf{x}_{i}\right\| \leq 2$. Therefore, with probability at least $1-\beta$,

$$
\left|\ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta_{a}\right\rangle ; y_{i}\right)-\ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta_{b}\right\rangle ; y_{i}\right)\right| \leq 2 \lambda_{\ell}\left\|\vartheta_{b}-\vartheta_{a}\right\| .
$$

Taking a union bound over all i 's, with probability at least $1-\beta n$, for all $i \in[n],\left|\lambda_{\ell}\left\langle\Phi \mathbf{x}_{i}, \vartheta_{b}-\vartheta_{a}\right\rangle\right| \leq 2 \lambda_{\ell}\left\|\vartheta_{b}-\vartheta_{a}\right\|$.
Replacing β by β / n gives the proof.
Proof of Lemma 3.4. If S is the set of points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \hat{\theta}$, then as mentioned above $w(S)=$ $O(\sqrt{\log n})$. For any $i \in[n]$, using Corollary 3.2, with probability at least $1-\beta$,

$$
\begin{equation*}
\ell\left(\left\langle\Phi \mathbf{x}_{i}, \Phi \hat{\theta}\right\rangle ; y_{i}\right) \leq \ell\left(\left\langle\mathbf{x}_{i}, \hat{\theta}\right\rangle ; y_{i}\right)+\lambda_{\ell} \gamma\|\mathcal{C}\|_{2} . \tag{5}
\end{equation*}
$$

Taking a union bound over all i 's and replacing β by β / n completes the proof.

Proof of Lemma 3.5. Since $\hat{\theta} \in \mathcal{C}$, by definition,

$$
\begin{align*}
\min _{\theta \in \mathcal{C}} & \mathcal{L}_{\text {comp }} \\
& \left(\theta ;\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) ; \Phi\right) \tag{6}\\
& \leq \mathcal{L}_{\text {comp }}\left(\hat{\theta} ;\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) ; \Phi\right)
\end{align*}
$$

From Lemma 3.4, with probability at least $1-\beta$,

$$
\begin{aligned}
& \mathcal{L}_{\text {comp }}\left(\hat{\theta} ;\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) ; \Phi\right) \\
& \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\Phi \mathbf{x}_{i}, \Phi \hat{\theta}\right\rangle ; y_{i}\right) \\
& \leq \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\mathbf{x}_{i}, \hat{\theta}\right\rangle ; y_{i}\right)+\lambda_{\ell} \gamma\|\mathcal{C}\|_{2}
\end{aligned}
$$

where we used the fact that $\|\hat{\theta}\| \leq\|\mathcal{C}\|_{2}$. Using the above inequality with (6) completes the proof.

Proof of Proposition 3.7. We discuss the proof for the case of (ϵ, δ)-differential privacy (the proof for the case of ϵ-differential privacy proceeds similarly by using Theorem 3.6, Part 2).

Since the inputs $\Phi \mathbf{x}_{i}$'s are m-dimensional, from guarantees of Theorem 3.6 (Part 1), we know that with probability at least $1-\beta$,

$$
\begin{align*}
& \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta^{\text {priv }}\right\rangle ; y_{i}\right)- \\
= & \min _{\vartheta \in \Phi \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta\right\rangle ; y_{i}\right) \\
& O\left(\frac{\lambda_{\mathcal{L}_{\text {comp }}} \sqrt{m}\|\Phi \mathcal{C}\|_{2} \log ^{3 / 2}(n / \delta) \sqrt{\log \left(\frac{1}{\delta}\right)} \operatorname{polylog}\left(\frac{1}{\beta}\right)}{n \epsilon}\right) . \tag{7}
\end{align*}
$$

Notice that by definition,

$$
\begin{aligned}
& \min _{\vartheta \in \Phi \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\Phi \mathbf{x}_{i}, \vartheta\right\rangle ; y_{i}\right) \\
& \equiv \min _{\theta \in \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\Phi \mathbf{x}_{i}, \Phi \theta\right\rangle ; y_{i}\right)
\end{aligned}
$$

Also by construction in Step 2 of Mechanism ProjERM, $\vartheta^{\text {priv }}=\Phi \theta^{\text {priv }}$. Substituting these two identities in (7) provides, that with probability at least $1-\beta$,

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\Phi \mathbf{x}_{i}, \Phi \theta^{\text {priv }}\right\rangle ; y_{i}\right) \\
-\min _{\theta \in \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\Phi \mathbf{x}_{i}, \Phi \theta\right\rangle ; y_{i}\right) \\
=O\left(\frac{\lambda_{\mathcal{L}_{\text {comp }}} \sqrt{m}\|\Phi \mathcal{C}\|_{2} \log ^{3 / 2}(n / \delta) \sqrt{\log (1 / \delta)} \operatorname{polylog}(1 / \beta)}{n \epsilon}\right)
\end{gathered}
$$

Using the definition of $\mathcal{L}\left(\theta^{\text {priv }} ;\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right)$ completes the proof.

