
Barron and Cover’s Theory in Supervised Learning
and its Application to Lasso

Masanori Kawakita KAWAKITA@INF.KYUSHU-U.AC.JP
Jun’ichi Takeuchi TAK@INF.KYUSHU-U.AC.JP

Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka city, Fukuoka 819-0395, JAPAN

Abstract
We study Barron and Cover’s theory (BC the-
ory) in supervised learning. The original BC
theory can be applied to supervised learning
only approximately and limitedly. Though
Barron & Luo (2008) and Chatterjee & Barron
(2014a) succeeded in removing the approxima-
tion, their idea cannot be essentially applied to
supervised learning in general. By solving this
issue, we propose an extension of BC theory to
supervised learning. The extended theory has
several advantages inherited from the original
BC theory. First, it holds for finite sample num-
ber n. Second, it requires remarkably few as-
sumptions. Third, it gives a justification of the
MDL principle in supervised learning. We also
derive new risk and regret bounds of lasso with
random design as its application. The derived
risk bound hold for any finite n without bound-
edness of features in contrast to past work. Be-
havior of the regret bound is investigated by nu-
merical simulations. We believe that this is the
first extension of BC theory to general supervised
learning without approximation.

1. Introduction
There have been various techniques to evaluate perfor-
mance of machine learning methods theoretically. For
an example, lasso (Tibshirani, 1996) has been analyzed
by nonparametric statistics, empirical process, statistical
physics and so on. Most of them require various assump-
tions like asymptotic assumption (sample number n and/or
feature number p go to infinity), boundedness of features
or moment conditions. Some of them are much restric-
tive for practical use. In this paper, we try to develop an-
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other way for performance evaluation with as few assump-
tions as possible. As an important candidate for this pur-
pose, we focus on Barron and Cover’s theory (BC theory)
(Barron & Cover, 1991), which is one of the most famous
results for the minimum description length (MDL) prin-
ciple. The MDL principle (Rissanen, 1978; Barron et al.,
1998; Grünwald, 2007; Takeuchi, 2014) claims that the
shortest description of a given set of data leads to the best
hypotheses about the data. A famous model selection crite-
rion based on the MDL principle was proposed by Rissanen
(1978). This criterion corresponds to a codelength of a two-
stage code in which one encodes a statistical model to en-
code data and then the data are encoded with the model. In
this case, an MDL estimator is defined as the minimizer of
the total codelength of this two-stage code. BC theory guar-
antees that a risk based on the Rényi divergence (Rényi,
1961) is tightly bounded above by redundancy of the two-
stage code. This result gives a mathematical justification of
the MDL principle. Furthermore, BC theory holds for finite
n without any complicated technical conditions. However,
BC theory has been applied to supervised learning only ap-
proximately or limitedly. The original BC theory seems
to be widely recognized that it is applicable to both un-
supervised and supervised learning. Though it is not false,
BC theory actually cannot be applied to supervised learning
without a certain condition (2) defined in Section 3. This
condition is critical in a sense that a lack of (2) breaks a
key technique of BC theory. (Yamanishi, 1992) is the only
example of application of BC theory to supervised learn-
ing to our knowledge. His work assumed a specific setting,
where (2) can be satisfied. However, the risk bound may
not be sufficiently tight due to imposing (2) forcedly, which
will be explained in Section 3. Another well-recognized
disadvantage is the necessity of quantization of parame-
ter space. Barron & Luo (2008) and Chatterjee & Barron
(2014b) proposed a way to avoid the quantization and de-
rived a risk bound of lasso. However, their idea cannot be
applied to supervised learning in general. This difficulty
stems from the above condition (2). It is thus essentially
difficult to solve. Actually, their risk bound of lasso was de-
rived with fixed design only (i.e., essentially unsupervised
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setting). The fixed design, however, is not satisfactory to
evaluate generalization error of supervised learning. In this
paper, we propose an extension of BC theory to supervised
learning without quantization in random design case. The
derived risk bound inherits most of advantages of the orig-
inal BC theory. Furthermore, we can use data-dependent
penalties. The main term of the risk bound has again a form
of redundancy of two-stage code. Thus, our extension also
gives a mathematical justification of the MDL principle in
supervised learning. We also derive new risk and regret
bounds of lasso with random design as its application un-
der normality of features. This requires much more effort
than that for the fixed design case. The derived bounds hold
even in case n ≪ p without boundedness of features. To
our knowledge, no theory has such advantages in the past.
This paper is organized as follows. Section 2 introduces
an MDL estimator in supervised learning. We review BC
theory in Section 3. We extend BC theory to supervised
learning and derive new risk and regret bounds of lasso in
Section 4. The performance of the regret bound will be
investigated by numerical simulations in Section 5.

