
DCM Bandits: Learning to Rank with Multiple Clicks

A. Proofs

Lemma 1. Let x, y 2 [0, 1]K satisfy x � y. Then
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Our claim can be proved by showing that d(x) � 0 and @

@xi
d(x) � 0, for any x 2 [0, 1]K and i 2 [K]. First, we show that

d(x) � 0 by induction on K. The claim holds trivially for K = 1. For any K � 2,
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This concludes our proof.

Lemma 2. Let x, y 2 [0, p
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K satisfy x � y. Then
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that d(x) � 0 by induction on K. The claim holds trivially for K = 1. For any K � 2,
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This concludes our proof.
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Lemma 3. Let x 2 [0, 1]K and x0 be the permutation of x whose entries are in decreasing order, x0
1

� . . . � x0
K

. Let the
entries of c 2 [0, 1]K be in decreasing order. Then
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Proof. Note that our claim is equivalent to proving
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If x = x0, our claim holds trivially. If x 6= x0, there must exist indices i and j such that i < j and x
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where the inequality is by our assumption that (c
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) � 0. If x̃ = x0, we are finished. Otherwise, we repeat
the above argument until x = x0.

Lemma 4. Let x, y 2 [0, 1]K satisfy x � y. Let � 2 [0, 1]. Then
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The proof is by induction on K. To simplify exposition, we define the following shorthands
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To prove that the claim holds for any K, we first rewrite Y �
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This concludes our proof.


