Data-driven Rank Breaking

Appendix: supplementary material

A. Proof of Theorem 2

We prove a more general result for an arbitrary choice of the parameter \; , > 0 forall j € [n] and a € [¢;]. The following
theorem proves the (near)-optimality of the choice of \; ,’s proposed in (14), and implies the corresponding error bound
as a corollary.

Theorem 5. Under the hypotheses of Theorem 2 and any \; ,’s, the rank-breaking estimator achieves
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where vy, n, T, 0, o, B, are now functions of \; ’s and defined in (11), (12), (20), (22) and (25).

We first claim that \; , = 1/(k; —pj,, + 1) is the optimal choice for minimizing the above upper bound on the error. From
Cauchy-Schwartz inequality and the fact that all terms are non-negative, we have that
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where \;, = 1/(k; — pjq + 1) achieves the universal lower bound on the right-hand side with an equality. Since

> i1 S % > 37", ¢}, substituting this into (17) gives the desired error bound in (15). Although we have
identified the optimal choice of A; ,’s, we choose a slightly different value of A = 1/(k; — p; o) for the analysis. This

achieves the same desired error bound in (15), and significantly simplifies the notations of the sufficient conditions.

We first define all the parameters in the above theorem for general ); ,. With a slight abuse of notations, we use the same
notations for #, L, a and (3 for both the general \; ,’s and also the specific choice of \; , = 1/(k; — pj,q). It should be
clear from the context what we mean in each case. Define
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Note that § > 67, > max, A3 ,(k; — pja)? > 72, and for the choice of \; , = 1/(k; — p; ) it simplifies as 7 = 7; = 1.
We next define a comparison graph H for general ); ,, which recovers the proposed comparison graph for the optimal
choice of A; 4’s

Definition 6. (Comparison graph H). Each item i € [d] corresponds to a vertex i. For any pair of vertices i1, there is a

weighted edge between them if there exists a set S; such that i,1" € S;; the weight equals Zj:i,i/esj @(T;if’_l)

Let A denote the weighted adjacency matrix, and let D = diag(A1). Define,
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Define graph Laplacian L as L = D — A, i.e.,

L= ZT]@) Z (ei_ei’)(ei—ei/)T. (24)

Ki(k; — 1
j=1 J( J i<i’€S;

Let 0 = A (L) < Ap(L) < --- < Ag(L) denote the sorted eigenvalues of L. Note that Tr(L) = Z?:l EMGSJ Tilj[Kj =
> i1 Til;. Define a and 3 such that

(L)(d=1) _de)d=1) oy Tl) _ Ejanb 25)
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For the proposed choice of \;, = 1/(k; — pj.a), we have 7; = 1 and the definitions of #, L, o, and 3 reduce to those
defined in Definition 1. We are left to prove an upper bound, § < 32(log(/max +2))?, which implies the sufficient condition
in (13) and finishes the proof of Theorem 2. We have,
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where in the first inequality follows from taking the worst case for the positions, i.e. p; o = k; — £; + a — 1 Using the fact
that for any integer x, Zi;t 1/(x 4+ a) <log((x +¢—1)/(x — 1)), we also have

0j0k; < b 1 max{l;,K; —pje}
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where the first inequality follows from the definition of 77;, Equation (12). From (26), (27), and the fact that §;» <
log(¢; + 2), we have

2(05,105,2 + 63 ) K5
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B. Proof of Theorem 5
We first introduce two key technical lemmas. In the following lemma we show that Eg-[VLgrp(0*)] = 0 and provide

a bound on the deviation of VLgp(6*) from its mean. The expectation Eg«[-] is with respect to the randomness in the
samples drawn according to 6*. The log likelihood Equation (5) can be rewritten as

n 4
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We use (i,4') € G, to mean either (¢,4") or (i, ) belong to E; ,. Taking the first-order partial derivative of Lrg(6), we
get
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Lemma 7. Under the hypotheses of Theorem 2, with probability at least 1 — 2e3d ™3,

IVLrn@)], < y[6logd YD~ (Ma) (k5 = Pia) (55 = Pra+1)

j=la=1

. . d - ()
The Hessian matrix H(0) € S¢ with H;;/(0) = “55755 ~ is given by

exp(0; + 6;1)
ZZ Z (e, }]q( ei/)(eiei/)T[exp(Hi)+€Xp(9i’)]2>' 31)

j=1la=1i<i’'€S;

It follows from the definition that —H () is positive semi-definite for any § € RZ. The smallest eigenvalue of —H (6) is
equal to zero and the corresponding eigenvector is all-ones vector. The following lemma lower bounds its second smallest
eigenvalue Ao (—H (60)).

