Distributed Clustering of Linear Bandits in Peer to Peer Networks

Nathan Korda NATHAN @ROBOTSOX.AC.UK

MLRG, University of Oxford

Balazs Sarenyi SZORENYI.BALAZS @GMAIL .COM

EE, Technion & MTA-SZTE Research Group on Artibcial Intelligence

Shuai Li SHUAILI.SLI@GMAIL .COM

DiSTA, University of Insubria

Abstract

We provide two distributed conbdence ball algo-
rithms for solving linear bandit problems in peer
to peer networks with limited communication ca-
pabilities. For the brst, we assume that all the
peers are solving the same linear bandit problem,
and prove that our algorithm achieves the opti-
mal asymptotic regret rate of any centralised al-
gorithm that can instantly communicate informa-
tion between the peers. For the second, we as-
sume that there are clusters of peers solving the
same bandit problem within each cluster, and we
prove that our algorithm discovers these clusters,
while achieving the optimal asymptotic regret
rate within each one. Through experiments on
several real-world datasets, we demonstrate the
performance of proposed algorithms compared
to the state-of-the-art.

1. Introduction

Bandits are a class of classic optimisation problems that

nels. The solution we propose is a gossip-based informa-
tion sharing protocol which allows information to diffuse
across the network at a small cost, while also providing ro-
bustness.

Such a set-up would benebt, for example, a small start-up
that provides some recommendation system service but has
limited resources. Using an architecture that enables the
agents (the clientOs devices) to exchange data between each
other directly and to do all the corresponding computations
themselves could signibcantly decrease the infrastructural
costs for the company. At the same time, without a central
server, communicating all information instantly between
agents would demand a lot of bandwidth.

Multi-Agent Linear Bandits In the simplest setting we
consider, all the agents are trying to solve the same un-
derlying linear bandit problem. In particular, we have a set
of nodesV, indexed byi, and representing a bnite set of
agents At each timet:

¥ a set ofactions(equivalently, thecontext$ arrives for
each agent, D; ! D and we assume the sbtis a
subset of the unit ball iRY;

are fundamental to several important application areas. The ¥ each agenti, chooses an action (conte»ﬂ) "D {
most prominent of these is recommendation systems, and and receives seward

they can also arise more generally in networks (see, e.g., _ _ _
(Li et al., 2013; Hao et al., 2015)). re=(x)+ ",

We consider settings where a network of agents are try-  where! is some unknowicoefbcient vectoand"! is

ing to solve collaborative linear bandit problems. Sharing some zero meaR-subGaussian noise;

experience can improve the performance of both the whole ¥ last, the agents can share information according to
network and each agent simultaneously, while also increas-  some protocol across a communication channel.

ing robustness. However, we want to avoid putting too

much strain on communication channels. CommunicatingVe dePne thénstantaneous regreit each nodé, and, re-
every piece of information would just overload these chan-spectively, theumulative regrebver the whole network to
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Wherex't'! = argmax,.p i X'!. The aim of the agents is alistic, and so we relax it in our next setup. While it may
to minimise the rate of increase of cumulative regret. Wehave uses in special cases, DCB and its analysis can be con-
also wish them to use a sharing protocol that does not imsidered as a base for providing an algorithm in this more
pose much strain on the information-sharing communicarealistic setup, where some variation! iis allowed across

tion channel. the network.

Gossip protocol In a gossip protocol (see, e.g., (Kempe Clustered Linear Bandits Proposed in (Gentile et al.,

et al., 2003; Xiao et al., 2007; Jelasity et al., 2005; 2007))2014; Li et al., 2016a;b), this has recently proved to be a
in each round, an overlay protocol assigns to every agentery successful model for recommendation problems with
another agent, with which it can share information. Aftermassive numbers of users. It comprises a multi-agent linear
sharing, the agents aggregate the information and, based tandit model agenté@vectors are allowed to vary across a
that, they make their corresponding decisions in the nextlustering. This clustering presents an additional challenge
round. In many areas of distributed learning and compuio Pnd the groups of agents sharing the same underlying
tation gossip protocols have offered a good compromiséandit problem before information sharing can accelerate
between low-communication costs and algorithm perforthe learning process. Formally, e/} =1 v be aclus-
mance. Using such a protocol in the multi-agent banditering of V, assume some coefbcient vedtbrfor eachk,
setting, one faces two major challenges. and let for agent " UX the reward of actiox} be given

