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Abstract

Rank aggregation systems collect ordinal prefer-
ences from individuals to produce a global rank-
ing that represents the social preference. To
reduce the computational complexity of learn-
ing the global ranking, a common practice is to
use rank-breaking. Individuals’ preferences are
broken into pairwise comparisons and then ap-
plied to efficient algorithms tailored for indepen-
dent pairwise comparisons. However, due to the
ignored dependencies, naive rank-breaking ap-
proaches can result in inconsistent estimates. The
key idea to produce unbiased and accurate es-
timates is to treat the paired comparisons out-
comes unequally, depending on the topology of
the collected data. In this paper, we provide the
optimal rank-breaking estimator, which not only
achieves consistency but also achieves the best
error bound. This allows us to characterize the
fundamental tradeoff between accuracy and com-
plexity in some canonical scenarios. Further, we
identify how the accuracy depends on the spec-
tral gap of a corresponding comparison graph.

1. Introduction

In several applications such as electing officials, choosing
policies, or making recommendations, we are given partial
preferences from individuals over a set of alternatives, with
the goal of producing a global ranking that represents the
collective preference of the population or the society. This
process is referred to as rank aggregation. One popular ap-
proach is learning to rank. Economists have modeled each
individual as a rational being maximizing his/her perceived
utility. Parametric probabilistic models, known collectively
as Random Utility Models (RUMs), have been proposed
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to model such individual choices and preferences (McFad-
den, 1980). This allows one to infer the global ranking by
learning the inherent utility from individuals’ revealed pref-
erences, which are noisy manifestations of the underlying
true utility of the alternatives.

Traditionally, learning to rank has been studied under the
following data collection scenarios: pairwise comparisons,
best-out-of-k comparisons, and k-way comparisons. Pair-
wise comparisons are commonly studied in the classical
context of sports matches as well as more recent applica-
tions in crowdsourcing, where each worker is presented
with a pair of choices and asked to choose the more fa-
vorable one. Best-out-of-k comparisons datasets are com-
monly available from purchase history of customers. Typ-
ically, a set of k alternatives are offered among which
one is chosen or purchased by each customer. This has
been widely studied in operations research in the context
of modeling customer choices for revenue management
and assortment optimization. The k-way comparisons are
assumed in traditional rank aggregation scenarios, where
each person reveals his/her preference as a ranked list over
a set of k items. In some real-world elections, voters pro-
vide ranked preferences over the whole set of candidates
(Lundell, 2007). We refer to these three types of ordinal
data collection scenarios as ‘traditional’ throughout.

For such traditional datasets, there are several computation-
ally efficient inference algorithms for finding the Maximum
Likelihood (ML) estimates that provably achieve the min-
imax optimal performance (Negahban et al., 2012; Shah
etal., 2015a; Hajek et al., 2014). However, modern datasets
can be unstructured. This calls for a more flexible ap-
proaches for rank aggregation that can take such diverse
forms of ordinal data into account. For such non-traditional
datasets, finding the ML estimate can become significantly
more challenging, requiring run-time exponential in the
problem parameters.

To avoid such a computational bottleneck, a common
heuristic is to resort to rank-breaking. The collected or-
dinal data is first transformed into a bag of pairwise com-
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parisons, ignoring the dependencies that were present in the
original data. This is then processed via existing inference
algorithms tailored for independent pairwise comparisons,
hoping that the dependency present in the input data does
not introduce bias. This idea is one of the main motivations
for numerous approaches specializing in learning to rank
from pairwise comparisons, e.g. (Ford Jr., 1957; Negahban
et al., 2014; Azari Soufiani et al., 2013). However, such a
heuristic of full rank-breaking, where all pairs are weighted
and treated equally, has been recently shown to introduce
estimation bias (Azari Soufiani et al., 2014).

The key idea to produce accurate and unbiased estimates
is to treat the pairwise comparisons unequally, depending
on the topology of the collected data. A fundamental ques-
tion of interest to practitioners is how to choose the weight
of each pairwise comparison in order to achieve not only
consistency but also the best accuracy, among those con-
sistent estimators using rank-breaking. We study how the
accuracy depends on the topology of the data and also on
the weights on the pairwise comparisons. This provides a
guideline for the optimal choice of the weights, driven by
the topology of the data, that leads to accurate estimates.