2. MDL Estimator in Supervised Learning
Suppose that training data (xn, yn) := {(xi, yi) ∈
X × Y |i = 1, 2, · · · , n} are subject to p̄∗(x

n, yn) =
q∗(x

n)p∗(y
n|xn), where X is a domain of feature vec-

tor x and Y could be ℜ (regression) or a finite set (clas-
sification). Here, the training data are not necessarily in-
dependent and identically distributed (i.i.d.) but can be a
stochastic process in general. A goal of supervised learn-
ing is to estimate p∗(y

n|xn). We use a parametric model
pθ(y

n|xn) with a parameter θ ∈ Θ. The parameter space
Θ is a certain continuous space. To define an MDL esti-
mator, we need to encode the model pθ(yn|xn) (or equiva-
lently the parameter). Since the continuous parameter can-
not be encoded, we need to quantize the parameter space
Θ as Θ̃(xn). Then, let L̃(θ̃|xn) be a model description
length on it. Note that L̃ must satisfy Kraft’s inequality∑

θ̃∈Θ̃(xn) exp(−L̃(θ̃|xn)) ≤ 1. An MDL estimator is de-
fined by the minimizer of sum of a data description length
(minus log-likelihood) and the model description length:

θ̈(xn, yn) := arg min
θ̃∈Θ̃(xn)

{
− log pθ̃(y

n|xn)+βL̃(θ̃|xn)
}
,

where β > 1. Define the minimum description length
attained by the two-stage code as L̃β2−p(y

n|xn) :=

− log pθ̈(y
n|xn)+βL̃(θ̈|xn). Because L̃β2−p also satisfies

Kraft’s inequality in terms of yn, it is interpreted as a code-
length of the two-stage code. Therefore, p̃β2−p(y

n|xn) :=

exp(−L̃β2−p(y
n|xn)) is a conditional sub-probability dis-

tribution corresponding to the two-stage code.

3. Barron and Cover’s Theory
We briefly review BC theory and its recent progress in
view of supervised learning though they discussed basi-
cally unsupervised learning (or supervised learning with
fixed design). In BC theory, the Rényi divergence between
p(yn|xn) and r(yn|xn) with order λ ∈ (0, 1)

dnλ(p, r) :=
−1

1− λ
logEq∗(xn)p(yn|xn)

(r(yn|xn)

p(yn|xn)

)1−λ

(1)
is used as a loss function. Let us introduce a condition that
both Θ̃(xn) and L̃(θ̃|xn) are independent of xn, i.e.,

Θ̃(xn) = Θ̃, L̃(θ̃|xn) = L̃(θ̃). (2)

We emphasize that the original BC theory cannot be ap-
plied to supervised learning unless the condition (2) is sat-
isfied. Under the condition (2), BC theory gives the follow-
ing two theorems for supervised learning.

Theorem 1. Let β > 1. Assume that L̃ satisfies Kraft’s
inequality and that the condition (2) holds. For any λ ∈
(0, 1− β−1],

Ep̄∗(xn,yn)d
n
λ(p∗, pθ̈) ≤ Ep̄∗(xn,yn) log

p∗(y
n|xn)

p̃β2-p(yn|xn)
.

Theorem 2. Let β > 1. Assume that L̃ satisfies Kraft’s
inequality and that the condition (2) holds. For any λ ∈
(0, 1− β−1],

Pr
(dnλ(p∗, pθ̈)

n
− 1

n
log

p∗(y
n|xn)

p̃β2-p(yn|xn)
≥ τ

)
≤ e−τn/β .

Recall that the quantized space and the model description
length can depend on xn in their definitions. If we make
them independent of xn for the condition (2), we must
make them uniform against xn (i.e., its worst value), which
makes the total codelength longer. This is just a reason why
we think the PAC bound by Yamanishi (1992) may not be
sufficiently tight. Hence, data-dependent model description
lengths is more desirable in view of the MDL principle. In
addition, the restriction by (2) excludes a practically im-
portant case ‘lasso with column normalization’ (explained
later) from the scope of application. However, it is essen-
tially difficult to remove this restriction as described in Sec-
tion 1. Another issue is quantization. The quantization for
the encoding is natural in view of the MDL principle. Our
target, however, is an application to machine learning. A
trivial example of such an application is a penalized maxi-
mum likelihood estimator (PMLE)

θ̂(xn, yn) := argmin
θ∈Θ

{
− log pθ(y

n|xn) + L(θ|xn)
}
,

pβ2-p(yn|xn) := pθ̂(y
n|xn) · exp(−L(θ̂|xn)),
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where L : Θ×X n → [0,∞] is a certain penalty. PMLE is
a wide class of estimators including lasso. If we can accept
θ̈ as an approximation of θ̂, we have a risk bound obtained
by BC theory. However, the quantization is unnatural in
view of machine learning. Barron et al. (2008) proposed an
important notion ‘risk validity’ to remove this drawback.

Definition 3. Let β > 1. For fixed xn, we say that a
penalty function L(θ|xn) is risk valid if there exist a quan-
tized space Θ̃(xn) ⊂ Θ and a model description length
L̃(θ̃|xn) satisfying Kraft’s inequality such that

∀yn∈Y n, max
θ∈Θ

{
dnλ(p∗, pθ|xn)−log

p∗(y
n|xn)

pθ(yn|xn)
−L(θ|xn)

}
≤ max

θ̃∈Θ̃(xn)

{
dnλ(p∗, pθ̃|x

n)−log
p∗(y

n|xn)

pθ̃(y
n|xn)

−βL̃(θ̃|xn)
}
, (3)

where dnλ(p, r|xn) :=
−1

1− λ
logEp(yn|xn)

(q(yn|xn)

p(yn|xn)

)1−λ

.