First, information sharing is not perfect, since each agenPy

acquires information from only one other (randomly cho- r= (xR +
sen) agent per round. This introduces a bias through th
unavoidable doubling of data points. The solution is to mit-
igate this by using a delay (typically @(logt)) on the
time at which information gathered is used. After this de-The Distributed Clustering Conbdence Ball Algorithm

lay, the information is sufbciently mixed among the agents(DCCB) The paper (Gentile et al., 2014) proposes the ini-
and the bias vanishes. tial centralised approach to the problem of clustering linear
Qandits. Their approach is to begin with a single cluster,
and then incrementally prune edges when the available in-
after the delay has been passed. Inef8ayi et al., 2013) formation suggests that two agen_ts belong to different c_Ius—
this was achieved by introducing an epoch structure intd®"s: We show how to use a gossip-based protocol to give a

their algorithm, and emptying the buffers at the end of eacﬁiistributed variant of this algorithm, which we call DCCB.

epoch. Our main contributions In Theorems 1 and 6 we show
The Distributed Conbdence Ball Algorithm (DCB) We our algorithms DCB and DCCB achieve, in the multi-agent

use a gossip-based information sharing protocol to produc@nd clqstered setting, respectwely, near-optimal improve-
a distributed variant of the generic Conbdence Ball (CB)MENS i the regret rates. In particular, they are of order
algorithm, (Abbasi-Yadkori et al., 2011; Dani et al., 2008; 2Most [V] better than applying CB without informa-

Li et al., 2010). Our approach is similar to (@&nyi et al., tion sharmg,_whlle still keeping communlcat_lon cost low.
2013) where the authors produced a distribtgdeedy al- And our bPndings are demonstrated by experiments on real-
gorithm for the simpler multi-armed bandit problem. How- world benchmark data.

ever their results do not generalise easily, and thus signip-

cant new analysis is needed. One reason is that the line&@. Linear Bandits and the DCB Algorithm

setting introduces serious complications in the analysis O‘Fhe generic Conbdence Ball (CB) algorithnis designed
the delay effect mentioned in the previous paragraphs. Adg,, o single agent linear bandit problem (i.¢v| = 1).

ditionally, their algorithm is epoch-based, whereas we arerhe algorithm maintains a conbdence &l RY within
using a more natural and simpler algorithmic structure. Th‘?/vhich it believes the true parameteties with high prob-

downside i_s that the size of the buffers of our algorithmability. This conbdence ball is computed from the obser-
grow with time. However, our analyses easily ransfer 1o, 4ion pairs (x, ri k-1 .. . (for the sake of simplicity, we

vation pairs{Xg, k=1
pped thg%agent indek), Typically, the cq%:ltnance ma-

%oth clusters and coefbcient vectors are assumed to be ini-
tially unknown, and so need to be learnt on the Ry.

Second, in order to realize this delay, it is necessary to stor
information in a buffer and only use it to make decisions

the epoch approach too. As the rate of growth is Iogarith-dro

mic, our algorithm is still efbcient over a very long time- trix A, = '_ xyxI andbvector,b = XK
T k=1 k e ! '
scale.

are sufbcient statistics to characterise this conbdence ball.
The simplifying assumption so far is that all agents areThen, given its current action sé&;, the agent selects the
solving the same underlying bandit problem, i.e. bndingoptimistic action, assuming that the true parameter sits in

the same unknowh-vector. This, however, is often unre- Ct, i.e. (X,$) = argmax , gp 4, {X"'%}. Pseudo-
code for CB is given in the Appendix A.1.
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Gossip Sharing Protocol for DCB We assume that the a result of the overlay protocolOs uniformly random choice
agents are sharing across a peer to peer network, i.e. eveoy &, they are(%jentica_lly gistributed.(i.) for each bxed
agent can share information with every other agent, but thagair (t,t%), and ", w,'? = |V]. If information sharing
every agent can communicate with only one other agent pejas perfect at each time step, then the current covariance
round. In our algorithms, each agentneeds to maintain  matrix could be computed using all the information gath-

ered by all the agents, and would be:

(1) abuffer(an ordered se®\} of covariance matrices and
anactivecovariance matrix; W oyt L

(2) abufferB! of b-vectors and aactiveb-vectorfj, A=+ Xio Xpo @
21 12

Initially, we set, for alli " V, &, = 1, § = 0. . . : ,
Theseactive objects are used by the algorithm as suﬂD—DCB algonth_m The OFUL algorithm (Abbasi-Yadkori
et al., 2011) is an improvement of the conbdence ball al-

cient statistics from which to calculate conbdence balls, thm f Dani et al.. 2008) which that th
and summarise only information gathered before or durin O”pdm rorr;)(ngnl N al;., h ),tw_lcdassumgzs la €
time %t), where%is an arbitrary monotonically increasing tr?en D ggﬁgo?ith;ncaegcﬁ gg; ?C ?/nsriaig?/;isg ahéonnb
function satisfyind/4t) <t . The buffers are initially set to . ’ . )
fyingt) y dence ballC! for the unknown parametéras in the OFUL

Al = %andB], = % For eaclt > 1, each ageni, shares ; | y ;
and updates its buffers as follows: alg_orlthrin, but ca_lculatied 1i‘r0|7(if't andg. Itthen chooseTs its
action, x;, to satisfy(x;,!) = argmax , yp isc; X!,

(1) arandom permutatio, of the numberg, ...,[V|is  and receives a rewarg. Finally, it shares its information
chosen uniformly at random in a decentralised mannePuffer according to the sharing protocol above. Pseudo-
among the agents, code for DCB is given in Appendix A.1, and in Algorithm

(2) the buffers ofi are then updated by averaging its L
'buffers.wnh those o&(i), qnd then extending them us- 2 1. Results for DCB
ing their current observatiofs
I "o e Theorem 1. Let%g : t' 4Iog(|V|%t). Then, with prob-

. L oo e _
t+1 = é(A{ + A, D)y & X1 Xt ability 1# ', the regret of DCB is bounded by
Bly = 1B +B ") &rlyxi, RCINCIVIF (V4012
.. L. n i .. .. N7 2 ! d
A, = A+ A‘t('),andﬁm =f+ n(')_ +4e () ()+4R) |V|tIn (1+ |V|tUd)" ,

(3) if the length|AL,, | exceeds # %t), the Prst element s
of Al,, isadded tdki,, and deleted froml,, . Bi,,  where(([V],d,§) := (d+1)d*(4V]In([V|z0))3 N (") :=

_ e
andfi,, are treated similarly. 3/(@# 2%1) '), and
) _
In this way, each buffer remains of size at mas€4t), and : ' (1+ |V|vd )d
contains only information gathered after ti¥#g). The re- )(®):=R"In ——————— +)!). @)
sult is that, aftet rounds of sharing, the current covariance
matrices and b-vectors used by the algorithm to make deci-
sions have the form: The term((t, |V|, d) describes the loss compared to the
Y gentrali;ed algorithm dug to the delay in using iqforma—
Koo+ W_iquig(iu tion, wk_nl_e N (' )|V| describes the loss due to the incom-
te R, it SR plete mixing of the data across the network.
_ o If the agents implement CB independently and do not share
andfj = Wi"tcvl Moo any information, which we call CBdoSharing then it fol-
21 =1 lows from the results in (Abbasi-Yadkori et al., 2011), the

gqo equivalent regret bound would be
where the weightsv;,* are random variables which are .
unknown to the algorithm. Importantly for our analysis, as Re (| V) (1) tin((1+ t/d)d) (3)

This can be achieved in a variety of ways. . . -
2The o symbol denotes the concatenation operation on two(;omparlng Theorem 1 with (3) tells us that, after an initial

ordered sets: it = (a,b,c) andy = (d,e, f), thenz oy =  Oburn inO period, the gain in regrgf performance of DCB
(a,b,¢,d,e, f),andy oz = (d,e, f,a,b,c). over CBNoSharings of order almost |V|.
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Corollary 2. We can recover a bougd in expectation from at the various peers being unbalanced and appearing with

Theorem 1, by using the value= 1/ |V|t: a random delay. Proofs of the Lemmas 3 and 4, and of
) $_ Proposition 1 are crucial, but technical, and are deferred to
E[Rd( O(t7)+ [V[t)!)2 Appendix A.3.