Problem formulation. Users’ revealed preferences are ex-
pressed in the form of partial orderings. The data from
each individual can be represented by a partially ordered
set (poset). Assuming consistency in a user’s revealed pref-
erences, any ordered relations can be seamlessly translated
into a poset, represented by a directed acyclic graph (DAG).
The DAG below represents ordered relations a > {b,d},
b > ¢, {c,d} > e, and e > f. For example, this could
have been translated from two sources: a five star rating on
a and a three star ratings on b, ¢, d, a two star rating on e,
and a one star rating on f; and the item b being purchased
after reviewing c as well.

g;

A%

Figure 1. A DAG representation of consistent partial ordering of
a user j (top). Two rank-breaking graphs extracted from G; for
the separator item a and e, respectively (bottom).

There are n users or agents, and each agent j provides
his/her ordinal evaluation on a subset S; of d items or al-
ternatives. We refer to S; C {1,2,...,d} as offerings pro-
vided to j, and use r; = |.5;| to denote the size of the offer-
ings. We assume that the partial ordering over the offerings
is a manifestation of her preferences as per a popular choice
model known as Plackett-Luce (PL) model.

The PL model is a special case of random utility mod-
els, defined as follows (Walker & Ben-Akiva, 2002;
Azari Soufiani et al., 2012). Each item ¢ has a real-valued
latent utility 6;. When presented with a set of items, a
user’s reveled preference is a partial ordering according to
noisy manifestation of the utilities, i.e. i.i.d. noise added
to the true utility 6;’s. The PL model is a special case
where the noise follows the standard Gumbel distribution,
and is one of the most popular model in social choice the-
ory (McFadden, 1973; McFadden & Train, 2000). PL has
several important properties, making this model realistic in
various domains, including marketing (Guadagni & Little,
1983), transportation (McFadden, 1980; Ben-Akiva & Ler-
man, 1985), biology (Sham & Curtis, 1995), and natural
language processing (Mikolov et al., 2013). Precisely, each
user j, when presented with a set S; of items, draws a noisy
utility of each item ¢ according to

b + 7, ey

u; =

where Z;’s follow the independent standard Gumbel distri-
bution. Then we observe the ranking resulting from sorting
the items as per noisy observed utilities u;’s.

The PL model () satisfies ‘independence of irrelevant al-
ternatives’ in social choice theory (Ray, 1973); (i7) has
a maximum likelihood estimator (MLE) which is a con-
vex program in 6 in the traditional scenarios; and (7i7) has
a simple characterization as sequential (random) choices
as follows. Let P(a > {b,c}) denote the probability a
was chosen as the best alternative among the set {a, b, c}.
Then, the probability that a user reveals a linear order
(a > b > ¢ > d) is equivalent as making sequential choice
from the top to bottom:

P(a > {b,c})
P o

= . 2
(efa + e + ePc) (ef + efe) @

Pla>b>c)= P(b > c)

In general, for user j presented with offerings S;, the prob-
ability that the revealed preference is a total ordering o is

bt ry Sorran
P(o;) = HzG{l ..... nrl}(e i) e ). We
consider the true utility 0* € €2, where we define §2;, as

sz{eeRd\ > 6:=0, 16, < bforalli € [d] }
i€[d]

Note that by definition, the PL model is invariant un-
der shifting the utility 6;’s. Hence, the centering ensures
uniqueness of the parameters for each PL model. The
bound b on the dynamic range is not a restriction, but is
written explicitly to capture the dependence of the accu-
racy in our main results.

We have n users each providing a partial ordering of a set
of offerings S; according to the PL model. Let G; denote
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both the DAG representing the partial ordering from user
j’s preferences. With a slight abuse of notations, we also let
G, denote the set of full rankings over .S; that are consistent
with this DAG. For general partial orderings, the probabil-
ity of observing G; is the sum of all total orderings that is
consistent with the observation, i.e. P(G;) = >, g, P(0).
The goal is to efficiently learn the true utility 6* € €2, from
the n sampled partial orderings. One popular approach is to
compute the maximum likelihood estimate (MLE) by solv-
ing the following optimization:

maximize
0,

n
> logP(G;) - 3)
j=1
This optimization is a simple convex optimization, in par-
ticular a logit regression, when the structure of the data
{G;}jem) is traditional. This is one of the reasons the
PL model is attractive. However, for general posets, this
can be computationally challenging. Consider an exam-
ple of position-p ranking, where each user provides which
item is at p-th position in his/her ranking. Each term in
the log-likelihood for this data involves summation over
O((p — 1)!) rankings, which takes O(n (p — 1)!) opera-
tions to evaluate the objective function. Since p can be as
large as d, such a computational blow-up renders MLE ap-
proach impractical. A common remedy is to resort to rank-
breaking, which might result in inconsistent estimates.