Lemma 8. Under the hypotheses of Theorem 2, if
n 4
D> Nalks —pja) = 26618b2n762d10gd (32)
j=la=1 atfyir
then with probability at least 1 — d—3, the following holds for any 6 € -

AQ(—H(G)) > md_ 1 ZZ)\]G, pj,a)~ 33)

j=la=1

Define A = 6 — 6*. It follows from the definition that A is orthogonal to the all-ones vector. By the definition of 0 as the
optimal solution of the optimization (6), we know that Lrp(0) > Lrp(6*) and thus

Lrp(0) = Lrp(0%) = (VLrp(07),4) > —(VLrB(0"),A) > —[|VLrg(0")2]|All2, (34)
where the last inequality follows from the Cauchy-Schwartz inequality. By the mean value theorem, there exists a § =
af + (1 — a)6* for some a € [0, 1] such that 6§ € €, and

~ N N 1 1
Lrp(0) — Lrp(0") — (VLrp(0"),A) = QATH(G)A < —§>\2(—H(9))HA||§, (35)
where the last inequality holds because the Hessian matrix — H () is positive semi-definite with H(#)1 = 0and AT1 = 0.
Combining (34) and (35),

2|V LrB(67)ll2

18l = = H@)

(36)
Note that § € €, by definition. Theorem 5 follows by combining Equation (36) with Lemma 7 and Lemma 8.

B.1. Proof of Lemma 7

The idea of the proof is to view VLrp (6*) as the final value of a discrete time vector-valued martingale with values in R
Define VL¢; ,(0*) as the gradient vector arising out of each rank-breaking graph {G o} je[n),ac]¢,] that is

exp(6;)
ViLG;. Z Melf e, <{ <o, @0} T exp(6]) + exp(0] >> . o7
z;éz

Consider VL, ,(0*) as the incremental random vector in a martingale of j—1; time steps. Lemma 9 shows that the
expectation of each incremental vector is zero. Observe that the conditioning event {i"" € S : 07(i"") < p;.} given in
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(39) is equivalent to conditioning on the history {Gj 4’ }a'<a. Therefore, using the assumption that the rankings {o;} ;e[
are mutually independent, we have that the conditional expectation of VL, , (6*) conditioned on {Gj/ 4/} /< jarelty)
is zero. Further, the conditional expectation of VL¢, ,(0*) is zero even when conditioned on the rank breaking due to

previous separators {G o/ }o/<q that are ranked higher (i.e. a’ < a), which follows from the next lemma.
Lemma 9. For a position-p rank breaking graph Gy, defined over a set of items S, where p € [|S| — 1],

—1/: —1y: .y _ eXp(@Z-*)
IP[O (1) <o (3 ‘ (i,7') € Gp} = o0 + oxp(0) (38)
foralli,i' € S and also
0*
Pl @) <o) (1) € Grana (7 €55 07 < )] = — 2RO (9)

This is one of the key technical lemmas since it implies that the proposed rank-breaking is consistent, i.e.
Eg«[VLgrp(0*)] = 0. Throughout the proof of Theorem 2, this is the only place where the assumption on the pro-
posed (consistent) rank-breaking is used. According to a companion theorem in Azari Soufiani et al. (2014, Theorem
2), it also follows that any rank-breaking that is not union of position-p rank-breakings results in inconsistency, i.e.
Eg- [VLrp(6*)] # 0. We claim that for each rank-breaking graph G 4. | VL¢;, . (0%)[13 < (Xj.a)?(Kj—Pja)(Kj—Pja+1).
By Lemma 10 which is a generalization of the vector version of the Azuma-Hoeffding inequality found in (Hayes, 2003,
Theorem 1.8), we have