Step 1: Debne modibed conbdence ellipsoids:irst we
need a version of the conbdence ellipsoid theorem given
. in (Abbasi-Yadkori et al., 2011) that incorporates the bias
+ |V|tin((1+ [V|td)9). introduced by the random weights:

Proposition 1. Let' > 0, F := (&)™, W(% =
x{w;’?m: t,t3( %, i,#" V},and let

T S
+4€2 R In L+ |V|td)? V[t +)1),+4R

This shows that DCB exhibits asymptotically optimal re-
gret performance, up to log factors, in comparison with any™&
algorithm that can share its information perfectly between )
agents at each round. Cli= x"RIHFH#X) FEORF: 4
( | n (0
COMMUNICATION COMPLEXITY + W(%t)R 2log det(ﬁ{)%/'

If the agents communicate their information to each other at

each round without a central server, then every agent woultthen with probabilityL # ' ,! " Cl.

need to communicate their chosen action and reward to ey, the rest of the proof we assume that Ci.

ery other agent at each round, giving a communication cost

of orderd|V |2 per-round. We call such an algorithm CB- Step 2: Instantaneous regret decomposition. Denote
InstSharing Under the gossip protocol we propose eachPY (Xi,!t) = argmax,.p;»ci X'y. Then we can de-
agent requires at mo&i(log,(|V [t)d?|V|) bits to be com-  COmpose the instantaneous regret, following a classic argu-
municated per round. Therefore, a signibcant communicaent (see the proof of Theorem 3 in (Abbasi-Yadkori et al.,

tion cost reduction is gained whéwg(|V|t)d , | V]. 2011)): o

Using an epoch-based approach, as ine{@ayi et al., # = .xit‘! Tig (xH)1 ( &Xit Ty (xhT

2013), the per-round communication cost of the gossip pro- v 1! " )

tocol become®(d?|V|). This improves efbciency over = xi T ogE o+ rg

any horizon, requiring only that, | V|, and the proofs of 3 5

the regret performance are simple modibcations of those () Xit)(pg—i)_l !{ # l'{%A_ + %l‘{ # !%N (5)

for DCB. However, in comparison with growing buffers

this is only an issue aftéd(exp(|]V|)) number of rounds, ) ) o
and typically|V | is large. Step 3: Control the bias. The norm differences inside the

square brackets of the regret decomposition are bounded
While the DCB has a clear communication advantage ovethrough (4) in terms of the matrice$,. We would like,
CB-InstSharingthere are other potential approaches to thispstead, to have the regret decomposition in terms of the
problem. For example, instead of randomised neighboumatrix A, (which is debned in (1)). To this end, we give
sharing one can use a deterministic protocol sudR@asd-  some lemmas showing that using the matriégss almost
Robin(RR), which can have the same low communicationthe same as using;. These lemmas involve elementary
costs as DCB. However, the regret bound for RR suffersnatrix analysis, but are crucial for understanding the im-

from a naturally larger delay in the network than DCB. pact of imperfect information sharing on the bnal regret
Moreover, attempting to track potential doubling of datapgynds.

points when using a gossip protocol, instead of employing _ _ S
a delay, leads back to a communication cost of ofulé? Step 3a: Control the bias coming from the weight im-

per round. More detail is included in Appendix A.2. balance.
Lemma 3 (Bound on the infuence of general weightisyr
PROOF OFTHEOREM 1 alli" Vandt> 0,
In the analysis we show that the bias introduced by imper- )x1)2 (e O s [wit e )x1)2
fect information sharing is mitigated by delaying the in- t A'V{I)_l . Yiara) T

clusion of the data in the estimation of the paraméter
The proof builds on the analysis in (Abbasi-Yadkori et al.,
2011). The emphasis here is to show how to handle the
extra difbculty stemming from imperfect information shar- Using Lemma 4 in (Saenyi et al., 2013), by exploiting the
ing, which results in the inBuence of the various rewardsandom weights are identically distributeidd() for each

