
Distributed Clustering of Linear Bandits in Peer to Peer Networks

Nathan Korda NATHAN @ROBOTS.OX.AC.UK

MLRG, University of Oxford

Bal«azs Sz¬or«enyi SZORENYI.BALAZS@GMAIL .COM

EE, Technion & MTA-SZTE Research Group on ArtiÞcial Intelligence

Shuai Li SHUAILI .SLI@GMAIL .COM

DiSTA, University of Insubria

Abstract
We provide two distributed conÞdence ball algo-
rithms for solving linear bandit problems in peer
to peer networks with limited communication ca-
pabilities. For the Þrst, we assume that all the
peers are solving the same linear bandit problem,
and prove that our algorithm achieves the opti-
mal asymptotic regret rate of any centralised al-
gorithm that can instantly communicate informa-
tion between the peers. For the second, we as-
sume that there are clusters of peers solving the
same bandit problem within each cluster, and we
prove that our algorithm discovers these clusters,
while achieving the optimal asymptotic regret
rate within each one. Through experiments on
several real-world datasets, we demonstrate the
performance of proposed algorithms compared
to the state-of-the-art.

1. Introduction

Bandits are a class of classic optimisation problems that
are fundamental to several important application areas. The
most prominent of these is recommendation systems, and
they can also arise more generally in networks (see, e.g.,
(Li et al., 2013; Hao et al., 2015)).

We consider settings where a network of agents are try-
ing to solve collaborative linear bandit problems. Sharing
experience can improve the performance of both the whole
network and each agent simultaneously, while also increas-
ing robustness. However, we want to avoid putting too
much strain on communication channels. Communicating
every piece of information would just overload these chan-
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nels. The solution we propose is a gossip-based informa-
tion sharing protocol which allows information to diffuse
across the network at a small cost, while also providing ro-
bustness.

Such a set-up would beneÞt, for example, a small start-up
that provides some recommendation system service but has
limited resources. Using an architecture that enables the
agents (the clientÕs devices) to exchange data between each
other directly and to do all the corresponding computations
themselves could signiÞcantly decrease the infrastructural
costs for the company. At the same time, without a central
server, communicating all information instantly between
agents would demand a lot of bandwidth.

Multi-Agent Linear Bandits In the simplest setting we
consider, all the agents are trying to solve the same un-
derlying linear bandit problem. In particular, we have a set
of nodesV , indexed byi , and representing a Þnite set of
agents. At each time,t:

¥ a set ofactions(equivalently, thecontexts) arrives for
each agenti , Di

t ! D and we assume the setD is a
subset of the unit ball inRd;

¥ each agent,i , chooses an action (context)xi
t " D i

t ,
and receives areward

r i
t = ( xi

t )
T ! + " i

t ,

where! is some unknowncoefÞcient vector, and" i
t is

some zero mean,R-subGaussian noise;
¥ last, the agents can share information according to

some protocol across a communication channel.

We deÞne theinstantaneous regretat each nodei , and, re-
spectively, thecumulative regretover the whole network to
be:

#i
t :=

!
xi, !

t

" T

! # Er i
t , and R t :=

t#

k=1

|V |#

i =1

#i
t ,
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wherexi, !
t := arg maxx "D i

t
xT ! . The aim of the agents is

to minimise the rate of increase of cumulative regret. We
also wish them to use a sharing protocol that does not im-
pose much strain on the information-sharing communica-
tion channel.

Gossip protocol In a gossip protocol (see, e.g., (Kempe
et al., 2003; Xiao et al., 2007; Jelasity et al., 2005; 2007)),
in each round, an overlay protocol assigns to every agent
another agent, with which it can share information. After
sharing, the agents aggregate the information and, based on
that, they make their corresponding decisions in the next
round. In many areas of distributed learning and compu-
tation gossip protocols have offered a good compromise
between low-communication costs and algorithm perfor-
mance. Using such a protocol in the multi-agent bandit
setting, one faces two major challenges.