Rank-breaking. Rank-breaking refers to the idea of ex-
tracting a set of pairwise comparisons from the observed
partial orderings and applying estimators tailored for paired
comparisons treating each piece of comparisons as inde-
pendent. Both the choice of which paired comparisons to
extract and the choice of parameters in the estimator, which
we call weights, turns out to be crucial as we will show. In-
appropriate selection of the paired comparisons can lead to
inconsistent estimators as proved in (Azari Soufiani et al.,
2014), and the standard choice of the parameters can lead
to a significantly suboptimal performance.

A naive rank-breaking that is widely used in practice is to
apply rank-breaking to all possible pairwise relations that
one can read from the partial ordering and weighing them
equally. We refer to this practice as full rank-breaking. In
the example in Figure 1, full rank-breaking first extracts the
bag of comparisons C = {(a > b), (a > ¢),(a > d), (a >
e),(a>f),...,(e > f)} with 13 paired comparison out-
comes, and apply the maximum likelihood estimator treat-
ing each paired outcome as independent. Precisely, the full
rank-breaking estimator solves the convex optimization of

p T (0o o

@\ € argmax
(i>i')eC

There are several efficient implementation tailored for this
problem (Ford Jr., 1957; Hunter, 2004; Negahban et al.,

2012; Maystre & Grossglauser, 2015a), and under the tra-
ditional scenarios, these approaches provably achieve the
minimax optimal rate (Hajek et al., 2014; Shah et al.,
2015a). For general non-traditional datasets, there is a sig-
nificant gain in computational complexity. In the case of
position-p ranking, where each of the n users report his/her
p-th ranking item among « items, the computational com-
plexity reduces from O(n (p — 1)!) for the MLE in (3) to
O(np (k — p)) for the full rank-breaking estimator in (4).
However, this gain comes at the cost of accuracy. It is
known that the full-rank breaking estimator is inconsistent
(Azari Soufiani et al., 2014); the error is strictly bounded
away from zero even with infinite samples.

Perhaps surprisingly, Azari Soufiani et al. (2014) recently
characterized the entire set of consistent rank-breaking es-
timators. Instead of using the bag of paired comparisons,
the sufficient information for consistent rank-breaking is a
set of rank-breaking graphs defined as follows.

Recall that a user j provides his/her preference as a poset
represented by a DAG G;. Consistent rank-breaking first
identifies all separators in the DAG. A node in the DAG
is a separator if one can partition the rest of the nodes into
two parts. A partition A, which is the set of items that are
preferred over the separator item, and a partition Apottom
which is the set of items that are less preferred than the
separator item. One caveat is that we allow Ao, to be
empty, but Apoiiom must have at least one item. In the
example in Figure 1, there are two separators: the item
a and the item e. Using these separators, one can ex-
tract the following partial ordering from the original poset:
(a > {b,c,d} > e > f). The items a and e separate the
set of offerings into partitions, hence the name separator.
We use ¢; to denote the number of separators in the poset
G; from user j. We let p; , denote the ranked position of
the a-th separator in the poset G;, and we sort the positions
such that p; 1 < pj2 < ... < Dje;- The set of separators
is denoted by P; = {pj1,pj2, - ,pje, }. For example,
the separator a is ranked at position 1 and e is at 5. Then,
¢; =2,pj1 = 1,and p; » = 5. Note that f is not a separa-
tor (whereas « is) since corresponding Aypttom 1S empty.

Conveniently, we represent this extracted partial order-
ing using a set of DAGs, which are called rank-breaking
graphs. We generate one rank-breaking graph per separa-
tor. A rank breaking graph G, , = (5}, E; o) for user j and
the a-th separator is defined as a directed graph over the set
of offerings S;, where we add an edge from a node that
is less preferred than the a-th separator to the separator,
ie. Ej, = {(i,i") |7 is the a-th separator, and a;l(i) >
Pj.q }- Note that by the definition of the separator, E, , is a
non-empty set. Example graphs are shown in Figure 1.