Here, d(p, r|xn) is the Rényi divergence with fixed xn

(fixed design). They proved that θ̂ has similar bounds to
Theorems 1 and 2 for any risk valid penalty in case of fixed
design. Their way is excellent because it requires no addi-
tional condition except the risk validity. However, the risk
evaluation with fixed design Ep∗(yn|xn)[d

n
λ(p∗, pθ̂|x

n)] is
unsatisfactory for supervised learning to assess the gener-
alization error. We need to evaluate the risk with random
design Ep̄∗ [d

n
λ(p∗, pθ̂)]. However, it is essentially difficult

to apply their idea to random design case. We explain this
by using lasso as an example. If we extend the above risk
validity to random design straightforwardly, Θ̃(xn) and
L̃(θ̃|xn) must be independent of xn due to the condition
(2). In addition, (3) is replaced with

∀xn, yn∈X n×Y n, max
θ̃∈Θ̃

{
dnλ(p∗, pθ̃)− log

p∗(y
n|xn)

pθ̃(y
n|xn)

−βL̃(θ̃)
}
≥ max

θ∈Θ

{
dnλ(p∗, pθ)−log

p∗(y
n|xn)

pθ(yn|xn)
−L(θ|xn)

}
.

Note that the above inequality must hold for all xn ∈ X n

in addition to all yn ∈ Y n. Furthermore, dnλ(p∗, pθ|xn)
is replaced with dnλ(p∗, pθ). We can rewrite the above in-
equality equivalently as

∀xn ∈ X n, ∀yn ∈ Y n, ∀θ ∈ Θ, min
θ̃∈Θ̃

{
dnλ(p∗, pθ)

−dnλ(p∗, pθ̃)+log
pθ(y

n|xn)

pθ̃(y
n|xn)

+βL̃(θ̃)
}
≤ L(θ|xn). (4)

Let us write the inside part of min of the left side of (4) as
H(θ, θ̃, xn, yn). To derive a risk valid L(θ|xn), we need
find an upper bound on minθ̃ H(θ, θ̃, xn, yn). However,
it is difficult to obtain the explicit form of the θ̃ minimiz-
ing H . Chatterjee & Barron (2014b) proposed a remedy

for fixed design. We can use it in random design case too
as follows. Instead of minimization, their idea is to take
θ̃ close to θ. This seems to be meaningful in the follow-
ing sense. If we quantize Θ finely, θ̈ is expected to behave
similarly to θ̂. If θ̃ ≈ θ, then H(θ, θ̃, xn, yn) ≈ L̃(θ),
which implies that L̃(θ) is risk valid and gives a risk bound
similar to θ̈. Note that, however, we cannot make θ̃ = θ
exactly because θ̃ ∈ Θ̃. Chatterjee and Barron randomized
θ̃ on Θ̃(xn) around θ and took the expectation in terms of
θ̃. This is justified because minθ̃ H ≤ Eθ̃[H]. By tun-
ing the randomization carefully, they succeeded in remov-
ing the dependency of Eθ̃[H(θ, θ̃, xn, yn)] on yn. Since
this technique can be applied to random design case sim-
ilarly, we can write Eθ̃[H(θ, θ̃, xn, yn)] as H ′(θ, xn). By
this fact, any risk valid penalties derived in this way should
depend on xn. If not, L(θ) must bound maxxn H ′(θ, xn),
which makes L much larger. This is unfavorable in view of
MDL. In particular, H ′(θ, xn) includes an unbounded term
in terms of xn in case of lasso, which stems from the like-
lihood ratio term in (4). Hence, risk valid penalties derived
in this way must depend on xn. Though the ℓ1 norm used
in lasso does not depend on xn, the following weighted ℓ1
norm

∥θ∥w,1 :=

p∑
j=1

wj |θj |, where wj :=

√√√√ 1

n

n∑
i=1

x2
ij

plays an important role. The lasso with this penalty is
equivalent to the usual lasso with column normalization
such that each column of design matrix has the same norm.
The column normalization is theoretically and practically
important. Hence, we try to find a risk valid penalty of
the form L1(θ|xn) = µ1∥θ∥w,1 + µ2. Indeed, there seems
to be no other useful penalty dependent on xn for lasso.
However, there are severe difficulties. The main difficulty
is caused by (2). Suppose now that θ̃ is eqeual to θ al-
most ideally. This implies that H(θ, θ̃, xn, yn) ≈ L̃(θ).
On the other hand, for each fixed θ, ∥θ∥w,1 can be ar-
bitrarily small by making xn small accordingly. Hence,
µ1∥θ∥w,1 + µ2 is almost equal to µ2. This implies that µ2

must bound maxθ L̃(θ), which is infinity in general. If L̃
can depend on xn, we could resolve this problem. How-
ever, L̃ must be independent of xn. This issue seems not
to be limited to lasso. Another major issue is evaluation
of the above H ′(θ, xn) is quite difficult in random design
case since dnλ(p∗, pθ) is generally more complicated than
dnλ(p∗, pθ|xn). Hence, their technique seems to be useless
in the random design case. We propose a remedy to solve
these issues in a lump.

4. Main Results
We propose an extension of BC theory to supervised learn-
ing and derive new bounds for lasso.



Barron and Cover’s Theory in Supervised Learning and its Application to Lasso

4.1. Extension of BC Theory to Supervised Learning

There are several possible approaches to extend BC theory.
Despite of our efforts, we can hardly derive a meaningful
tight bound for lasso by most of them except the following
way. Our key idea is to modify the risk validity by introduc-
ing a ‘typical set’. Let Sx be a certain set of stochastic pro-
cesses x1, x2, · · · and Pn

x be the set of their marginal dis-
tributions of x1, x2, · · · , xn. We assume that we can define
a typical set An

ϵ for each q∗ ∈ Pn
x , i.e., Pr(xn ∈ An

ϵ ) → 1
as n → ∞. This is possible if q∗ is stationary and ergodic
for example. For short, Pr(xn ∈ An

ϵ ) is written as Pn
ϵ here-

after. We modify the risk validity as follows.