First, information sharing is not perfect, since each agent
acquires information from only one other (randomly cho-
sen) agent per round. This introduces a bias through the
unavoidable doubling of data points. The solution is to mit-
igate this by using a delay (typically ofO(log t)) on the
time at which information gathered is used. After this de-
lay, the information is sufÞciently mixed among the agents,
and the bias vanishes.

Second, in order to realize this delay, it is necessary to store
information in a buffer and only use it to make decisions
after the delay has been passed. In (Sz¬or«enyi et al., 2013)
this was achieved by introducing an epoch structure into
their algorithm, and emptying the buffers at the end of each
epoch.

The Distributed ConÞdence Ball Algorithm (DCB) We
use a gossip-based information sharing protocol to produce
a distributed variant of the generic ConÞdence Ball (CB)
algorithm, (Abbasi-Yadkori et al., 2011; Dani et al., 2008;
Li et al., 2010). Our approach is similar to (Sz¬or«enyi et al.,
2013) where the authors produced a distributed$-greedy al-
gorithm for the simpler multi-armed bandit problem. How-
ever their results do not generalise easily, and thus signiÞ-
cant new analysis is needed. One reason is that the linear
setting introduces serious complications in the analysis of
the delay effect mentioned in the previous paragraphs. Ad-
ditionally, their algorithm is epoch-based, whereas we are
using a more natural and simpler algorithmic structure. The
downside is that the size of the buffers of our algorithm
grow with time. However, our analyses easily transfer to
the epoch approach too. As the rate of growth is logarith-
mic, our algorithm is still efÞcient over a very long time-
scale.

The simplifying assumption so far is that all agents are
solving the same underlying bandit problem, i.e. Þnding
the same unknown! -vector. This, however, is often unre-

alistic, and so we relax it in our next setup. While it may
have uses in special cases, DCB and its analysis can be con-
sidered as a base for providing an algorithm in this more
realistic setup, where some variation in! is allowed across
the network.

Clustered Linear Bandits Proposed in (Gentile et al.,
2014; Li et al., 2016a;b), this has recently proved to be a
very successful model for recommendation problems with
massive numbers of users. It comprises a multi-agent linear
bandit model agentsÕ! -vectors are allowed to vary across a
clustering. This clustering presents an additional challenge
to Þnd the groups of agents sharing the same underlying
bandit problem before information sharing can accelerate
the learning process. Formally, let{ Uk } k=1 ,...,M be a clus-
tering ofV , assume some coefÞcient vector! k for eachk,
and let for agenti " Uk the reward of actionxi

t be given
by

r i
t = ( xi

t )
T ! k + " i

t .

Both clusters and coefÞcient vectors are assumed to be ini-
tially unknown, and so need to be learnt on the ßy.

The Distributed Clustering ConÞdence Ball Algorithm
(DCCB) The paper (Gentile et al., 2014) proposes the ini-
tial centralised approach to the problem of clustering linear
bandits. Their approach is to begin with a single cluster,
and then incrementally prune edges when the available in-
formation suggests that two agents belong to different clus-
ters. We show how to use a gossip-based protocol to give a
distributed variant of this algorithm, which we call DCCB.

Our main contributions In Theorems 1 and 6 we show
our algorithms DCB and DCCB achieve, in the multi-agent
and clustered setting, respectively, near-optimal improve-
ments in the regret rates. In particular, they are of order
almost

$
|V | better than applying CB without informa-

tion sharing, while still keeping communication cost low.
And our Þndings are demonstrated by experiments on real-
world benchmark data.

2. Linear Bandits and the DCB Algorithm
The generic ConÞdence Ball (CB) algorithmis designed
for a single agent linear bandit problem (i.e.|V | = 1 ).
The algorithm maintains a conÞdence ballCt ! Rd within
which it believes the true parameter! lies with high prob-
ability. This conÞdence ball is computed from the obser-
vation pairs,(xk , r k )k=1 ,...,t (for the sake of simplicity, we
dropped the agent index,i ). Typically, the covariance ma-
trix At =

