A. Proofs

Lemma 1. Let $x, y \in[0,1]^{K}$ satisfy $x \geq y$. Then

$$
V(x)-V(y) \leq \sum_{k=1}^{K} x_{k}-\sum_{k=1}^{K} y_{k} .
$$

Proof. Let $x=\left(x_{1}, \ldots, x_{K}\right)$ and

$$
d(x)=\sum_{k=1}^{K} x_{k}-V(x)=\sum_{k=1}^{K} x_{k}-\left[1-\prod_{k=1}^{K}\left(1-x_{k}\right)\right] .
$$

Our claim can be proved by showing that $d(x) \geq 0$ and $\frac{\partial}{\partial x_{i}} d(x) \geq 0$, for any $x \in[0,1]^{K}$ and $i \in[K]$. First, we show that $d(x) \geq 0$ by induction on K. The claim holds trivially for $K=1$. For any $K \geq 2$,

$$
d(x)=\sum_{k=1}^{K-1} x_{k}-\left[1-\prod_{k=1}^{K-1}\left(1-x_{k}\right)\right]+\underbrace{x_{K}-x_{K} \prod_{k=1}^{K-1}\left(1-x_{k}\right)}_{\geq 0} \geq 0,
$$

where $\sum_{k=1}^{K-1} x_{k}-\left[1-\prod_{k=1}^{K-1}\left(1-x_{k}\right)\right] \geq 0$ holds by our induction hypothesis. Second, we note that

$$
\frac{\partial}{\partial x_{i}} d(x)=1-\prod_{k \neq i}\left(1-x_{k}\right) \geq 0 .
$$

This concludes our proof.
Lemma 2. Let $x, y \in\left[0, p_{\max }\right]^{K}$ satisfy $x \geq y$. Then

$$
\alpha\left[\sum_{k=1}^{K} x_{k}-\sum_{k=1}^{K} y_{k}\right] \leq V(x)-V(y),
$$

where $\alpha=\left(1-p_{\max }\right)^{K-1}$.
Proof. Let $x=\left(x_{1}, \ldots, x_{K}\right)$ and

$$
d(x)=V(x)-\alpha \sum_{k=1}^{K} x_{k}=1-\prod_{k=1}^{K}\left(1-x_{k}\right)-\left(1-p_{\max }\right)^{K-1} \sum_{k=1}^{K} x_{k} .
$$

Our claim can be proved by showing that $d(x) \geq 0$ and $\frac{\partial}{\partial x_{i}} d(x) \geq 0$, for any $x \in\left[0, p_{\max }\right]^{K}$ and $i \in[K]$. First, we show that $d(x) \geq 0$ by induction on K. The claim holds trivially for $K=1$. For any $K \geq 2$,

$$
d(x)=1-\prod_{k=1}^{K-1}\left(1-x_{k}\right)-\left(1-p_{\max }\right)^{K-1} \sum_{k=1}^{K-1} x_{k}+\underbrace{x_{K} \prod_{k=1}^{K-1}\left(1-x_{k}\right)-x_{K}\left(1-p_{\max }\right)^{K-1}}_{\geq 0} \geq 0
$$

where $1-\prod_{k=1}^{K-1}\left(1-x_{k}\right)-\left(1-p_{\max }\right)^{K-1} \sum_{k=1}^{K-1} x_{k} \geq 0$ holds because $1-\prod_{k=1}^{K-1}\left(1-x_{k}\right)-\left(1-p_{\max }\right)^{K-2} \sum_{k=1}^{K-1} x_{k} \geq 0$, which holds by our induction hypothesis; and the remainder is non-negative because $1-x_{k} \geq 1-p_{\max }$ for any $k \in[K]$. Second, note that

$$
\frac{\partial}{\partial x_{i}} d(x)=\prod_{k \neq i}\left(1-x_{k}\right)-\left(1-p_{\max }\right)^{K-1} \geq 0
$$

This concludes our proof.

Lemma 3. Let $x \in[0,1]^{K}$ and x^{\prime} be the permutation of x whose entries are in decreasing order, $x_{1}^{\prime} \geq \ldots \geq x_{K}^{\prime}$. Let the entries of $c \in[0,1]^{K}$ be in decreasing order. Then

$$
V\left(c \odot x^{\prime}\right)-V(c \odot x) \leq \sum_{k=1}^{K} c_{k} x_{k}^{\prime}-\sum_{k=1}^{K} c_{k} x_{k}
$$

Proof. Note that our claim is equivalent to proving

$$
1-\prod_{k=1}^{K}\left(1-c_{k} x_{k}^{\prime}\right)-\left[1-\prod_{k=1}^{K}\left(1-c_{k} x_{k}\right)\right] \leq \sum_{k=1}^{K} c_{k} x_{k}^{\prime}-\sum_{k=1}^{K} c_{k} x_{k}
$$