Definition 4. Let β > 1 and λ ∈ (0, 1 − β−1]. We say
that L(θ|xn) is ϵ-risk valid for (λ, β,Pn

x , A
n
ϵ ) if, for any

q∗ ∈ Pn
x , there exist a quantized subset Θ̃(q∗) ⊂ Θ and

a model description length L̃(θ|q∗) satisfying Kraft’s in-
equality such that Θ̃(q∗) and L̃(θ|q∗) satisfy (2) and

∀xn, yn∈An
ϵ ×Y n, max

θ̃∈Θ̃(q∗)

{
dnλ(p∗, pθ̃)− log

p∗(y
n|xn)

pθ̃(y
n|xn)

−βL̃(θ̃|q∗)
}
≥max

θ∈Θ

{
dnλ(p∗, pθ)−log

p∗(y
n|xn)

pθ(yn|xn)
−L(θ|xn)

}
.

A difference from (4) is the restriction of the range of xn

onto the typical set. Therefore, we can possibly avoid the
problem described in the previous section. Using the ϵ-risk
validity, we can prove the following two main theorems.

Theorem 5 (risk bound). Define En
ϵ as a conditional ex-

pectation in terms of p̄∗(xn, yn) given that xn ∈ An
ϵ . Let

β > 1, ϵ ∈ (0, 1) and λ ∈ (0, 1−β−1]. If L(θ|xn) is ϵ-risk
valid for (λ, β,Pn

x , A
n
ϵ ),

En
ϵ d

n
λ(p∗, pθ̂) ≤ En

ϵ log
p∗(y

n|xn)

pβ2-p(yn|xn)
+ β log

1

Pn
ϵ

. (5)

Theorem 6 (regret bound). Let β > 1, ϵ ∈ (0, 1) and λ ∈
(0, 1− β−1]. If L(θ|xn) is ϵ-risk valid for (λ, β,Pn

x , A
n
ϵ ),

Pr
(dnλ(p∗, pθ̂)

n
− 1

n
log

p∗(y
n|xn)

pβ2-p(yn|xn)
> τ

)
≤ 1− Pn

ϵ + exp(−τn/β). (6)

We describe the proof of Theorem 5 in Appendix A and the
proof of Theorem 6 in a supplementary material due to the
page restriction. In contrast to the usual BC theory, there is
an additional term β log(1/Pn

ϵ ) in the risk bound. Due to
the property of the typical set, this term decreases to zero
as n → ∞. Hence, the first term is the main term, which
has a form of redundancy of a two-stage code like the quan-
tized case. Hence, this theorem gives a justification of the
MDL principle in supervised learning. Note that, however,
an additional condition on L is required to interpret the first

term of (5) as a redundancy exactly. A sufficient condition
for it is called ‘codelength validity’ (Chatterjee & Barron,
2014b). The risk validity does not imply the codelength
validity and vice versa in general. Due to the space limita-
tions, we omit more details of the codelength validity.

We note that the conditional expectation in the risk bound
(5) is seemingly hard to be replaced with the usual un-
conditional expectation. The main difficulty arises from
the unboundedness of the loss function: the loss function
dnλ(p∗, pθ̂) can be arbitrarily large according to the choice
of xn in general. Our remedy is a typical set. Because xn

lies out of An
ϵ with small probability, the conditional ex-

pectation is likely to capture the expectation of almost all
cases. In spite of this fact, if one wants to remove the un-
natural conditional expectation, Theorem 6 offers a more
satisfactory bound. We should remark that the effective-
ness of this approach in real situations depends on whether
we can show the risk validity of the target penalty and de-
rive a sufficiently small bound for 1− Pn

ϵ . Actually, much
effort is required to realize them for lasso.

4.2. Risk Bound of Lasso in Random Design

In this section, we derive new risk and regret bounds by
Theorems 5 and 6. Assume that training data {(xi, yi) ∈
(ℜp × ℜ)|i = 1, 2, · · · , n} obey a usual regression model
Y = Xθ∗ + E , where Y := (y1, y2, · · · , yn)T , E is a
noise vector subject to N(ϵ; 0, σ2In), θ∗ is a true parameter
and X = [xij ]. Here, xij is the jth element of xi and
N(·;m,Σ) is a Gaussian distribution with a mean vector
m and a covariance matrix Σ. The dimension p of θ can be
greater than n. Under the normality of xn, we can derive a
risk valid weighted ℓ1 penalty by choosing an appropriate
typical set.

Lemma 1. For any ϵ ∈ (0, 1), define

Pn
x := {q(xn) = Πn

i=1N(xi;0,Σ)| Non-Singular Σ},

A
(n)
ϵ :=

{
xn
∣∣∣ ∀j, 1− ϵ ≤

(1/n)
∑n

i=1 x
2
ij

Σjj
≤ 1 + ϵ

}
,

where Σjj denotes the jth diagonal element
of Σ. Assume a linear regression setting:
p∗(y

n|xn) = Πn
i=1N(yi|xT

i θ
∗, σ2) and pθ(y

n|xn) =
Πn

i=1N(yi|xT
i θ, σ

2) with Θ = ℜp. Let β > 1 and
λ ∈ (0, 1 − β−1]. The penalty L1(θ|xn) = µ1∥θ∥w,1+µ2

is ϵ-risk valid for (λ, β,Pn
x , A

n
ϵ ) if

µ1 ≥

√
nβ log 4p

2σ2
· λ+ 4

√
1− ϵ2

(1− ϵ)
, µ2 ≥ β log 2. (7)