52
IE”[HVERB(G*)HQ > 5] < 2e3exp ( > 5 > ) (40)
2300 0 (Na) " (Rj = pja) (8 — Pja + 1)
which implies the result.
Lemma 10. Let (X1, Xo,- -+, X,,) be real-valued martingale taking values in R?® such that X, = 0 and for every 1 <
i <n, || X; — X;_1||2 < ¢, for some non-negative constant c;. Then for every 6 > 0,
2
P{|Xnllz > 48] < 2¢% =t 1)

It follows from the upper bound on [|[VLg, . (6%)||3 < ¢? with ¢Z = N ((k; — pj.a)® + (kj — pj.a)). In the expression
(37), VLg, ,(6) has one entry at p; ,-th position that is compared to (k; — p; ,) other items and (k; — p;,) entries that
is compared only once, giving the bound

IVLa, (03 < X .(kj —pja)® + A3 (ks — pja) -

B.2. Proof of Lemma 9
Define event E = {(7,i') € G,}. Observe that

E= {(H{(U*(z'):p} Flo-1()=p) = 1) A (0_1(i),0_1(i’) > p)} .

Consider any set Q@ C S\ {i,4'} such that [Q] = p — 1. Let M denote an event that items of the set {2 are ranked in
top-(p — 1) positions in a particular order. It is easy to verify the following:

. M} ) P[(a‘l(i) < a—l(z")),E,M} ) P[(a‘l(z’) :p>7M}
’ P[E,M} P[(Jfl(i) :p),M] +P{(0*1(i’) :p),M}
exp(67)
exp(0;) + exp(6}))

- P[a—l(i) < J_l(i')} .

P [U_l(i) <o M)

Since M is any particular ordering of the set §2 and €2 is any subset of S \ {i,4'} such that |2| = p — 1, conditioned on
event F probabilities of all the possible events M over all the possible choices of set {2 sum to 1.
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B.3. Proof of Lemma 10

It follows exactly along the lines of proof of Theorem 1.8 in (Hayes, 2005).

B.4. Proof of Lemma 8
The Hessian H (6) is given in (31). For all j € [n], define M) € S? as

£
MO = Z ja Z {(“ Ve a,. —ei)(ei—ei)', (42)

i<i'€S;

and let M = Z?zl M), Observe that M is positive semi-definite and the smallest eigenvalue of M is zero with the
corresponding eigenvector given by the all-ones vector. If |0;| < b, for all i € [d] oxp(6i +6;/) > Recall

» 0 Texp(0]7 2 (The 2”)
the definition of H () from Equation (31). It follows that —H () = M for 6§ € Q. Since, —H (6) and M are

(1+ 2b)2
symmetric matrices, from Weyl’s inequality we have, \o(—H(0)) > ﬁ/\g (M). Again from Weyl’s inequality, it
follows that

Ao(M) = M(E[M]) —[|M —E[M]|, (43)

where || - || denotes the spectral norm. We will show in (48) that Ay (E[M]) > 2ve~%(a/(d — 1)) > j=1 Titj, and in (60)
that || M — E[M]|| < 8¢%, /1218 570 30,

2e lay & dlog d — e~ 0y
/\Q(M) > 7727'.7‘57'—863() %ZTjj = ,YZTJ 'R (44)
° =

where the last inequality follows from the assumption that 77, 7;¢; > 2% 186 ’7 s-dlogd. This proves the desired
claim.

To prove the lower bound on Ao (E[M]), notice that

n J

£
SIS [(z’,z")eGj,a

j=la=1 i<i'€S;

(i,i' € Sj)} (ei —ex)(ei —en)T . 45)

The following lemma provides a lower bound on P[(4, ') € G, 4|(i,7 € S;)].

Lemma 11. Consider a ranking o over a set S C [d] such that |S| = k. For any two items i,i' € S, 0 € Q, and
1</<k-—1,

]P’g[a L) = f,0- (’)>4 > 66}7(“_8)(1]) “/”_2, (46)

- k(k—-1) K

where the probability Py is with respect to the sampled ranking resulting from PL weights 0 € Qy, and o; ; ¢ ¢ is defined
as1 < e = [Qiiepl, and ;i g is,

exp(6;) + exp(6yr) } @7

> jeqexp(6;))/19

Qiir o = max max
[Z]QCS\{zz} (
Q=

Note that we do not need maxy (g in the above equation as the expression achieves its maxima at ¢’ = ¢, but we keep the
definition to avoid any confusion. In the worst case, 2e72b < Qi it p0 < 2e2?". Therefore, using definition of rank breaking
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graph G; 4, and Equations (45) and (46) we have,