This rank-breaking graphs were introduced in (Azari Soufi-
ani et al., 2013), where it was shown that the pairwise
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ordinal relations that is represented by edges in the rank-
breaking graphs are sufficient information for using any
estimation based on the idea of rank-breaking. Precisely,
on the converse side, it was proved in (Azari Soufiani et al.,
2014) that any pairwise outcomes that is not present in the
rank-breaking graphs G ,’s introduces bias for a general
0*. On the achievability side, it was proved that all pair-
wise outcomes that are present in the rank-breaking graphs
are unbiased, as long as all the paired comparisons in each
Gj,q are weighted equally. In the algorithm described in
(29), we satisfy this sufficient condition for consistency by
restricting to a class of convex optimizations that use the
same weight \; , for all (k — p; ) paired comparisons in
the objective function, as opposed to allowing more gen-
eral weights that defer from a pair to another pair in a rank-
breaking graph G ,.

Algorithm. Consistent rank-breaking first identifies sepa-
rators in the collected posets {G; } ;[ and transform them
into rank-breaking graphs {G; o };je[n],ac[,] s explained
above. These rank-breaking graphs are input to the MLE
for paired comparisons, assuming all directed edges in the
rank-breaking graphs are independent outcome of pairwise
comparisons. Precisely, the consistent rank-breaking es-
timator solves the convex optimization of maximizing the
paired log likelihoods

0

n 4 y
ﬁRB(Q):ZZ/\j,a Z 10g(6916+ﬁ), ()

j=1a=1 (i,i')EE; a

where E; ,’s are defined as above via separators and differ-
ent choices of the non-negative weights ); ,’s are possible
and the performance depends on such choices. Each weight
Aj,a determine how much we want to weigh the contribu-
tion of a corresponding rank-breaking graph G; ,. We de-
fine the consistent rank-breaking estimate 9 as the optimal
solution of the convex program:

~

0 € arg max Lrp(0) . (6)

By changing how we weigh each rank-breaking graph (by
choosing the A; ,’s), the convex program (6) spans the en-
tire set of consistent rank-breaking estimators, as charac-
terized in (Azari Soufiani et al., 2014). However, only
asymptotic consistency was known, which holds indepen-
dent of the choice of the weights A; ;’s. A uniform choice
of A\; o = A was proposed in (Azari Soufiani et al., 2014).

Note that this can be efficiently solved, since this is a simple
convex optimization, in particular a logit regression, with
only O(Z?Zl ¢; k;) terms. For a special case of position-
p breaking, the O(n (p — 1)!) complexity of evaluating the
objective function for the MLE is now significantly reduced
to O(n (k — p)) by rank-breaking. Given this potential ex-
ponential gain in efficiency, a natural question of interest is

“what is the price we pay in the accuracy?”. We provide a
sharp analysis of the performance of rank-breaking estima-
tors in the finite sample regime, that quantifies the price of
rank-breaking. Similarly, for a practitioner, a core problem
of interest is how to choose the weights in the optimization
in order to achieve the best accuracy. Our analysis provides
a data-driven guideline for choosing the optimal weights.

Contributions. In this paper, we provide an upper bound
on the error achieved by the rank-breaking estimator of (6)
for any choice of the weights (Theorem 5 in the Appendix).
This explicitly shows how the error depends on the choice
of the weights, and provides a guideline for choosing the
optimal weights A ;’s in a data-driven manner. We provide
the explicit formula for the optimal choice of the weights
and provide the the error bound (Theorem 2). The analysis
shows the dependence of the error in the dimension d and
the number of users n that matches the experiments.

If we are designing surveys then we want to maximize
the accuracy for a given number of questions asked. Our
analysis provides how the accuracy depends on the topol-
ogy of the collected data, and provides a guidance when
we do have some control over which questions to ask and
which data to collect. One should maximize the spectral
gap of corresponding comparison graph. Further, for some
canonical scenarios, we quantify the price of rank-breaking
by comparing the error bound of the proposed data-driven
rank-breaking with the lower bound on the MLE, which
can have a significantly larger computational cost (Theo-
rem 4). All the proofs and technical lemmas are provided
in the Appendix in the included supplementary material.

Notations. For any positive integer N, let [N] =
{1,---,N}. For a ranking o over S, i.e., o is a mapping
from [|S|] to S, let o~ denote the inverse mapping. Let
S¢ denote the set of d x d symmetric matrices.