% t
k=1 xk xT

k and b-vector, bt =
% t

k=1 r k xk ,
are sufÞcient statistics to characterise this conÞdence ball.
Then, given its current action set,Dt , the agent selects the
optimistic action, assuming that the true parameter sits in
Ct , i.e. (xt , $ ) = arg max (x,! 0) "D t # Ct

{ xT ! $} . Pseudo-
code for CB is given in the Appendix A.1.
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Gossip Sharing Protocol for DCB We assume that the
agents are sharing across a peer to peer network, i.e. every
agent can share information with every other agent, but that
every agent can communicate with only one other agent per
round. In our algorithms, each agent,i , needs to maintain

(1) abuffer(an ordered set)A i
t of covariance matrices and

anactivecovariance matrix÷Ai
t ,

(2) abufferBi
t of b-vectors and anactiveb-vector÷bi

t ,

Initially, we set, for all i " V , ÷Ai
0 = I , ÷bi

0 = 0 .
Theseactive objects are used by the algorithm as sufÞ-
cient statistics from which to calculate conÞdence balls,
and summarise only information gathered before or during
time%(t), where%is an arbitrary monotonically increasing
function satisfying%(t) < t . The buffers are initially set to
A i

0 = %, andBi
0 = %. For eacht > 1, each agent,i , shares

and updates its buffers as follows:

(1) a random permutation,&, of the numbers1, . . . , |V | is
chosen uniformly at random in a decentralised manner
among the agents,1

(2) the buffers of i are then updated by averaging its
buffers with those of&(i ), and then extending them us-
ing their current observations2

A i
t +1 =

!!
1
2 (A i

t + A " ( i )
t )

"
&

!
xi

t +1

&
xi

t +1

' T
""

,

Bi
t +1 =

!!
1
2 (Bi

t + B" ( i )
t )

"
&

&
r i

t +1 xi
t +1

' "
,

÷Ai
t +1 = ÷Ai

t + ÷A" ( i )
t , and÷bi

t +1 = ÷bi
t + ÷b" ( i )

t .
(3) if the length|A i

t +1 | exceedst # %(t), the Þrst element
of A i

t +1 is added to÷Ai
t +1 and deleted fromA i

t +1 . Bi
t +1

and÷bi
t +1 are treated similarly.

In this way, each buffer remains of size at mostt # %(t), and
contains only information gathered after time%(t). The re-
sult is that, aftert rounds of sharing, the current covariance
matrices and b-vectors used by the algorithm to make deci-
sions have the form:

÷Ai
t := I +

#( t )#

t 0=1

|V |#

i 0=1

wi 0,t 0

i,t xi 0

t 0xi 0

t 0
T

,

and÷bi
t :=

#( t )#

t 0=1

|V |#

i 0=1

wi 0,t 0

i,t r i 0

t 0 xi 0

t 0 .

where the weightswi 0,t 0

i,t are random variables which are
unknown to the algorithm. Importantly for our analysis, as

1This can be achieved in a variety of ways.
2The � symbol denotes the concatenation operation on two

ordered sets: ifx = (a, b, c) andy = (d, e, f), thenx � y =
(a, b, c, d, e, f), andy � x = (d, e, f, a, b, c).

a result of the overlay protocolÕs uniformly random choice
of &, they are identically distributed (i.d.) for each Þxed
pair (t, t $), and

%
i 0" V wi 0,t 0

i,t = |V |. If information sharing
was perfect at each time step, then the current covariance
matrix could be computed using all the information gath-
ered by all the agents, and would be:

At := I +
|V |#

i 0=1

t#

t 0=1

xi 0

t 0

!
xi 0

t 0

" T

. (1)

DCB algorithm The OFUL algorithm (Abbasi-Yadkori
et al., 2011) is an improvement of the conÞdence ball al-
gorithm from (Dani et al., 2008), which assumes that the
conÞdence ballsCt can be characterised byAt andbt . In
the DCB algorithm, each agenti " V maintains a conÞ-
dence ballCi

t for the unknown parameter! as in the OFUL
algorithm, but calculated from÷Ai

t and÷bi
t . It then chooses its

action,xi
t , to satisfy(xi

t , ! i
t ) = arg max (x,! ) "D i

t # C i
t

xT ! ,
and receives a rewardr i

t . Finally, it shares its information
buffer according to the sharing protocol above. Pseudo-
code for DCB is given in Appendix A.1, and in Algorithm
1.