We describe its proof in Appendix B. The derivation is
much more complicated and requires more techniques
compared to fixed design case in (Chatterjee & Barron,
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2014b). This is because the Rényi divergence is a usual
mean square error in the fixed design case, while it is not
in the random design case in general. Remarkably, the risk
valid penalty in the above theorem also satisfies the code-
length validity. This indicates that the main term of the risk
bound can always be interpreted as redundancy of a prefix
code. Next, we evaluate the convergence rate of Pn

ϵ .
Lemma 2 (Exponential Bound of Typical Set). Suppose
that xi ∼ N(0,Σ) independently. For any ϵ ∈ (0, 1),

Pn
ϵ ≥

(
1−2 exp

(
−n

2
(ϵ− log(1 + ϵ))

))p
(8)

≥ 1−2p exp
(
−n

2
(ϵ−log(1 + ϵ))

)
≥1−2p exp

(
−nϵ2

7

)
.

Its proof is described in a supplementary material. For
lasso, n ≪ p is often assumed. By Lemma 2, 1 − Pn

ϵ

is bounded above by O(p exp(−nϵ2/7)). Hence, − logPn
ϵ

in (5) and 1 − Pn
ϵ in (10) can be negligibly small even if

n ≪ p. In this sense, the exponential bound is critical for
lasso. From Lemmas 1 and 2, we obtain the following the-
orem.
Theorem 7. Assume the same setting as Lemma 1. If
L1(θ|xn)=µ1∥θ∥w,1+µ2 satisfies (7), the lasso estimator

θ̂ := argmin
θ∈Θ

1

2nσ2
∥Y −Xθ∥22 + µ1∥θ∥w,1 (9)

has a risk bound

En
ϵ [dλ(p∗, pθ̂)]≤En

ϵ

[
inf
θ∈Θ

{(∥y −Xθ∥22 − ∥y −Xθ∗∥22
)

2nσ2

+µ1∥θ∥w,1+µ2

}]
−
p log

(
1−2exp

(
−n

2 (ϵ−log(1+ϵ))
))

nβ
.

and a regret bound

dλ(p∗, pθ̂) ≤

inf
θ∈Θ

{
∥y −Xθ∥22−∥y −Xθ∗∥22

2nσ2
+µ1∥θ∥w,1+µ2

}
+ τ (10)

with probability at least(
1−2 exp

(
−n

2
(ϵ−log(1 + ϵ))

))p
−exp(−τn/β). (11)

Here, dλ(p, r) denotes d1λ(p, r). Since p̄∗(xn, yn) is i.i.d. in
this setting, we presented the risk bound as a single-sample
version by dividing the both sides by n. Compared to the
risk bound in the fixed design case, a coefficient of the
weighted ℓ1 norm is basically larger. Chatterjee & Barron
(2014b) showed that, if µ1 ≥

√
2n log 4p/σ2 and µ2 ≥

β log 2, then the weighted ℓ1 norm is risk valid. Ignoring
ϵ, the minimum µ1 in (7) is (1/2)

√
(λ+ 4)/(1− λ) times

that for the fixed design case. Hence, the coefficient is al-
ways larger than or equal to compared to the fixed design
case but its extent is not so large unless λ is close to 1.
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Figure 1. Plot of (11) against ϵ ∈ (0, 1) when n = 200, p = 1000
and τ = 0.03. The dotted vertical line indicates ϵ = 0.5.

5. Numerical Simulations
We investigate the behavior of the regret bound (10). Here,
µ1 and µ2 are set to their smallest values in (7) and λ =
1 − β−1. As described before, the Rényi divergence is no
longer a mean square error (MSE) in random design case.
The Rényi divergence approaches to KL-divergence when
λ → 1 which is MSE in this case. If we take λ close to
1, however, the risk valid penalty function L (and also the
regret bound) tends to diverge unless n is accordingly large
enough. That is, we can obtain only the approximate eval-
uation on the MSE. The precision of that approximation
varies according to the sample size n. We do not employ
the MSE here but another important case λ = 0.5, that is,
Bhattacharyya divergence. Bhattacharyya divergence is an
upper bound of two times the squared Hellinger distance

d2H(p∗, pθ)=

∫(√
p∗(y|x)−

√
pθ(y|x)

)2
q∗(x)p∗(y|x)dxdy,

which is often used to performance evaluation. This can be
proved by the fact that dλ(p∗, pθ) ≥ λD1−2λ(p∗, pθ) for
any θ and λ ∈ (0, 1), where Dα(p, q) is α-divergence

Dα(p, r) :=
4

1− α2

∫(
1−
(
r(y|x)
p(y|x)

) 1+α
2
)
q∗(x)p(y|x)dxdy

(Cichocki & Amari, 2010) and D0 is just four times
the squared Hellinger distance. Thus, we can bound
2d2H(p∗, pθ̂) through Bhattacharyya divergence (d0.5). We
set n = 200, p = 1000 and Σ = Ip to mimic a typical sit-
uation of sparse learning. The lasso estimator is calculated
by a proximal gradient method. To make the regret bound
tight, we take τ = 0.03 that is close to zero compared to
the main term (regret). For this τ , Fig. 1 shows the plot
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Figure 2. Plot of d0.5 (Rényi div.), 2d2H (α-div.) and the regret
bound with τ = 0.03 in case SN ratio=1.5.