Yo P) IV i S &
and det A} ( et ZiE—LI‘W‘v‘ 1| det Ay
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% 0o )
pxed pair(t,t%, and Oimv wl'tq = |V| under our gos- we have, foralk - N ('), C(k) ( 1, and so, by (7) with
sip protocol, we can control the random exponential conprobability1# (|V |k)%2'/ (1 # 2% 2)

stant in Lemma 3, and the upper bou{T) using the

Chernoff-Hoeffding bound: i ( 2e)x}(),ir<1k) ©)
Lemma 4 (Bound on the inBuence of weights under our B 9 ) &A "1 @
i i ' > * . edet 2
shanng prot.gcol) F oic()tr)nfe constant8 < ' ;o< 1. Then + 32R+ 2log: : # < )!)zé.
with probability1# [ "o
#1 50 g,vi““# 1§(| VI% #O | o196t Y ;%% Now, brst applying Cauchy-Schwarz, then step 3b from
g . ! ’ above together with (9), and bnally Lemma 11 from
o I " o6l (Abhasi-¥adkori et al., 2011) yields that, with probability
andW(T) ( 1+ max |V|? 209 o 7 1# 1+ L (IVIH¥2 @# 2%V2) " - 1# 3,
1& L& #(t) B
_ wo o Wleg 7
t "ot ' ) P2
In particular, for any " (0,1), choosing (o= '2"2 Re (NO)IVD )2+ IVt _ #o'B
with probability 1# '/ (|V|3t?(1 # 2% 2)) we have tEN(9) =1
C (NOIVI+ (V] d,))!)
#1H08 oo 1 7 i 8.
IE,{ * t 2
it # 1 ( 06 L1 Fald 5 # #/l i\ 2
21 1= (L# 2%t +4€ () (1) +2R) V]t )Xt) (a1
|\“% t21 i=1
andw (%) ( 1+ == (©) CINOWVI+ (V] D))z

2
Thus Lemma 3 and 4 give us control over the bias intro- +4e() () +2R)  |V[t(2log(det(Ay).

duced by the imperfect information sharing. Combiningwhere) (3 is as debned in (2). Replacihgwith '/ 3 bn-
them with Equations (4) and (5) we Pnd that with probabil-jghes the proof.

ity 1# '/ (|V|3t2( # 2%V 2)):

#it ( 2eC(‘))X{) N )_1 (1+ C(1) @) PROOF OFPROPOSITION2
7 ( LY " 8 This proof forms the major innovation in the proof of The-
’ & 1 f vect h that
+ c() Broel 4 orem 1. Let(yk)k 1 be any sequencg,of vectors such tha
R 2log exbdet Ay ") )Yk)2 ( 1forallk,andletB, := Bo+ 02:1 Yk Yk, Where
* B is some positive debnite matrix.
whereC(t) := 1/ (1# 2"¥ %)t Lemma5. Forall t> 0, and for anyc" (0, 1), we have
Step 3b: Control the bias coming from the delay.Next, g3 ) ) DE
we need to control the bias introduced from leaving out k*{12...} :)yk)sg_ll >c
3/ 24 i .
the' Iast4 log(|V| F) tl.me steps from the conbdence ball ( (d+ od(tr (Bo/o]_) # 9lc?,
estimation calculation:
Proposition 2. There can be at most Proof. We begin by showing that, for ary/" (0, 1)
((K) = (4 V[log(IV ¥ 2K)*(d + 1) d(tr (Ag) +1) (8) )2 >c (10)
k—1

pairs(i,k) " 1,...,|V|+{1,...,t} for which one of a o
can be true for onl2dc™? differentk.

iy2 ; iy2 o
)XK)AT&) e)x"g)(Ak—1+ ST o) T Indeed, let us suppose that (10) is true for sdmelet
& ' o1 ' (ei(k%l))l&i&d be the orthonormal eigenbat%s B,
or det Ay - edet’ Ay + X1 (xL)™< holds. and, therefore, also fd %, , and writeyy = id=1 *ig.
=1 Let, also,(+i(k%1)) be the eigenvalues f@q;. Then,
Step 4: Choose constants and sum the simple regret. o o w1
Debning a constant C <YkByoiYk = 2@ (T (Byog),
1 i=1
N('):= * —_, - son . %2 1 > C
(") w2 - Sl jpt{e,..d) £,

el gD
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where we have used thaf < 1for all i, since)yx)2 < L.
Now,

tr (B,5,) # tr (Bh)