2.1. Results for DCB

Theorem 1. Let%(á) : t ' 4 log(|V |
3
2 t). Then, with prob-

ability 1 # ' , the regret of DCB is bounded by

R t ( (N (' )|V | + ( (|V |, d, t)) ) ! ) 2

+ 4e2 () (t) + 4 R)

(

|V |t ln
!

(1 + |V |t/d )d
"

,

where( (|V |, d, t) := ( d+1) d2(4|V | ln( |V |
3
2 t)) 3, N (' ) :=*

3/ ((1 # 2% 1
4 )

*
' ), and

) (t) := R

)*
*
+ ln

,
(1 + |V |t/d )d

'

-

+ ) ! ) 2. (2)

The term( (t, |V |, d) describes the loss compared to the
centralised algorithm due to the delay in using informa-
tion, while N (' )|V | describes the loss due to the incom-
plete mixing of the data across the network.

If the agents implement CB independently and do not share
any information, which we call CB-NoSharing, then it fol-
lows from the results in (Abbasi-Yadkori et al., 2011), the
equivalent regret bound would be

R t (| V |) (t)
.

t ln ((1 + t/d )d) (3)

Comparing Theorem 1 with (3) tells us that, after an initial
Òburn inÓ period, the gain in regret performance of DCB
over CB-NoSharingis of order almost

$
|V |.
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Corollary 2. We can recover a bound in expectation from
Theorem 1, by using the value' = 1 /

$
|V |t:

E[R t ] ( O(t
1
4 ) +

$
|V |t) ! ) 2

+ 4e2

,

R

(

ln
!

(1 + |V |t/d )d $
|V |t

"
+ ) ! ) 2 + 4R

-

+
.

|V |t ln ((1 + |V |t/d )d).

This shows that DCB exhibits asymptotically optimal re-
gret performance, up to log factors, in comparison with any
algorithm that can share its information perfectly between
agents at each round.

COMMUNICATION COMPLEXITY

If the agents communicate their information to each other at
each round without a central server, then every agent would
need to communicate their chosen action and reward to ev-
ery other agent at each round, giving a communication cost
of orderd|V |2 per-round. We call such an algorithm CB-
InstSharing. Under the gossip protocol we propose each
agent requires at mostO(log2(|V |t)d2|V |) bits to be com-
municated per round. Therefore, a signiÞcant communica-
tion cost reduction is gained whenlog(|V |t)d , | V |.

Using an epoch-based approach, as in (Sz¬or«enyi et al.,
2013), the per-round communication cost of the gossip pro-
tocol becomesO(d2|V |). This improves efÞciency over
any horizon, requiring only thatd , | V |, and the proofs of
the regret performance are simple modiÞcations of those
for DCB. However, in comparison with growing buffers
this is only an issue afterO(exp(|V |)) number of rounds,
and typically|V | is large.

While the DCB has a clear communication advantage over
CB-InstSharing, there are other potential approaches to this
problem. For example, instead of randomised neighbour
sharing one can use a deterministic protocol such asRound-
Robin(RR), which can have the same low communication
costs as DCB. However, the regret bound for RR suffers
from a naturally larger delay in the network than DCB.
Moreover, attempting to track potential doubling of data
points when using a gossip protocol, instead of employing
a delay, leads back to a communication cost of order|V |2

per round. More detail is included in Appendix A.2.

PROOF OFTHEOREM 1

In the analysis we show that the bias introduced by imper-
fect information sharing is mitigated by delaying the in-
clusion of the data in the estimation of the parameter! .
The proof builds on the analysis in (Abbasi-Yadkori et al.,
2011). The emphasis here is to show how to handle the
extra difÞculty stemming from imperfect information shar-
ing, which results in the inßuence of the various rewards

at the various peers being unbalanced and appearing with
a random delay. Proofs of the Lemmas 3 and 4, and of
Proposition 1 are crucial, but technical, and are deferred to
Appendix A.3.