Pj.a
BV 5 eSS A Ao S (e el =)
j=la=1 i<i'€S;
n 1 £;
= 29y s Y Nl —pia) Y (e —en)(ei—en)”
j=1 kj(kj—1) a=1 i<i’'es;
= 2ye 5L, (48)

where we used v < (1 — pje,/ #;)* 2 which follows for the definition in (11). (48) follows from the definition of
Laplacian L, defined for the comparison graph 7 in Definition 6. Using A2(L) = (o/(d — 1)) Z?zl 7;4; from (25), we
get the desired bound Ao (E[M]) > 2ye~%(a/(d — 1)) Y27, 545

Next we need to upper bound || Z;’L=1 E[(M7)?]|| to bound the deviation of M from its expectation. To this end, we prove
an upper bound on P[O’;l (i) = pj.a | 7 € Sj] in the following lemma.

Lemma 12. Under the hypotheses of Lemma 11,

6b o e0—1 6b
Polo'(i) = ¢] < 6(1£> < - (49)

K K+ Qg k=10

where 0 < a p0 = | Q4 e0], and &; 00 is,

_ . . exp(6;)
(07 min min . (50)
40 vel)  Qes\{i} { (Xcaexp(9)) /19 }

Z‘Ql:ﬁ—é/-'rl

In the worst case, e =2 < Qi < €2, Note that a; ¢.0 = 0 gives the worst upper bound.

Therefore using Equation (49), for all ¢ € [d], we have,

6b€_ 6b€_ 6b e
P[aj_l(i)epj} §min{1, - } < €Y <&M 51)

Kj—pje | T max{lj,k; —pjet T K

where we used 7 defined in Equation (12). Define a diagonal matrix D) € S and a matrix AU) € S¢,

ZJ
A9 = It ves,) ZAj,aH{(i)i,)egjya} , forall 4,i € [d], (52)
a=1

and Dz(f) = iz Agf,). Observe that M) = DU — AU, Forall i € [d], we have,
Rj ZJ
G _ | 1,
D = Mies) 2o ms) 2o N00080,. 07 0)
¢ ¢
H{iesy}{ {o7 @wer;} (felax {)\j’“(nj _pj’“)} * ;)\j’“) + H{afl(i)@j} <;)\j’a> }
- H{iESj}{H{ojl(i)E'Pj}éj’l + H{ajl(i)gﬁj}6j72}’ (53)

where the last equality follows from the definition of d; ; and d; » in Equation (21). Note that max;e|(d] {Di} =0 j,1- Using

(51) and (53), we have,
. 6bpp 0jok;
E[DY| < 1 C 05 (60 4+ 225 4
[ i ] = {iGSj}{ oy 5,1+ 7’]63‘ (54)




Data-driven Rank Breaking

Similarly we have,

. 6byp . 62 ks
() 2 e'nls (o 2K
E[(Dif ) ] < H{ieSj}{ - J (5771 + ]%)} (55)

For all i € [d], we have,

d
2|3, < u|(a2) {30 a2)
ir=1 ir=1 !
< [ DYs;, }
St ; 0510, 2K;
= H{iesj}{ ij<5§’,1+] ol J)} (56)
Using (55) and (56), we have, for all ¢ € [d],
d d
S E[M9?),]] = S IE[((09)?),,] -E[(DV49) ] —E[(a0 D) ] [((M)J\
=1 =1

IN

2B[(DY))] + 3 (E[aj,l(mﬁ) | +E[<<A<ﬂ>>2>w})

=1

T]£ 2 ((5]‘71(5‘,2 +6J2',2)Hj)
< I 465 4
< B T (0,
eSbome;
H{iesj}{ Py }, (57)

where the last equality follows from the definition of §, Equation (22).