= tr (BySL,) # tr ((Bross + YkYE)™)

k%1
>1r (Bysgy) # tr (Bross + * e €)”)
qu2

k(%)l
k— k—
gj( 1)(gj( 1)+()/q2)

C2

d(d+ o)

= 1 #
2D

1 =
& T Vrop
>&d2%2+d%1 %1

So we have shown that (10) implies that

CZ

%1 %1 %1

tr (By o) > C and tr (Byg,y) # tr (B,.7) > qd+ o
Sincetr (BgtY) - tr(BS,) - tr(B/Y) - Oforallk, it

follows that (10) can be true for at mdst+ c)d(tr (B 1) #
c¢)c”? differentk. O

Now, using an argument similar the proof of Lemma 3, for
allk <t
( ezs:z (+1)Ys+1) g =1

)yk+1)B )YK+1)B;1,

Zk I(t)+1)yk)B —1

& '
anddet Byqy ( € det(By).
Therefore,

)YK+1)B!—(1k) - OYk+1) gt OF det(By ) - cdet(Bi)
ko6l

)Ys+1) g1 - In(c)
s=#(k)

However, according to Lemma 5, there can be at most
! "ol

In(c)
d+ &) d tr

& !
0/1 In(c)
By~ # )

((t):=

times s {1...,1}, -
In(c)/'() t) where |( t) max 1gket{kK # %K)}.
Hence o .y )y5+1)B In(c) is true for at most
IC ©)((|V],d,t) indicesk "{ 1,...,t}.

Finally, we Pnish by settin@yi )k 1 = & 1(x})!¥ .

such that)ys+1)g—1

3. Clustering and the DCCB Algorithm

We now incorporate distributed clustering into the DCB al-

Algorithm 1 DistributedClusteringConbdence Ball
Input: Size of networV|[,%:t"' t# 4log,t,* +
Initialization: 0i " V, setA} = Ig4, B, = 0, Al
Bl = %andVy = V
fort=0,...1 do

Draw a random permutatiofof {1, . ..
ing the current local clusters
fori=1,...,|V|do

Receive action sdb] and construct the conPdence

ball C] usingA}| andf

Choose action and receive reward:

Find (x!,, ,2) = arg Max , syp 4 c; X'F, and get

rewardr!,, from contextx!,; .

Share and update information

if )F{ocal # pIocal ) = ngresh (t)

,V} respect-

buffers:

Update local clusten;,; = Vi \{ &(i)}, V,.\"
v, \{ i}, and reset according to (13)

elseif Vi = v, @

SetAl, = LAI+AD) &(xi Xy |
A z(lt e ) &(Xter Xie1 )
381 +B. ")

& (r{+1 Xts1)

) and

and Bl,;

&
else Update: SeAt+l = Al &(xl,; Xy
Bir = B &(risy Xiu1)

endif
= Al

Iocalt
lqocalt +1 Iqocalt * r'r+1 Xt+1 ’ and

%1

lqocal,t +1

Upda&}‘e logal estimatorAjyc, « +1 *

Xir1 Xis1

-qocal,t +1 — AIocal,t +1

if |At+1| >t # W) setA,, = A+ Apg (D),
b = Al VAL (2). Similarly for Bi.; -
end for
end for

(1) a local covariance matrikl,,,
vectorhl,.,

— Al
= Ajocalt » @ local b-

= ljocal,t '
(2) and alocal neighbour s#f' .

The local covariance matrix and b-vector are updated as
if the agent was applying the generic (single agent) conp-
dence ball algorithmAj .., o = Ao, Boca 0 =0,

i — i (yiT i
localt — Xt (Xt) + Alocal,t %1

) i )
anddocal,t = IeX; + docal,t %1

gorithm. The analysis of DCB forms the backbone of the

analysis of DCCB.