of (11) against ϵ. We should choose the smallest as long as
the regret bound holds with large probability. Our choice is
ϵ = 0.5 at which the value of (11) is 0.81. We show the re-
sults of two cases in Figs. 2 and 3. These plots express the
value of d0.5, 2d2H and the regret bound that were obtained
in a hundred of repetitions with different SN ratios (SNR)
Ep∗ [(x

T θ∗)2]/σ2 (that is, different σ2). From these fig-
ures and other experiments, we observed that 2d2H almost
always equaled d0.5 (they are completely overlapped). As
the SN ratio got larger, then the regret bound became looser
(for example, about six times larger than 2d2H when SNR
is 10). One of the reasons is that the risk validity condi-
tion is too strict to bound the loss function when SNR is
high. Hence, a possible way to improve the risk bound is
to restrict the parameter space Θ used in ϵ-risk validity to a
range of θ̂, which is expected to be considerably narrower
than Θ due to high SNR. In contrast, the regret bound is
tight when SNR is 0.5 in Fig. 3. Though the regret bound
is probabilistic, the regret bound dominated the Rényi di-
vergence over all trials.

A. Proof of Theorem 5
Proof. Define F θ

λ (x
n, yn) := dnλ(p∗, pθ) − log p∗(y

n|xn)
pθ(yn|xn) .

By the risk validity, we obtain

En
ϵ

[
exp

( 1
β
max
θ∈Θ

{
F θ
λ (x

n, yn)− L(θ|xn)
})]

≤ En
ϵ

[
exp

( 1
β
max
θ̃∈Θ̃

{
F θ̃
λ (x

n, yn)− βL̃(θ̃|q∗)
})]

≤
∑

θ̃∈Θ̃(q∗)

En
ϵ

[
exp

( 1
β

(
F θ̃
λ (x

n, yn)− βL̃(θ̃|q∗)
))]

. (12)
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Figure 3. Plot of d0.5 (Rényi div.), 2d2H (α-div.) and the regret
bound with τ = 0.03 in case SN ratio=0.5.

The following fact is a key technique:

En
ϵ

[
exp

( 1
β
F θ̃
λ (x

n, yn)
)]

= exp

(
1

β
dnλ(p∗, pθ)

)
En

ϵ

[(
pθ̃(y

n|xn)

p∗(yn|xn)

) 1
β

]

≤ 1

Pn
ϵ

exp

(
1

β
dnλ(p∗, pθ)

)
E

[(
pθ̃(y

n|xn)

p∗(yn|xn)

) 1
β

]

=
1

Pn
ϵ

exp

(
1

β
dnλ(p∗, pθ)

)
exp

(
− 1

β
dn1−β−1(p∗, pθ)

)
≤ 1

Pn
ϵ

exp

(
1

β
dnλ(p∗, pθ)

)
exp

(
− 1

β
dnλ(p∗, pθ)

)
=

1

Pn
ϵ

.

The first inequality holds because Ep̄∗(xn,yn) [A] ≥
Pn
ϵ E

n
ϵ [A] for any nonnegative random variable A. The

second inequality holds because dnλ(p∗, pθ) is monotoni-
cally increasing with respect to λ. Thus, the right side of
(12) is bounded by 1/Pn

ϵ . By Jensen’s inequality,

1

Pn
ϵ

≥En
ϵ

[
exp

(
1

β
max
θ∈Θ

{
F θ
λ (x

n, yn)− L(θ|xn)
})]

(13)

≥ exp

(
En

ϵ

[
1

β
max
θ∈Θ

{
F θ
λ (x

n, yn)− L(θ|xn)
}])

≥ exp

(
En

ϵ

[
1

β

(
F θ̂
λ (x

n, yn)− L(θ̂|xn)
)])

.

Thus, we have

−β logPn
ϵ ≥En

ϵ

[
dnλ(p∗, pθ̂)−log

p∗(y
n|xn)

pθ̂(y
n|xn)

−L(θ̂|xn)

]
.

Rearranging terms of this inequality, we have the statement.
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B. Proof of Lemma 1
Proof. For convenience, we define H(θ, θ̃, xn, yn) as

dnλ(p∗, pθ)− dnλ(p∗, pθ̃)︸ ︷︷ ︸
loss variation part

+ log
pθ(y

n|xn)

pθ̃(y
n|xn)

+ βL̃(θ̃|q∗)︸ ︷︷ ︸
codelength validity part

.

We need to find a weighted ℓ1 penalty function L(θ|xn)
that bounds minθ̃∈Θ̃(q∗)

H(θ, θ̃, xn, yn) from above for
any (θ, xn, yn) ∈ (ℜp × An

ϵ × ℜn). To bound
minθ̃ H(θ, θ̃, xn, yn), we borrow a nice randomization
technique introduced in (Chatterjee & Barron, 2014b)
with some modifications. Let us define w∗ :=
(w∗

1 , w
∗
2 , · · · , w∗

p)
T , where w∗

j =
√

Σjj and W ∗ :=

diag(w∗
1 , · · · , w∗

p). We quantize Θ as Θ̃(q∗) :=
{δ(W ∗)−1z|z ∈ Z p}, where δ > 0 is a quantization
width and Z is a set of all integers. Though Θ̃ de-
pends on the data in (Chatterjee & Barron, 2014b), we
must remove that dependency to satisfy ϵ-risk validity.
A problem is that the minimization of H(θ, θ̃, xn, yn)
seems to be difficult to evaluate. A key idea here is to
bound not minθ̃ H(θ, θ̃, xn, yn) directly but its expectation
Eθ̃[H(θ, θ̃, xn, yn)] with respect to a dexterously random-
ized θ̃ because the expectation is larger than the minimum.
For each given θ, θ̃ is randomized as

θ̃j =


δ
w∗

j
⌈mj⌉ with prob. mj − ⌊mj⌋

δ
w∗

j
⌊mj⌋ with prob. ⌈mj⌉ −mj

δ
w∗

j
mj with prob. 1− (⌈mj⌉ − ⌊mj⌋)

, (14)

where mj := w∗
j θj/δ and each component of θ̃ is statisti-

cally independent of each other. Its important properties are
Eθ̃[θ̃] = θ and E[(θ̃j − θj)(θ̃j′ − θj′)] ≤ I(j = j′) δ

w∗
j
|θj |.