To bound || 3°7_; E[(MY))?]|[, we use the fact that for J € R*?, |[J|| < max;¢(q S>%_, |Jiir|. Therefore, we have

. 0.
(M))2 < e 577max{ Z ]}
|: :| i€[d] jiics, K
6b
= ‘ n(staX (58)
-
€56 «
= ZT] s (59)

where (58) follows from the definition of Dy, in Equation(23) and (59) follows from the definition of S in (25). Observe
that from Equation (53), | M )| < 26, < 2V/5. Applying matrix Bernstien inequality, we have,

IP’[HM —~E[M]|| > t} <dex /2
ST G i Tl + 4V6t/3)

Therefore, with probability at least 1 — d—3, we have,

1M — B < 46 ”(;lfidZm 64\flogd< 8 ndlogdZTjJ7 ©0)

where the second inequality uses > ", 7;¢; > 2°(87/n)dlog d which follows from the assumption that 7, 7;¢; >
2018 ”6 5dlogd and the fact that o, 3 < 1,7 < 1,7 > 1,and § > 72
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B.5. Proof of Lemma 11

Since providing a lower bound on Py [o~*(i) = ¢,0!(i') > ¢] for arbitrary 6 is challenging, we construct a new set

of parameters {0 }jelq) from the original §. These new parameters are constructed such that it is both easy to compute
the probability and also provides a lower bound on the original distribution. We denote the sum of the weights by W =
> jes exp(0;). We define a new set of parameters {9 }ies:

~ O i1 F— i/
g, = { log(ai i1 00/2) forj=jiori, oD

0 otherwise .

Similarly define W= ZjeS exp(aj) =K — 2+ &; 1,9- We have,

P, [a—l(i) =0,071() > 4

exp(6,) exp(f,) exp(8,-.) exp(6;)
%( w 1'2;9 (Wexp(f’m ( 2 W — U2 exp(f) W — Y exp(ek>> ))

Je—1€S k=j1 k=j1
Jr1#1,4 Je#ii g1 Je— 1;&”
Jiysje—2
_exp(i) 3 exp(8;, ) 3 exp(0,) Y exp(0j,_.) .
w jres W — eXp(ejl) jaeS W - eXp(ejl) - exp(ejz) je.€S W — gf;;l exp(ﬂk)
Jris a1 Je—174,i',
J1s5Je—2
(62)
Consider the last summation term in the above equation and let €2, = .S \{i,%,j1,...,Je—2}. Observe that, |2p| =k — ¢
. exp(6;)+exp(0;r) Q;, z’ é 0
and from equation (47), 5= e, xP(6) < . We have,
Z eXP‘(Qjefl) _ Z ‘ exp(0j,_,)
jeea, W= 2255, exp(6k) jeea, W= 22025 exp(b) — exp(6),_,)
N _ 2o e, exp(0,_,) ©3)
W =325 exp(Ok) — (225, ,eq, exP(05, 1)) /1]
_ Zﬂ 1€Q exp(6,_,)
eXp(9 ) + exp( ) + Z]é 1€Qy eXp(HJe 1) - (Zjefleﬂe exp( Je— 1))/|Q€|
exp(6;) + exp(f) 1\
ng,leﬂg exp(aje—l) -t
-1
aq 1
> 1-— 64
> (H — + - E) (64)
_ k—4
o &1 + Kk — E — 1
exp(6;
- Z e Je—2 Xp( ff_l) 'y ’ (65)
Je—1€Q W — k=71 exp(fx) — exp(8y,_,)

where (63) follows from the Jensen’s inequality and the fact that for any ¢ > 0, 0 < 2 < ¢, % is convex in z. Equation
(64) follows from the definition of &; i ¢,9, (47), and the fact that || = x — ¢. Equation (65) uses the definition of

{0;}jes-

Consider {€;}, <i<i-1> Q] = & — ’ corresponding to the subsequent summation terms in (62). Observe that

% < @,i,0,6/|€]. Therefore, each summation term in equation (62) can be lower bounded by the cor-
JEQ S J
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responding term where {6} ;s is replaced by {6} ;. Hence, we have

P, [U‘l(i) =007 (i) > 4

> exp(6;) Z ( exp(gjl) Z ( eXp(gjz) . Z ( expl(gjzfl) )))
B w j1€S8 W — exp(ejl) ja€S W — eXp(eh) - eXp(ejz) je_1€S W — ?:;;1 exp(0)
g1, JoFii' g1 Je—174,1,
J1smrsJe—2

e~ exp(6y) Z( exp(6;,) 5 < exp(0,) Y ( exp(6),_,) )
W iTs \W —exp(0;,) s \W —exp(f),) —exp(6;,) s \W - ff:’;l exp(6,)
J1#4,4 JaAi,i’ 1 je—l#?,i',
J1s5Je—2

= (e_4b)IE”§[U_1(i) =l (i) > 4 .