DCCB Pruning Protocol In order to run DCCB, each
agenti must maintain some local information buffers in
addition to those used for DCB. These are:

DCCB Algorithm Each agentOs local neighbour\4eiis
initially set toV. At each time step, agenti contacts one
other agentj,, at random fromv;', and both decide whether
they do or do not belong to the same cluster. To do this
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%1, ;

they share local estimate, = Algcart  Bocait andd = Delicious Dataset
. 0/1 . . T T T T T T
Alocat  Blocal, » Of the unknown parameter of the bandit 5ocE
problem they are solving, and see if they are further aparts 35 | ¢ us
than a threshold functioa= ci"esh (t), so that if B —— CB-NoSharing
% 3 |——CB-InstSharing
)6 # 8),- cresh (1), 11) 25
5
. . : . 12}
thenVy,, = V \{j} andV/,;, = WV \{i}. Here+ R
is a parameter of an extra assumption that is needed, a§ 151
in (Gentile et al., 2014), about the process generating theg
context set®; : 3 1
(A) Each context seb! = {xy}x is Pnite and contains &
i.i.d. random vectors such that for aK, )xx) ( 1 0 ‘ i ‘ i i ‘ ‘ ‘ ‘
and E(xxx}) is full rank, with minimal eigenvalue 1000 2000 3000 4009 8000 6000 7000 8000 9000
+> 0. LastFM Dataset
7 ; ;

We debnef"esh (t), as in (Gentile et al., 2014), by

$
diresh (¢ .= R 2dlog(t) +2log(2/' ) +1
. T T T max{Aqa(t 7 (4d),0}

(12)

whereAg(t," ) := & # 8logig # 2 @_

The DCCB algorithm is pretty much the same as the DCB

Ratio of Cum. Rewards of Alg. against RAN
S

algorithm, except that it also applies the pruning protocol . DCCB
described. In particular, each agent,when sharing its ol / ——CLUB |
information with anothelj,, has three possible actions: | —— CB-NoSharing
) ) —— CB-InstSharing
(1) if (11) is not satisbed and,' = V/, then the agents 1 w w : :
share simply as in the DCB algorithm; ° 2000 4000Round36000 8000 10000
(2) if (11) is satisbed, then both agents remove each other MovieLens Dataset

4 T T

from their neighbour sets and reset their buffers and

active matrices so that 35 72535 ]
. ) . ) —— CB-NoShari
Al = (0 0.0, :ocal )v B' = (O 0, l:1ocal )' 3 —CB—InZtS:z::'ri]r?g
andﬁl = Aioca| 3 H = t1003' ! (13)

and similarly for ageng.
(3) if (11) is not satisbed bt 8 V{, then no sharing or
pruning occurs.

N

Y
[}

um. Rewards of Alg. against RAN
N
(%))

Y
I

It is proved in the theorem below, that under this sharing ©
and pruning mechanism, in high probability after some p- g
nite time each agentbnds its true cluster, i.e/ = UX. g 05 |
Moreover, since the algorithm resets to its local informa- ‘ ‘ ‘ ‘
tion each time a pruning occurs, once the true clusters have © 2000 40°0R0un dSGOOO 8000 10000
been identibed, each cluster shares only information gath-

ered within that cluster, thus avoiding introducing a bias byfigure 1. Here we plot the performance of DCCB in comparison

sharing information gathered from outside the cluster bel® CLUB, CB-NoSharingand CBinstSharing The plots show

- . . the ratio of cumulative rewards achieved by the algorithms to the
fore the clustering has been identibed. Full pseudo-code for . . ;

. . . . .. cumulative rewards achieved by the random algorithm.
the DCCB algorithm is given in Algorithm 1, and the dif-

ferences with the DCB algorithm are highlighted in blue.
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3.1. Results for DCCB (Szorenyi et al., 2013) which examindsgreedy strategies
over a peer to peer network, and provided an initial inspira-
tion for this current work. The paper (Kalathil et al., 2014)
examines the extreme case when there is no communication
channel across which the agents can communicate, and all
communication must be performed through obesrvation of
action choices alone. Another approach to the multi-armed

3 G ' . Do bandit case, (Nayyar et al., 2015), directly incorporates the
Ri( max 2N('),C+4log,(|V|2C) |U¥| communication cost into the regret.
5