Step 1: DeÞne modiÞed conÞdence ellipsoids.First we
need a version of the conÞdence ellipsoid theorem given
in (Abbasi-Yadkori et al., 2011) that incorporates the bias
introduced by the random weights:

Proposition 1. Let ' > 0, ÷! i
t := ( ÷Ai

t )
%1÷bi

t , W (%) :=
max{ wi 0,t 0

i,t : t, t $ ( %, i, i$ " V } , and let

Ci
t :=

/
x " Rd :) ÷! i

t # x) ÷A i
t

( ) ! ) 2 (4)

+ W (%(t))R

(

2 log
!

det( ÷Ai
t )

1
2 /'

" 0
.

Then with probability1 # ' , ! " Ci
t .

In the rest of the proof we assume that! " Ci
t .

Step 2: Instantaneous regret decomposition.Denote
by (xi

t , ! i
t ) = arg max x " D i

t ,y " C i
t

xT y. Then we can de-
compose the instantaneous regret, following a classic argu-
ment (see the proof of Theorem 3 in (Abbasi-Yadkori et al.,
2011)):

#i
t =

!
xi, !

t

" T

! # (xi
t )

T ! (
&
xi

t

' T
! i

t # (xi
t )

T !

=
&
xi

t

' T
1!

! i
t # ÷! i

t

"
+

!
÷! i
t # !

"2

( ) xi
t ) ( ÷A i

t )
�1

34
4
4! i

t # ÷! i
t

4
4
4

÷A i
t

+
4
4
4÷! i

t # !
4
4
4

÷A i
t

5
(5)

Step 3: Control the bias.The norm differences inside the
square brackets of the regret decomposition are bounded
through (4) in terms of the matrices÷Ai

t . We would like,
instead, to have the regret decomposition in terms of the
matrix At (which is deÞned in (1)). To this end, we give
some lemmas showing that using the matrices÷Ai

t is almost
the same as usingAt . These lemmas involve elementary
matrix analysis, but are crucial for understanding the im-
pact of imperfect information sharing on the Þnal regret
bounds.

Step 3a: Control the bias coming from the weight im-
balance.

Lemma 3(Bound on the inßuence of general weights). For
all i " V andt > 0,

) xi
t )

2
( ÷A i

t )
�1 ( e

P! (t )
t 0=1

P|V |
i 0=1

���w i 0 ,t 0
i,t %1

���) xi
t )

2
(A ! (t ))�1 ,

and det
!

÷Ai
t

"
( e

P! (t )
t 0=1

P|V |
i 0=1

���w i 0 ,t 0
i,t %1

��� det
&
A#(t )

'
.

Using Lemma 4 in (Sz¬or«enyi et al., 2013), by exploiting the
random weights are identically distributed (i.d.) for each
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Þxed pair(t, t $), and
%

i 0" V wi 0,t 0

i,t = |V | under our gos-
sip protocol, we can control the random exponential con-
stant in Lemma 3, and the upper boundW (T) using the
Chernoff-Hoeffding bound:

Lemma 4 (Bound on the inßuence of weights under our
sharing protocol). Fix some constants0 < ' t 0 < 1. Then
with probability1 #

% #(t )
t 0=1 ' t 0

|V |#

i 0=1

#( t )#

t 0=1

6
6
6wi 0,t 0

i,t # 1
6
6
6( | V |

3
2

#( t )#

t 0=1

!
2(t %t 0) ' t 0

" % 1
2

,

andW (T) ( 1 + max
1& t 0& #( t )

/
|V |

3
2

!
2( t %t 0) ' t 0

" % 1
2

0
.