The second inequality uses % > e 2%/ and %(Gi) < €®/k. Observe that exp(f;) = 1 for all j # i,i and

exp(6;) +exp(0y) = & o0 < [Qiir.00] = i 0,0 > 1. Therefore, we have
1. 1. -2 (@iir00/2)(0 —1)!
IP’~[U Yy =407 >4 = (H ) — e —
sl @) ©) C=1) (k=24 &)k =2+ aiieo—1) (k=24 diieo — (€ —1))
(k —2)! e20

67
T kL= (ktaiiee—2)(K+aiiee—3) - (k+taiiee— (£+1)) (67)
. 6_217(/43 — {4+ Qi 0,0 — 2)([{, — 0+ 00,0 — 3) L. (H _ E)
- (k+ i —2)(K+ e —3) - (k—1)
e (vl aiie—2)(k— Lt aiiee—3) (k0
(k—1) (K + aiireo —2)(F+ aginee —3) - (K)
6_2b Y] O‘i,z‘/,l,e_l
> — |1 - =
- (I{ — 1) < /q;)
672!7(/-{ -0 0 “oiliee—2
= oD U 68
k(k—1) < ,«;) ’ (68)

where (67) follows from the fact that c; ;¢ 9 > 2¢~20_ Claim (46) follows by combining Equations (66) and (68).

B.6. Proof of Lemma 12

Analogous to the proof of Lemma 11, we construct a new set of parameters {gj }jelq) from the original 6. We denote the
sum of the weights by W =3~ s exp(f;). We define a new set of parameters {0; } jes:

. _ log(ai,lﬂ) fOI'j =1,
% = { 0 otherwise . (69)
Similarly define W = djes exp(aj) =k —14 ;9. We have,
P, [afl(i) - 4
S (expwjl) 5 ( exp(0,) ( > exp(f,.,) exp(6s) )))
j1€8 W S \W —exp(8;,) s W= 20100 exp(8r) W — 37320 exp(6y)
J1#4 J2#4,01 Je—174,
J1y50e—2
S (expwm 5 ( exp(0,) ( 5 exp(6,._,) ))) e 0,
J1ES w J2€S W= exp(ejl) Je—1€S8 W - Z-}f;jl exp(ek) p—t+l
JiF J2Fi,01 Je—17#1,

Jiseaje—2

)

(66)
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Consider the last summation term in the equation (70), and let Q= S\ {i,j1,...,Je—2}, such that || = k — £+ 1.

Observe that from equation (50), cngfg(ej) > :_“;J’:’l. We have,
FEQ, J

Z exp(8j, ,) _ > iea, exp(0,,)
Je-1€8 w- gf;;l exp(gk) eXp(ei) + Zje—1€ﬂz eXp(ejz—1>
~ -1
Q50,0
< .t LA, 1
B (n —(+1 + )
. K—0+1
Qg tr—L+1
exp(0;
- Y = XF;E - Do o
Je—1E€Q W — k=71 eXp(ek)

where (71) follows from the definition of {5} jes-

Yl =K - (+1, corresponding to the subsequent summation terms in (70). Observe that

Consider {Q5}, 7,1

exp(6i) &
Z]eQ~CXP(9 ) Z al’é’g/

term where {6 } ;¢ is replaced by {g’j}jes- Hence, we have

P, [a‘l(i) - z]

;]. Therefore, each summation term in equation (62) can be lower bounded by the corresponding

exp(ajl) exp(§j2) exp(ejz/ 1) e2b
= Z( 7 2 e @) 2. wo S2 oxp(B) K+ 1
Jj1€S j2 €S PVj, je—1€S 1 eXp( k)
J17#% J2#1,J1 Jﬁ 171,
J1ysJe—2
< ol Z (exp@jl) Z ( eXp(gjz) < Z exp(@M D) eXp(é) )))
o fes %% e W —exp(0;,) iees W — Z“ ? exp(@k)W Z” .1 exp(0k)
J17#t J2#4,51 Je—174,
JisyJe—2
< e4b1P>§[a*1(i) :4 (72)