+ (UK, d,t) )1)2

Theorem 6. Assume that (A) holds, and Ietdenote the
smallest distance between the bandit parametérsThen
there exists a consta@® = C(,, [V],+,"'), such that with
probability 1 # ' the total cumulative regret of clustder
when the agents employ DCCB is bounded by

Second, there are several recent advances regarding the
state-of-the-art methods for clustering of bandits. The work

( ! " (Li et al., 2016a) is a faster variant of (Gentile et al., 2014)
+4e() (t)+3R) |UK[tIn (1+ |UK|tid )d , which adopt the strategy of boosted training stage. In (Li
et al., 2016b) the authors not only cluster the users, but also
thereNl and( are as debned in Theorem 1, angt) := cluster the items under collaborative Pltering case with a

d sharp regret analysis.

R 2In (1+ |Ukyd)” +)!1),.

Finally, the paper (Tekin & van der Schaar, 2013) treats

a setting similar to ours in which agents attempt to solve

contextual bandit problems in a distributed setting. They

present two algorithms, one of which is a distributed ver-

The analysis follows the following scheme: When the truesjon of the approach taken in (Slivkins, 2014), and show

clusters have been correctly identiPed by all nodes, withinhat they achieve at least as good asymptotic regret perfor-
each cluster the algorithm, and thus the analysis, reducefance in the distributed approach as the centralised algo-
to the case of Section 2.1. We adapt results from (Gentil¢ithm achieves. However, rather than sharing information

et al., 2014) to show how long it will be before the true across a limited communication channel, they allow each

clusters are identibPed, in high probability. The proof is de-agent only to ask another agent to choose their action for

The constanC(,, |V|,+,") is the time that you have to
wait for the true clustering to have been identibed,

ferred to Appendices A.4 and A.5. them. This difference in our settings is reBected worse re-
gret bounds, which are of ord&(T? 2) at best.
4. Experiments and Discussion DiscussionOur analysis is tailored to adapt proofs from

Experiments We closely implemented the experimental (Abbasi-Yadkori et al., 2011) about generic conbdence ball

setting and dataset construction principles used in (Li et al.2/90rithms to a distributed setting. However many of the

2016a;b), and for a detailed description of this we refefc/éments of these proofs, including Propositions 1 and 2

the reader to (Li et al., 2016a). We evaluated DCCB Oncould be reused to provide similar asymptotic regret guar-

three real-world datasets against its centralised counteNt€€s for the distributed versions of other bandit algo-
part CLUB, and against the benchmarks used therein, CB1tMS, €.9., the Thompson sampling algorithms, (Agrawal
NoSharingand CBinstSharing The LastFM dataset com- & Goyal, 2013; Kaufmann et al., 2012; Russo & Van Roy,
prises 0f91 users, each of which appear at le@Sttimes. 2014).

The Delicious dataset h& users, each of which appear at Both DCB and DCCB are synchronous algorithms. The
least95 times. The MovieLens dataset contall@users,  work on distributed computation through gossip algorithms
each of which appears at le@§0times. The performance in (Boyd et al., 2006) could alleviate this issue. The current
was measured using the ratio of cumulative reward of eachruning algorithm for DCCB guarantees that techniques
algorithm to that of the predictor which chooses a randonfrom (Sarenyi et al., 2013) can be applied to our algo-
action at each time step. This is plotted in in Figure 1.rithms. However the results in (Boyd et al., 2006) are more
From the experimental results it is clear that DCCB per-powerful, and could be used even when the agents only
forms comparably to CLUB in practice, and both outper-identify a sub-network of the true clustering.

form CB-NoSharingand CBinstSharin
9 9 Furthermore, there are other existing interesting algorithms

Relationship to existing literature There are several for performing clustering of bandits for recommender sys-
strands of research that are relevant and complimentary t@ms, such as COFIBA in (Li et al., 2016b). It would be in-
this work. First, there is a large literature on single agenteresting to understand how general the techniques applied
linear bandits, and other more, or less complicated bankere to CLUB are.

dit problem settings. There is already work distributed

approaches to multi-agent, multi-armed bandits, not least
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