In particular, for any' " (0, 1), choosing' t 0 = ' 2
t 0%t

2 ,
with probability1 # '/ (|V |3t2(1 # 2%1/ 2)) we have

|V |#

i 0=1

#( t )#

t 0=1

6
6
6wi 0,t 0

i,t # 1
6
6
6(

1

(1 # 2% 1
4 )t

*
'

,

andW (%(t)) ( 1 +
|V |

3
2

t
*

'
. (6)

Thus Lemma 3 and 4 give us control over the bias intro-
duced by the imperfect information sharing. Combining
them with Equations (4) and (5) we Þnd that with probabil-
ity 1 # '/ (|V |3t2(1 # 2%1/ 2)) :

#i
t ( 2eC (t ) ) xi

t ) ⇣A i
! (t )

⌘�1 (1 + C(t)) (7)

+

7

R

(

2 log
!

eC (t ) det
&
A#(t )

' 1
2 ' %1

"
+ ) ! )

8

whereC(t) := 1 / (1 # 2%1/ 4)t
*

'

Step 3b: Control the bias coming from the delay.Next,
we need to control the bias introduced from leaving out
the last4 log(|V |3/ 2t) time steps from the conÞdence ball
estimation calculation:

Proposition 2. There can be at most

( (k) := (4 |V | log(|V |3/ 2k))3(d + 1) d(tr (A0) + 1) (8)

pairs (i, k ) " 1, . . . , |V | + { 1, . . . , t} for which one of

) xi
k ) 2

A �1
! (k )

- e) xi
k ) 2

(A k �1+
Pi �1

j =1 x j
k (x j

k )T )�1 ,

or det
&
A#(k )

'
- edet

9

: Ak%1 +
i %1#

j =1

xj
k (xj

k )T

;

< holds.

Step 4: Choose constants and sum the simple regret.
DeÞning a constant

N (' ) :=
1

(1 # 2% 1
4 )

*
'

,

we have, for allk - N (' ), C(k) ( 1, and so, by (7) with
probability1 # (|V |k)%2'/ (1 # 2%1/ 2)

#i
k ( 2e) xi

k ) A �1
! (k )

(9)

+

=

>
?2R

)*
*
*
+ 2 log

9

: edet
&
A#(k )

' 1
2

'

;

< + ) ! ) 2

@

A
B .

Now, Þrst applying Cauchy-Schwarz, then step 3b from
above together with (9), and Þnally Lemma 11 from
(Abbasi-Yadkori et al., 2011) yields that, with probability
1 #

&
1 +

% '
t =1 (|V |t)%2/ (1 # 2%1/ 2)

'
' - 1 # 3' ,

R t ( N (' )|V |) ! ) 2 +

=

?|V |t
t#

t 0= N ($)

|V |#

i =1

&
#i

t 0
' 2

@

B

1
2

( (N (' )|V | + ( (|V |, d, t)) ) ! ) 2

+ 4e2 () (t) + 2 R)

7

|V |t
t#

t 0=1

M#

i =1

) xi
t )

2
(A t )�1

8 1
2

( (N (' )|V | + ( (|V |, d, t)) ) ! ) 2

+ 4e2 () (t) + 2 R)
$

|V |t (2 log (det (At ))) ,

where) (á) is as deÞned in (2). Replacing' with '/ 3 Þn-
ishes the proof.

PROOF OFPROPOSITION2

This proof forms the major innovation in the proof of The-
orem 1. Let(yk )k ( 1 be any sequence of vectors such that
) yk ) 2 ( 1 for all k, and letBn := B0+

% n
k=1 yk yT

k , where
B0 is some positive deÞnite matrix.

Lemma 5. For all t > 0, and for anyc " (0, 1), we have
6
6
6
C

k " { 1, 2, . . . } : ) yk ) 2
B �1

k �1
> c

D6
6
6

( (d + c)d(tr (B %1
0 ) # c)/c 2,

Proof. We begin by showing that, for anyc " (0, 1)

) yk ) 2
B �1

k �1
> c (10)

can be true for only2dc%3 differentk.

Indeed, let us suppose that (10) is true for somek. Let
(e(k%1)

i )1& i & d be the orthonormal eigenbasis forBk%1,
and, therefore, also forB %1

k%1, and writeyk =
% d

i =1 * i ei .