Using these, we bound Eθ̃[H(θ, θ̃, xn, yn)] as follows. The
loss variation part in H(θ, θ̃, xn, yn) is the main concern
because it is more complicated than that of fixed design
case. Let us consider the following Taylor expansion

dnλ(p∗, pθ)− dnλ(p∗, pθ̃) = −
(
∂dnλ(p∗, pθ)

∂θ

)T

(θ̃ − θ)

−1

2
Tr

(
∂2dnλ(p∗, pθ◦)

∂θ∂θT
(θ̃ − θ)(θ̃ − θ)T

)
, (15)

where θ◦ is a vector between θ and θ̃. The first term in the
right side of (15) vanishes after taking expectation w.r.t. θ̃
because Eθ̃[θ̃ − θ] = 0. To bound the second term by the
weighted ℓ1 norm of θ, we have to bound this term above
by a multiple of Tr(Σ(θ̃ − θ)(θ̃ − θ)T ). Nevertheless, it
is not an easy task because the dependency of the Hessian
of dnλ on θ̃ is complicated. Here, Lemma 3 in Appendix
C plays a key role. By this lemma and Cauchy-Schwartz

inequality, we obtain

Tr

(
−∂2dnλ(p∗, pθ◦)

∂θ∂θT
(θ̃ − θ)(θ̃ − θ)T

)
≤ nλ

4σ2
Tr

((
Σ1/2θ̄′(θ̄′)TΣ1/2

∥θ̄′∥22

)(
θ̃ − θ

)(
θ̃ − θ

)T)

=
nλ

4σ2

(
(θ̄′)TΣ1/2(θ̃ − θ)

)2
∥θ̄′∥22

≤ nλ

4σ2

∥θ̄′∥22∥Σ1/2(θ̃ − θ)∥22
∥θ̄′∥22

=
nλ

4σ2
∥Σ1/2(θ̃ − θ)∥22 =

nλ

4σ2
Tr
(
Σ(θ̃ − θ)(θ̃ − θ)T

)
.

See Lemma 3 for unknown symbols. Thus, the expectation
of the loss variation part with respect to θ̃ is bounded as

Eθ̃

[
dnλ(p∗, pθ)− dnλ(p∗, pθ̃)

]
≤ δnλ

8σ2
∥θ∥w∗,1. (16)

The codelength validity part in H(θ, θ̃, xn, yn) have the
same form as that for the fixed design case in its appear-
ance. However, we need to evaluate it again in our setting
because both Θ̃ and L̃ are changed. The likelihood ratio
term in H(θ, θ̃, xn, yn) is calculated as

1

2σ2

(
2(y −Xθ)TX(θ − θ̃)+Tr

(
XTX(θ̃ − θ)(θ̃ − θ)T

))
.

Taking expectation with respect to θ̃, we have

Eθ̃

[
log

pθ(y
n|xn)

pθ̃(y
n|xn)

]
=

n

2σ2
Eθ̃

[
Tr
(
W 2(θ̃ − θ)(θ̃ − θ)T

)]
≤ δn

2σ2

p∑
j=1

w2
j

w∗
j

|θj |,

where W := diag(w1, w2, · · · , wp). We define a code-
length function C(z) := ∥z∥1 log 4p + log 2 for any z ∈
Z p. Note that C(z) satisfies Kraft’s inequality. Let us de-
fine a penalty function on Θ̃(q∗) as

L̃(θ̃|q∗) := C

(
1

δ
W ∗θ̃

)
= (1/δ)∥W ∗θ̃∥1 log 4p+ log 2.

Note that L̃ satisfies Kraft’s inequality and does not depend
on xn. By taking expectation w.r.t. θ̃, we have

Eθ̃

[
L̃(θ̃|q∗)

]
=

log 4p

δ
∥θ∥w∗,1 + log 2.

Thus, the codelength validity part is bounded above by

δn

2σ2

p∑
j=1

w2
j

w∗
j

|θj |+
β log 4p

δ
∥θ∥w∗,1 + β log 2

Combining with (16), Eθ̃[H(θ, θ̃, xn, yn)] is bounded
above by

δnλ

8σ2
∥θ∥w∗,1+

δn

2σ2

p∑
j=1

w2
j

w∗
j

|θj |+
β log 4p

δ
∥θ∥w∗,1+β log 2.
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Since xn ∈ An
ϵ , we can bound this by the data-dependent

weighted ℓ1 norm ∥θ∥w,1 as

Eθ̃[H(θ, θ̃, xn, yn)] ≤ δnλ

8σ2

∥θ∥w,1√
1− ϵ

+
δn

√
1 + ϵ

2σ2

p∑
j=1

w2
j

wj
|θj |+

β log 4p

δ

∥θ∥w,1√
1− ϵ

+ β log 2

=

(
δn

2σ2

(
λ

4
√
1− ϵ

+
√
1 + ϵ

)
+

β log 4p

δ
√
1− ϵ

)
∥θ∥w,1+β log 2.