2. Comparison graph

In the analysis of the convex program (6), we show that,
with high probability, the objective function is strictly con-
cave with Ao (H (0)) < —Cpy A2(L) < 0 (Lemma 8 in the
Appendix) for all § € €2, and the gradient is bounded by

IVLrB(6%)]]2 < Cj,/logd > jein ¢ (Lemma 7 in the

Appendix). Shortly, we will define v and Ay(L), which
captures the dependence on the topology of the data, and
Cj, and Cj, are constants that only depend on b. Putting
these together, we show that there exists a 6 € 2, such that

w o logd ZjG["] éj

“M(H@) T ()

16— 6*]|2 <

Here \y(H (6)) denotes the second largest eigenvalue of
a negative semi-definite Hessian matrix H(6) of the ob-
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jective function. The reason the second largest eigenvalue
shows up is because the top eigenvector is always the all-
ones vector which by the definition of €2, is infeasible. The
accuracy depends on the topology of the collected data via
the comparison graph of given data.

Definition 1. (Comparison graph H). We define a graph
H([d], E) where each alternative corresponds to a node,
and we put an edge (i,1') if there exists an agent j whose
offerings is a set S; such thati,1" € S;. Each edge (i,1') €
E has a weight A;; defined as

/0.
Aii’ = Z e 7 (7)

j€[n]:ii’ €S, Hj(’%j - 1)
where r; = |S;| is the size of each sampled set and {; is

the number of separators in S; defined by rank-breaking in
Section 1.

Define a diagonal matrix D = diag(A1), and the corre-
sponding graph Laplacian . = D — A, such that

Z (ei —ei)(ei —eir) T(8)

n
j= i<i' €S

4
L = 2:“‘if5

= rj(kj

Let 0 = A(L) < A(L) < -+ < Ag(L) denote the
(sorted) eigenvalues of L. Of special interest is Ay(L),
also called the spectral gap, which measured how well-
connected the graph is. Intuitively, one can expect better
accuracy when the spectral gap is larger, as evidenced in
previous learning to rank results in simpler settings (Ne-
gahban et al., 2014; Shah et al., 2015a; Hajek et al., 2014).
This is made precise in (7), and in the main result of The-
orem 2, we appropriately rescale the spectral gap and use
a € [0, 1] defined as

R SO VPV IA U R N
- h() Yl

The accuracy also depends on the topology via the maxi-
mum weighted degree defined as Dyyax = max;e(q Di; =
maX;e(q){>_;.ies, £j/#;} Note that the average weighted
degreeis ), D;;/d = Tr(L)/d, and we rescale it by Dypax
such that

Tr(L) _ Z?:léj

B = dDIIlaX dDIn‘(lX '

(10)

The following quantity also determines the convexity of the
objective function.

[2e°] -2
v = min{ |1 24 Can
j€[n] Kj

To ensure that the (second) largest eigenvalue of the Hes-
sian is small enough, we need enough samples. This is
captured by 7 defined as

Kj

.12
max{gj,l@'j—pj’gj} ( )

n = max{n, }, where n; =
Jj€ln]

Note that 1 < 7; < k;/¢;. We discuss the role of the
topology of data captures by these parameters in Section 4.

3. Main results

We present the main theoretical results accompanied by
corresponding numerical simulations in this section.

3.1. Upper bound on the achievable error

We present the main result that provides an upper bound
on the resulting error and explicitly shows the dependence
on the topology of the data. As explained in Section 1, we
assume that each user provides a partial ranking according
to his/her position of the separators. Precisely, we assume
the set of offerings S;, the number of separators ¢;, and
their respective positions P; = {pj1,...,pj¢,} are pre-
determined. Each user draws the ranking of items from the
PL model, and provides the partial ranking according to the
separators of the form of {a > {b,c,d} > e > f} in the
example in the Figure 1.

Theorem 2. Suppose there are n users, d items
parametrized by 0% € ), each user j is presented with
a set of offerings S; C [d], and provides a partial order-
ing under the PL model. When the effective sample size
Z?:l £; is large enough such that

n
D4z
j=1

where b = max; |0F] is the dynamic range, lmax =
max; e, £, @ is the (rescaled) spectral gap defined in (9),
B is the (rescaled) maximum degree defined in (10), v and
n are defined in Egs. (11) and (12), then the rank-breaking
estimator in (6) with the choice of

1

Ng = ——— (14)
Kj = Pj,a

211618b77 1Og(£max + 2)2
042’726

dlogd, (13)

forall a € [¢;] and j € [n] achieves

< 44/2e*(1 +€2*)2 | dlogd
T ary Z?:l 75
15)

6 — 6"

L‘
Vd
with probability at least 1 — 3e3d 3.