If $x=x^{\prime}$, our claim holds trivially. If $x \neq x^{\prime}$, there must exist indices i and j such that $i<j$ and $x_{i}<x_{j}$. Let \tilde{x} be the same vector as x where entries x_{i} and x_{j} are exchanged, $\tilde{x}_{i}=x_{j}$ and $\tilde{x}_{j}=x_{i}$. Since $i<j, c_{i} \geq c_{j}$. Let

$$
X_{-i,-j}=\prod_{k \neq i, j}\left(1-c_{k} x_{k}\right)
$$

Then

$$
\begin{aligned}
1-\prod_{k=1}^{K}\left(1-c_{k} x_{k}^{\prime}\right)-\left[1-\prod_{k=1}^{K}\left(1-c_{k} x_{k}\right)\right] & =X_{-i,-j}\left(\left(1-c_{i} x_{i}\right)\left(1-c_{j} x_{j}\right)-\left(1-c_{i} \tilde{x}_{i}\right)\left(1-c_{j} \tilde{x}_{j}\right)\right) \\
& =X_{-i,-j}\left(\left(1-c_{i} x_{i}\right)\left(1-c_{j} x_{j}\right)-\left(1-c_{i} x_{j}\right)\left(1-c_{j} x_{i}\right)\right) \\
& =X_{-i,-j}\left(-c_{i} x_{i}-c_{j} x_{j}+c_{i} x_{j}+c_{j} x_{i}\right) \\
& =X_{-i,-j}\left(c_{i}-c_{j}\right)\left(x_{j}-x_{i}\right) \\
& \leq\left(c_{i}-c_{j}\right)\left(x_{j}-x_{i}\right) \\
& =c_{i} x_{j}+c_{j} x_{i}-c_{i} x_{i}-c_{j} x_{j} \\
& =c_{i} \tilde{x}_{i}+c_{j} \tilde{x}_{j}-c_{i} x_{i}-c_{j} x_{j} \\
& =\sum_{k=1}^{K} c_{k} \tilde{x}_{k}-\sum_{k=1}^{K} c_{k} x_{k}
\end{aligned}
$$

where the inequality is by our assumption that $\left(c_{i}-c_{j}\right)\left(x_{j}-x_{i}\right) \geq 0$. If $\tilde{x}=x^{\prime}$, we are finished. Otherwise, we repeat the above argument until $x=x^{\prime}$.

Lemma 4. Let $x, y \in[0,1]^{K}$ satisfy $x \geq y$. Let $\gamma \in[0,1]$. Then

$$
V(\gamma x)-V(\gamma y) \geq \gamma[V(x)-V(y)]
$$

Proof. Note that our claim is equivalent to proving

$$
\prod_{k=1}^{K}\left(1-\gamma y_{k}\right)-\prod_{k=1}^{K}\left(1-\gamma x_{k}\right) \geq \gamma\left[\prod_{k=1}^{K}\left(1-y_{k}\right)-\prod_{k=1}^{K}\left(1-x_{k}\right)\right]
$$

The proof is by induction on K. To simplify exposition, we define the following shorthands

$$
X_{i}=\prod_{k=1}^{i}\left(1-x_{k}\right), \quad X_{i}^{\gamma}=\prod_{k=1}^{i}\left(1-\gamma x_{k}\right), \quad Y_{i}=\prod_{k=1}^{i}\left(1-y_{k}\right), \quad Y_{i}^{\gamma}=\prod_{k=1}^{i}\left(1-\gamma y_{k}\right)
$$

Our claim holds trivially for $K=1$ because

$$
\left(1-\gamma y_{1}\right)-\left(1-\gamma x_{1}\right)=\gamma\left[\left(1-y_{1}\right)-\left(1-x_{1}\right)\right]
$$

To prove that the claim holds for any K, we first rewrite $Y_{K}^{\gamma}-X_{K}^{\gamma}$ in terms of $Y_{K-1}^{\gamma}-X_{K-1}^{\gamma}$ as

$$
\begin{aligned}
Y_{K}^{\gamma}-X_{K}^{\gamma} & =\left(1-\gamma y_{K}\right) Y_{K-1}^{\gamma}-\left(1-\gamma x_{K}\right) X_{K-1}^{\gamma} \\
& =Y_{K-1}^{\gamma}-\gamma y_{K} Y_{K-1}^{\gamma}-X_{K-1}^{\gamma}+\gamma y_{K} X_{K-1}^{\gamma}+\gamma\left(x_{K}-y_{K}\right) X_{K-1}^{\gamma} \\
& =\left(1-\gamma y_{K}\right)\left(Y_{K-1}^{\gamma}-X_{K-1}^{\gamma}\right)+\gamma\left(x_{K}-y_{K}\right) X_{K-1}^{\gamma}
\end{aligned}
$$

By our induction hypothesis, $Y_{K-1}^{\gamma}-X_{K-1}^{\gamma} \geq \gamma\left(Y_{K-1}-X_{K-1}\right)$. Moreover, $X_{K-1}^{\gamma} \geq X_{K-1}$ and $1-\gamma y_{K} \geq 1-y_{K}$. We apply these lower bounds to the right-hand side of the above equality and then rearrange it as

$$
\begin{aligned}
Y_{K}^{\gamma}-X_{K}^{\gamma} & \geq \gamma\left(1-y_{K}\right)\left(Y_{K-1}-X_{K-1}\right)+\gamma\left(x_{K}-y_{K}\right) X_{K-1} \\
& =\gamma\left[\left(1-y_{K}\right) Y_{K-1}-\left(1-y_{K}+y_{K}-x_{K}\right) X_{K-1}\right] \\
& =\gamma\left[Y_{K}-X_{K}\right]
\end{aligned}
$$

This concludes our proof. ■