Because this holds for any δ > 0, we can minimize the
upper bound with respect to δ, which completes the proof.

C. Upper Bound of Negative Hessian
Lemma 3. Let θ̄ := θ−θ∗ and θ̄′ := Σ1/2θ̄. For any θ, θ∗,

−∂2dλ(p∗, pθ)

∂θ∂θT
⪯ λ

4σ2

(
Σ1/2θ̄′(θ̄′)TΣ1/2

∥θ̄′∥22

)
, (17)

where A ⪯ B implies that B −A is positive semi-definite.

Proof. The Rényi divergence and its derivatives are well
interpreted through a distribution

p̄λθ (x, y) := q∗(x)p∗(y|x)λpθ(y|x)1−λ/Zλ
θ ,

where Zλ
θ is a normalization constant. Here, we show only

an explicit form of qλθ (x) =
∫
p̄λθ (x, y)dy and the Hessian

of dλ(p∗, pθ) without proof due to the page limit:

qλθ (x) = N(x;0,Σλ
θ ),

Σλ
θ := Σ1/2

(
Ip − γ(∥θ̄′∥22)

(
θ̄′

∥θ̄′∥2

)(
θ̄′

∥θ̄′∥2

)T
)
Σ1/2,

∂2dλ(p∗, pθ)

∂θ∂θT
=

λ

σ2
Σλ

θ − λ2(1− λ)

σ4
Varqλθ (x)

(
xxT θ̄

)
,

where c :=
σ2

λ(1− λ)
, γ(t) :=

t

c+ t
.

Here, Ip is an identity matrix of dimension p and
Varq(A) := Eq[(A − Eq[A])(A − Eq[A])

T ]. Therefore,
we need to evaluate

Varqλθ (xx
T θ̄) = Eqλθ

[
(xxT θ̄)(xxT θ̄)T

]
− (Σλ

θ θ̄)(Σ
λ
θ θ̄)

T .

The (j1, j2) element of Eqλθ

[
xxT θ̄θ̄TxxT

]
is calculated as

Eqλθ

[(
xxT θ̄θ̄TxxT

)
j1j2

]
=

p∑
j3,j4=1

θ̄j3 θ̄j4Eqλθ
[xj1xj2xj3xj4 ] ,

where xj denotes the jth element of x only here. We
rewrite Σλ

θ as S to reduce notation complexity hereafter.
By the formula of moments of Gaussian distribution,

Eqλθ
[xj1xj2xj3xj4 ] = Sj1j2Sj3j4+Sj1j3Sj2j4+Sj2j3Sj1j4 .

Therefore, the above quantity is calculated as

Eqλθ

[(
xxT θ̄θ̄TxxT

)
j1j2

]
=

p∑
j3,j4=1

θ̄j3 θ̄j4(Sj1j2Sj3j4 + Sj1j3Sj2j4 + Sj2j3Sj1j4)

= θ̄TSθ̄Sj1j2 + 2(Sθ̄)j1(Sθ̄)j2 .

Summarizing these as a matrix form, we have

Eqλθ

[
xxT θ̄θ̄TxxT

]
= (θ̄TSθ̄)S + 2Sθ̄(Sθ̄)T .

As a result, Varqλθ (xx
T θ̄) is obtained as

Varqλθ (xx
T θ̄) = Sθ̄θ̄TS + (θ̄TSθ̄)S.

We need to survey how this matrix is bounded above in
the sense of positive semi-definite. By noticing that Sθ̄ =
(1− γ(∥θ̄′∥22))Σ1/2θ̄′, the first term is calculated as

Sθ̄θ̄TS = (1− γ(∥θ̄′∥22))2∥θ̄′∥22
Σ1/2θ̄′(θ̄′)TΣ1/2

∥θ̄′∥22
.

Note that (1 − γ(t))2t = c2t/(c + t)2 = c2/(2(c/
√
t +√

t)/2)2 ≤ c2/(2
√
c)2 = c/4 holds, since (c/

√
t +√

t)/2 ≥
√
c. Thus, we have

Sθ̄θ̄TS ⪯ c

4

Σ1/2θ̄′(θ̄′)TΣ1/2

∥θ̄′∥22
.

As for the second term, we first calculate

θ̄TSθ̄ = θ̄T (1− γ(∥θ̄′∥22))Σ1/2θ̄′ = (1− γ(∥θ̄′∥22))∥θ̄′∥22.

Note that (1−γ(t))t = ct/(c+ t) = c/(c/t+1) ≤ c holds
and that S is positive semi-definite for any θ, the second
term is bounded as

(θ̄TSθ̄)S = f2(∥θ̄′∥22)S ⪯ cS.

Summarizing these, we have

Varqλθ (xx
T θ̄) ⪯ c

4

Σ1/2θ̄′(θ̄′)TΣ1/2

∥θ̄′∥22
+ cS.

Hence, the negative Hessian of dλ(p∗, pθ) is bounded as

−∂2dλ(p∗, pθ)

∂θ∂θT
= − λ

σ2
S +

λ

cσ2

(
Sθ̄θ̄TS + (θ̄TSθ̄)S

)
⪯ − λ

σ2
S +

λ

cσ2

(
c

4

Σ1/2θ̄′(θ̄′)TΣ1/2

∥θ̄′∥22
+ cS

)
=

λ

4σ2

(
Σ1/2θ̄′(θ̄′)TΣ1/2

∥θ̄′∥22

)
.
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