We refer to the proposed optimal choice of the weights in
(14) as data-driven rank-breaking estimator. In the ideal
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case where the spectral gap is large such that « is a strictly
positive constant and the dynamic range b is finite and
max ey Pj,e; /%; = C for some constant C' < 1 such
that - is also a constant independent of the problem size
d. Then the upper bound in (15) implies that we need the
effective sample size to scale as O(d log d), which is only a
logarithmic factor larger than the number of parameters to
be estimated.

C 8- 03 cllo—o°1

top-16-separators -+~
random-16-separators among top-half -+----

f
random--separators
rando 6-scparators -~ ¥+
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014t ™,
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Figure 2. 0" — §|\§ x 1/(¢n) as theoretically predicted and
smaller error is achieved for separators that are well spread out.

In Figure 2 , we verify the scaling of the resulting error via
numerical simulations. In all our experiments, unless other-
wise stated, we fix d = 1024, n = 128000, k; = k = 128,
and ¢; = ¢ = 16, and each point is average over 100 in-
stances. Also, each sample is a partial ranking from a set
of x alternatives chosen uniformly at random, where the
partial ranking is from a PL model with weights 8* chosen
iid. uniformly over [—b,b] with b = 2. In the top left
figure, we vary the number of separators £; = ¢, and in
the top right we vary the number of samples n. We see the
mean squared error scaling as 1/(¢n) as predicted by our
theorem. To investigate the role of the position of the sepa-
rators, we compare three scenarios. The top-{-separators
choose the top ¢ positions for separators, the random-£-
separators among top-half choose ¢ positions uniformly
random from the top half, and the random-{-separators
choose the positions uniformly at random. We observe
that when the positions of the separators are well spread
out among the x offerings, which happens for random-¢-
separators, we get better accuracy.

The figure on the bottom provides an insight into this trend
for £ = 16 and n = 16000. The absolute error |0} — 0| is
roughly same for each item ¢ € [d] when breaking positions

000 10000 100000

are chosen uniformly at random between 1 to x —1 whereas
it is significantly higher for weak preference score items
when breaking positions are restricted between 1 to /2
or are top-£. This is due to the fact that the probability of
each item being ranked at different positions is different,
and in particular probability of the low preference score
items being ranked in top-¢ is very small. The third figure
is averaged over 1000 instances.

3.2. The price of rank-breaking

Rank-breaking achieves computational efficiency at the
cost of estimation accuracy. In this section, we quantify
this tradeoff for a canonical example of position-p ranking,
where each sample provides the following information: an
unordered set of p — 1 items that are ranked high, one item
that is ranked at the p-th position, and the rest of k; — p
items that are ranked on the bottom. Since each sample has
only one separator for 2 < p, Theorem 2 simplifies to the
following Corollary.

Corollary 3. Under the hypotheses of Theorem 2, there
exist positive constants C and c that only depend on b such
that if n > C(ndlogd)/(a®>y?3) then

1~ dlogd
Jli-el, < SyTEL as

Note that the error only depends on the position p through
v and 7, and is not sensitive. To quantify the price of rank-
breaking, we compare this result to a fundamental lower
bound on the minimax rate in Theorem 4. We can com-
pute a sharp lower bound on the minimax rate, using the
Cramér-Rao bound.

Theorem 4. Let U denote the set of all unbiased estimators
of 0* and suppose b > 0, then

inf sup E[|6 — 6*|?]

1 LI
>
el 6* €y o 2p log(’fmax)2 Zz /\L(L)

1 (d—1)?
2plog(kmax)? 1

)

where Kmax = Max;cy] |S;| and the second inequality fol-
lows from the Jensen’s inequality.

Note that the second inequality is tight up to a constant
factor, when the graph is an expander with a large spectral
gap. For expanders, « in the bound (16) is also a strictly
positive constant. This suggests that rank-breaking gains
in computational efficiency by a super-exponential factor
of (p — 1)!, at the price of increased error by a factor of p,
ignoring poly-logarithmic factors.
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3.3. Optimality of the choice of the weights

We propose the optimal choice of the weights \; ,’s in The-
orem 2. In this section, we show numerical results com-
paring the proposed approach to other naive choices of the
weights under various scenarios. The offering sets S;’s are
chosen independently and uniformly at random from [d].