> ¢ 20 /(5 — £ + 1). Observe that exp(f;) = 1 for all j # i and
exp(6;) = &0 > |Qiso] = ;09 > 0. Therefore, we have

The second inequality uses &s/(k — £ + qig0) >

P N . k—1 alge(f—l)
]P)G [U (Z) _4 o (f 1) (I{* 1+&,~7g,9)(n—2+&M79)~~-(mf€+&i,g79)
< (k= 1)! e??
T (k=0 (k—1+4aaie0)(k—24aing) - (k—L+ uisg)
2b a;e0—1
< = (1 - E) , (73)
K K+ Qi

Note that equation (73) holds for all values of ¢; 9 > 0. Claim 49 follows by combining Equations (72) and (73).

C. Proof of Theorem 4
8% L(0)

Let H() € S¢ be Hessian matrix such that Hy;/(6) = 5999, The Fisher information matrix is defined as 1(0) =

—Eg[H (0)]. Fix any unbiased estimator § of § € ;. Since, 0 € U, 6 — 6 is orthogonal to 1. The Cramér-Rao lower bound
then implies that E[[|§ — 6*]|?] > Z?:g W. Taking the supremum over both sides gives

d
StglpE[H@*@II > supz)\ Z

Z
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The following lemma provides a lower bound on E4[H (0)], where 0 indicates the all-zeros vector.

Lemma 13. Under the hypotheses of Theorem 4,

E¢[H(0)] = ZW > (ei—en)(ei—ei). (74)
j=1 I\

1) i'<i€S;

Observe that I(0) is positive semi-definite. Moreover, A;(I(0)) is zero and the corresponding eigenvector is the all-ones
vector. It follows that

2plog ()
I(O) j Z /{-(/ﬂ-—]_) Z (81—61/)(€i—6i/)
j=1 I\ i/ <i€S
= 1
j 2p10g(:‘<?max)2 Z ﬂ-(/{ ) Z (ei - @i/)(e‘ 6;/) )
j=1"73Y" i/ <i€S;
=L

where L is the Laplacian defined for the comparison graph 7{, Definition 1, as ¢; = 1 for all j € [n] in this setting. By
Jensen’s inequality, we have

Ed: Lo ([@d-1?  ([@d-1? (d-1)

pr RS CRND DpHE AR no
C.1. Proof of Lemma 13
Define £;(6) for j € [n] such that £(0) = >°7_; £;(6). Let HY)(#) € S be the Hessian matrix such that HI(6) =
%ngéj) for 4,7 € S;. We prove that for all j € [n],

; 2plog(k;)?
Eo[HD)(0)] = - p( g(_Jl)) Z (e; —ew)(ei—ei) ' . (75)
Rj\Rj i <i€S;

In the following, we omit superscript/subscript j for brevity. With a slight abuse of notation, we use I;g-1(;)—,) = 1if

item 7 is ranked at the a-th position in all the orderings o € 2. Let P[0)] be the likelihood of observing Q! (p) = (") and
the set A (the set of the items that are ranked before the p-th position). We have,

exp (30—1 Oo(m)
P(6) = < D (X ) (76)
;e;z [Ty (e exp (o) )

Fori,i € S;, we have

1 9°P(6) V.P(O)VP(6)

Hi;ir(0) = )
©) P(0) 06,00, (P(g))Q
We claim that at § = 0,
Gy ifi=4d, {Q71() > p}
Co+A5-C5 ifi=17, {Qfl(i)<p}
oy =B ifi#i, {Q7 ) >p, Q7N) > p
Hii(0) = —By ifi#d, {Q7H6) >p, Q7)) <p (78)
—By ifi#d, {Q76) <p, Q7)) >p
—(Bs+ By — A%)  ifi#£d, {971(2-) <p, QL) <p} .
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where constants A3z, By, Bo, B3, By, C1, Cs and C5 are defined in Equations (85), (87), (88), (89), (90), (92), (93) and (94)
respectively. From this computation of the Hessian, note that we have

H(O0) = > (e~ eir)(ei — e) (Hin(0)) . (79)

i <i€S

which follows directly from the fact that the diagonal entries are summations of the off-diagonals, i.e. C; = By(k — p) +
Ba(p—1)and Cy + A%2 — C5 = Ba(k —p+ 1) + (B3 + By — A3)(p — 2). The second equality follows from the fact that
Co = Ba(k—p+ 1)+ Bs(p—2) and A%(p — 1) = By(p — 2) + C3. Note that since § = 0, all items are exchangeable.
Hence, E[H;;/(0)] = E[H;;(0)]/(x — 1), and substituting this into (79) and using Equations (78), we get