Proof of Theorem 3.11. We first discuss the proof for the case of (ϵ, δ)-differential privacy (Part 1). Here, we set

$$
\gamma=\frac{\psi \sqrt{w(\mathcal{C})}}{\sqrt{\epsilon n}}
$$

and correspondingly set m as,

$$
m=\Theta\left(\frac{\psi^{2} \epsilon n(w(\mathcal{C})+\sqrt{\log n})^{2} \log (n / \beta)}{w(\mathcal{C})}\right)
$$

With the choice of m, with probability $1-\beta$, the diameter of $\Phi \mathcal{C}\left(\|\Phi \mathcal{C}\|_{2}\right)$ is at most $(1+\gamma)\|\mathcal{C}\|_{2} \leq 2\|\mathcal{C}\|_{2}$. Using this, along with Lemma 3.10 and Proposition 3.7 (Part 1) gives that with probability at least $1-3 \beta$,

$$
\begin{aligned}
& \mathcal{L}\left(\theta^{\text {priv }} ;\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right)-\mathcal{L}\left(\hat{\theta} ;\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right) \\
&= O\left(\frac{\lambda_{\mathcal{L}_{\text {comp }}} \sqrt{m}\|\mathcal{C}\|_{2} \log ^{3 / 2}(n / \delta) \sqrt{\log \left(\frac{1}{\delta}\right)} \operatorname{polylog}\left(\frac{1}{\beta}\right)}{n \epsilon}\right) \\
&+O\left(\lambda_{\ell} \gamma\|\mathcal{C}\|_{2}\right)
\end{aligned}
$$

Using the bound on $\lambda_{\mathcal{L}_{\text {comp }}}$ from Lemma 3.3 gives that with probability at least $1-4 \beta$,

$$
-\min _{\theta \in \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\Phi \mathbf{x}_{i}, \Phi \theta\right\rangle ; y_{i}\right)
$$

$$
\begin{gathered}
=O\left(\frac{\lambda_{\mathcal{L}_{\text {comp }} \sqrt{m}\|\Phi \mathcal{C}\|_{2} \log ^{3 / 2}(n / \delta) \sqrt{\log (1 / \delta)} \operatorname{polylog}(1 / \beta)}^{n \epsilon}}{n \epsilon\left(\frac{\lambda}{n \epsilon \sqrt{m}\|\mathcal{C}\|_{2} \log ^{3 / 2}(n / \delta) \sqrt{\log \left(\frac{1}{\delta}\right)} \operatorname{polylog}\left(\frac{1}{\beta}\right)}\right.} \begin{array}{c}
n \epsilon
\end{array}\right)=O\left(\lambda_{\ell} \gamma\|\mathcal{C}\|_{2}\right) .
\end{gathered}
$$

$$
+O\left(\lambda_{\ell} \gamma\|\mathcal{C}\|_{2}\right)
$$

Replacing β by $\beta / 2$ completes the proof.
Proof of Lemma 3.10. Consider the set S as $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \cup \mathcal{C}$, then $w(S) \leq w(\mathcal{C})+\sqrt{\log n}$. Using an argument similar to Lemma 3.4 (based on Theorem 3.1), for $\theta^{\text {priv }} \in \mathcal{C}$, with probability at least $1-\beta$,

$$
\begin{aligned}
& \mathcal{L}_{\text {comp }}\left(\theta^{\text {priv }} ;\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) ; \Phi\right) \\
& \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\Phi \mathbf{x}_{i}, \Phi \theta^{\text {priv }}\right\rangle ; y_{i}\right) \\
& \geq \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\mathbf{x}_{i}, \theta^{\text {priv }}\right\rangle ; y_{i}\right)-\lambda_{\ell} \gamma\|\mathcal{C}\|_{2} .
\end{aligned}
$$

Replacing β by $\beta / 5$, and simplifying the resulting expression completes the Part 1 of the proof.

For Part 2, we set $\gamma=\frac{\psi^{4 / 3} w(\mathcal{C})^{2 / 3}}{(\epsilon n)^{1 / 3}}$ and correspondingly set m as,

$$
m=\Theta\left(\frac{\psi^{4 / 3}(n \epsilon)^{2 / 3}(w(\mathcal{C})+\sqrt{\log n})^{2} \log (n / \beta)}{w(\mathcal{C})^{4 / 3}}\right)
$$

The proof follows along the same lines as the case of (ϵ, δ) differential privacy. Here we use Proposition 3.7 (Part 2).

This implies that with probability at least $1-\beta$,

$$
\begin{aligned}
& \mathcal{L}_{\text {comp }}\left(\theta^{\text {priv }} ;\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) ; \Phi\right) \\
& \quad \geq \frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\mathbf{x}_{i}, \theta^{\text {priv }}\right\rangle ; y_{i}\right)-\lambda_{\ell} \gamma\|\mathcal{C}\|_{2} .
\end{aligned}
$$