Cllo - 6*|3 C |6 — 60713

Naive rank-breaking ---@---

consistent rank-breaking with uniform weights ---@---
data-driven rank-breaking =—€— i

data-driven rank-breaking —€—

.
0.1

10 64

2
heterogeneity x1/k2

1000 10000 100000

sample size n

Figure 3. Left: Data-driven rank-breaking is consistent, while a
random rank-breaking results in inconsistency. Right: The gain
of choosing optimal \; ,’s is significant when « ;s are highly het-
erogeneous.

In the left panel, Figure 3 illustrates that a naive choice of
rank-breakings can result in inconsistency. We create par-
tial orderings dataset by fixing x = 128 and select £ = 8
random positions in {1, ..., 127}. Each dataset consists of
partial orderings with separators at those 8 random posi-
tions, over 128 randomly chosen subset of items. We vary
the sample size n and plot the resulting mean squared er-
ror for the two approaches. The data-driven rank-breaking,
which uses the optimal choice of the weights, achieves er-
ror scaling as 1/n as predicted by Theorem 2, which im-
plies consistency. For fair comparisons, we feed the same
number of pairwise orderings to a naive rank-breaking es-
timator. This estimator uses randomly chosen pairwise or-
derings with uniform weights, and is generally inconsis-
tent. However, when sample size is small, inconsistent es-
timators can achieve smaller variance leading to smaller er-
ror. We use the minorization-maximization algorithm from
(Hunter, 2004) for computing the estimates.

Even if we use the consistent rank-breakings first proposed
in (Azari Soufiani et al., 2014), there is ambiguity in the
choice of the weights. We next study how much we gain
by using the proposed optimal choice of the weights. The
optimal choice, \j , = 1/(k; — pj,a), depends on two pa-
rameters: the size of the offerings x; and the position of
the separators p; .. To distinguish the effect of these two
parameters, we first experiment with fixed x; = & and il-
lustrate the gain of the optimal choice of A; ,’s.

Figure 4 illustrates that the optimal choice of the weights
improves over consistent rank-breaking with uniform
weights by a constant factor. We fix k = 128 and n =
128000. As illustrated by a figure on the right, the po-
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Figure 4. There is a constant factor gain of choosing optimal
Aj,a’s when the size of offerings are fixed, i.e. x; = & (left).
We choose a particular set of separators where one separators is
at position one and the rest are at the bottom. On right is an ex-
ample of ¢ = 3 and x = 10 with separators indicated by blue.

sition of the separators are chosen such that there is one
separator at position one, and the rest of ¢ — 1 separators
are at the bottom. Precisely, (pj1,pj,2,P5.3,---:Dj¢) =
(1,128 — ¢ + 1,128 — ¢ + 2,...,127). We consider this
scenario to emphasize the gain of optimal weights. Observe
that the MSE does not decrease at a rate of 1/¢ in this case.
The parameter v which appears in the bound of Theorem
2 is very small when the breaking positions p; , are of the
order r; as is the case here, when £ is small.

The gain of optimal weights is significant when the size of
S;’s are highly heterogeneous. In the right panel, Figure 3
compares performance of the proposed algorithm, for the
optimal choice and uniform choice of weights \; , when
the comparison sets S;’s are of different sizes. We consider
the case when n; agents provide their top-¢; choices over
the sets of size ~1, and ny agents provide their top-1 choice
over the sets of size k5. We take n; = 1024, /1 = &, and
ny = 10n14;. Figure 3, right panel, shows MSE for the
two choice of weights, when we fix k1 = 128, and vary ko
from 2 to 128. As predicted from our bounds, when optimal
choice of ); 4 is used MSE is not sensitive to sample set
sizes Ko.

4. The role of the topology of the data

Using the same number of samples, comparison graphs
with larger spectral gap achieve better accuracy, compared
to those with smaller spectral gaps. We consider a sce-
nario where we fix the size of offerings as k; = K = O(1)
and each agent provides partial ranking with ¢ separators,
positions of which are chosen uniformly at random. The
resulting spectral gap « of different choices of the set S;’s
are provided below. The total number edges in the com-
parisons graph (counting hyper-edges as multiple edges) is
defined as |[E| = (%) n.