E[H(0)|
= 75i : (P[Ql(i) > p|C1 +P[Q7Y(i) < p](Ca + A2 — 03)> 3 (ei—en)ei—en)T
i <ieS
T (“‘“ g (5 ) + 0= (1os (=) + o (_pﬂ))> S e e — )T
i <i€S
(80)
_M 2 fe (e e 81)

where (80) uses Za 1 m < log (Tfp) and C5 > 0. Equation (81) follows from the fact that for any x > 0,
log(1 + z) < . To prove (78), we have the first order partial derivative of °(#) given by

exp (Zp 1 ( H{o-—l (i)>a} exp(0 ) ))
ViP(O) = Iig-15y<pP(0) — ( m= NC9))
teriw=rl (;) g:l (Z;,:a exp (Hg(m’))) Z Zm/*a exp (90(7” ))

Define constants A1, A5 and A3 such that

(p —1)!
A = ]P =
1 (9)’{6:0} (n 1) (k—p+1) ®9
exp(f 1 1
Ay = <Z ) ( + +---+>, (84)
> €XD Um/)) (-0} k—1 k—p+1
p—Dp-2)! @-2)p-2) (p—2)!
Ay = + -t (85)
’ ( (=D r) " (p—Dir—1) (p— Dk —p+2)
Observe that, for all 7 € [d],
0|90y = A1 (H{Qf@):p}(l = A2) + Ligo1()cpy (1= A3) = H{n_;1<i>>p}A2) : (86)
Further define constants By, By, B3 and B, such that
1 1 1
B, = — R
! </€2+(/~;—1)2+ +(/{—p+1)2>’ &7
p—1 p—2 1
By = + et ; (88)
’ <<p1>n2 (p— 1)k —1)? <p1><np+2>2>

o (=De-2)r-3)! (@-2)p-3)E-3)! 2(p —3)
b ‘( N e ) R >'<m—p+3>> ®

_ (p=3)! 1 1 1 1 1 1
Bs = (p—l)( Z <m+m—1+H.+/@—a+l>(m+f@—1+...+n—b+1>>' ©0)

a,be[p—1],b#a
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Observe that,

92P(6)
0000,

H{Qfl(i),ﬂfl(i/»p}Al <(—A2)(—A2) + Bl>

+ (H{Q*1<i>>p,szfl(i'>:p} + H{n*1<i>:p,971(i'>>p}>A1 (401~ 42) + 31)
N (H{Q—l(i):p,ﬂ—l(i’kp} + H{Q—l(i)<p,ﬂ—1(i’):p}>A1 ((1 ~Ag) + (- A)(1 - Ay + Bz)
+ (H{Q—l(ibp,n—l(i')@} + H{Q—l(i><p,ﬂ—l(i'>>p})A1 ((_A2)(1 —As)+ Bz)

+ H{Q—l(i)<p7Q_1(i/)<p}A1 ((1 - A3) + (_A3) + B4 + B3) . (91)

6=0

The claims in (78) are easy to verify by combining Equations (86) and (91) with (77). Also, define constants C, Cy and
Cs such that,

S (e I S S St

o <<@2+KHD2+ ‘%mp+1v>’ ©2)
_ (-De-2(x-1) @-2)p-2(x-2) (-2 (s-p+]1)

oo ( (P = Hw)” -0z +(p—1)!(f€—p+2)2>7 o9

 (p-2)! 1 1 1 1 1 1
G = (p_m( 2 <HK_1*“‘ﬂHH)(Hﬁ_ﬁ“'m_m))’ ©4)

a,be[p—1],b=a
such that,

92P(9)
9072

o = H{Qfl(i)>p}A1 ((—A2)(_A2) - Cl) + ]I{Q’I(’L'):P}Al ((1 - A2) - A2(1 - Ag) - Cl)

+Lia-1(i)<py A1 ((1 —A3z) — A3 —Co + 03) : (95)

The claims (78) is easy to verify by combining Equations (86) and (95) with (77).