Data-driven Rank Breaking

Complete graphs have a spectral gap of one, which is
the maximum possible value. Hence, complete graph is
optimal for rank aggregation. Sparse random graphs,
in the regime with n = ((logd) to ensure connectiv-
ity, has a strictly positive spectral gap. Hence, a =
©(1) and sparse random graphs are near-optimal for rank-
aggregation. Chain graphs have @ = ©(1/d?). Hence,
a chain graph is strictly sub-optimal for rank aggrega-
tion. Star-like graphs have o = ©(1) and star-like graphs
are near-optimal for rank-aggregation. Barbell-like graphs
have a = ©(1/d?). Hence, a chain graph is strictly sub-
optimal for rank aggregation.

Figure 5 illustrates how graph topology effects the accu-
racy. When 6* is chosen uniformly at random, the accuracy
does not change with d (left), and the accuracy is better for
those graphs with larger spectral gap. However, for a cer-
tain worst-case 8*, the error increases with d for the chain
graph and the barbell-like graph, as predicted by the above
analysis of the spectral gap. We use £ = 4, xk = 17 and
vary d from 129 to 2049. « is kept small to make the re-
sulting graphs more like the above discussed graphs. Fig-
ure on left shows accuracy when 6* is chosen i.i.d. uni-
formly over [—b, b] with b = 2. Error in this case is roughly
same for each of the graph topologies with chain graph be-
ing the worst. However, when 6* is chosen carefully error
for chain graph and barbell-like graph increases with d as
shown in the figure right. We chose 6* such that all the
items of a set have same weight, either §; = 0 or §; = b for
chain graph and barbell-like graph.
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Figure 5. For random 6™ the error does not change with d (left).
For a particular worst-case 0™ the error increases with d for the
Chain and Barbell-like graphs as predicted by the theorem (right).

5. Real-world datasets

On real-world datasets on sushi preferences (Kamishima,
2003), we show that the data-driven rank-breaking im-
proves over Generalized Method-of-Moments (GMM) pro-
posed by Azari Soufiani et al. (2013). This is widely used
for rank aggregation, for instance in (Azari Soufiani et al.,
2013; 2012; Maystre & Grossglauser, 2015b). The dataset
consists of complete rankings over 10 types of sushi from
n = 5000 individuals. We follow the experimental sce-
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narios of the GMM in (Azari Soufiani et al., 2013) for fair
comparisons.

To validate our approach, we first take the estimated PL
weights of the 10 types of sushi, using Hunter’s implemen-
tation (Hunter, 2004) of the ML estimator, over the entire
input data of 5000 complete rankings. We take thus created
output as the ground truth 6*. To create partial rankings and
compare the performance of the data-driven rank-breaking
to the state-of-the-art GMM approach in Figure 6, we first
fix £ = 6 and vary n to simulate top-¢-separators scenario
by removing the known ordering among bottom 10 — ¢ al-
ternatives for each sample in the dataset (left). We next fix
n = 1000 and vary ¢ and simulate top-/-separators scenar-
ios (right). Each point is averaged over 1000 instances. The
mean squared error is plotted for both algorithms.
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Figure 6. The data-driven rank-breaking achieves smaller error
compared to the state-of-the-art GMM approach.

6. Discussion

We study the problem of learning the PL model from or-
dinal data. Under the traditional data collection scenarios,
several efficient algorithms find the maximum likelihood
estimates and at the same time provably achieve minimax
optimal performance. However, for some non-traditional
scenarios, computational complexity of finding the maxi-
mum likelihood estimate can scale super-exponentially in
the problem size. We provide the first finite-sample analy-
sis of computationally efficient estimators known as rank-
breaking estimators. This provides guidelines for choos-
ing the weights in the estimator to achieve optimal perfor-
mance, and also explicitly shows how the accuracy depends
on the topology of the data. An interesting future direc-
tion is relating this work to non-parametric learning from
paired comparisons, initiated in several recent papers such
as (Duchi et al., 2010; Rajkumar & Agarwal, 2014; Shah
et al., 2015b; Shah & Wainwright, 2015). Another interest-
ing future direction is adaptively choosing the offerings as
in (Braverman & Mossel, 2009; Ailon, 2011; Jamieson &
Nowak, 2011; Maystre & Grossglauser, 2015b).
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