Let, also,(+(k%1)
i ) be the eigenvalues forBk%1. Then,

c < y T
k B %1

k%1yk =
d#

i =1

%2
i

&(k �1)
i

( tr (B %1
k%1),

=. / j " { 1, . . . , d} :
%2

j

&(k �1)
j

, 1
&(k �1)

j

> c
d ,
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where we have used that* 2
i < 1 for all i , since) yk ) 2 < 1.

Now,

tr (B %1
k%1) # tr (B %1

k )

= tr (B %1
k%1) # tr ((Bk%1 + yk yT

k )%1)

> tr (B %1
k%1) # tr ((Bk%1 + * 2

j ej eT
j )%1)

= 1
&(k �1)

j

# 1
&(k �1)

j + %2
j

=
%2

j

&(k �1)
j (&(k �1)

j + %2
j )

>
&
d2c%2 + dc%1' %1

> c2

d(d+ c)

So we have shown that (10) implies that

tr (B %1
k%1) > c and tr (B %1

k%1) # tr (B %1
k ) >

c2

d(d + c)
.

Sincetr (B %1
0 ) - tr (B %1

k%1) - tr (B %1
k ) - 0 for all k, it

follows that (10) can be true for at most(d+ c)d(tr (B %1
0 )#

c)c%2 differentk.

Now, using an argument similar the proof of Lemma 3, for
all k < t
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k det (Bt ) .

Therefore,
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k
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However, according to Lemma 5, there can be at most

( (t) :=
!

d + ln( c)
!( t )

"
d

!
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&
B %1

0

'
# ln( c)

!( t )

" !
!( t )
ln( c)
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times s " { 1, . . . , t} , such that ) ys+1 ) B �1
s

-
ln(c)/ !( t), where !( t) := max 1& k& t { k # %(k)} .
Hence

% k
s= #( j )+1 ) ys+1 ) %1

B s
- ln(c) is true for at most

!( t)( (|V |, d, t) indicesk " { 1, . . . , t} .

Finally, we Þnish by setting(yk )k ( 1 = &t ( 1(xi
t )

|V |
i =1 .

3. Clustering and the DCCB Algorithm

We now incorporate distributed clustering into the DCB al-
gorithm. The analysis of DCB forms the backbone of the
analysis of DCCB.

DCCB Pruning Protocol In order to run DCCB, each
agenti must maintain some local information buffers in
addition to those used for DCB. These are:

Algorithm 1 DistributedClusteringConÞdence Ball
Input: Size of network|V |, %: t ' t # 4 log2 t, *, +
Initialization: 0i " V , set ÷Ai

0 = I d, ÷bi
0 = 0, A i

0 =
Bi

0 = %, andV i
0 = V .

for t = 0 , . . . 1 do
Draw a random permutation& of { 1, . . . , V } respect-
ing the current local clusters
for i = 1 , . . . , |V | do

Receive action setDi
t and construct the conÞdence

ball Ci
t using ÷Ai

t and÷bi
t

Choose action and receive reward:
Find (xi

t +1 , 2) = arg max (x, ÷! ) "D i
t # C i

t
xT ÷! , and get

rewardr i
t +1 from contextxi

t +1 .
Share and update information buffers:

if ) ö! i
local # ö! j

local ) > c thresh
& (t)

Update local cluster:V i
t +1 = V i

t \ { &(i )} , V " ( i )
t +1 =

V " ( i )
t \ { i } , and reset according to (13)

elseif V i
t = V " ( i )

t

Set A i
t +1 =

!
1
2 (A i

t + A " ( i )
t )

"
& (xi

t +1

&
xi

t +1

' T
)

and Bi
t +1 =

!
1
2 (Bi

t + B" ( i )
t )

"
& (r i

t +1 xi
t +1 )

else Update: SetA i
t +1 = A i

t &(xi
t +1

&
xi

t +1

' T
) and

Bi
t +1 = Bi

t &(r i
t +1 xi

t +1 )

endif

Update local estimator:Ai
local,t +1 = Ai

local,t +

xi
t +1

&
xi

t +1

' T
, bi

local,t +1 = bi
local,t + r i

t +1 xi
t +1 , and

ö! local,t +1 =
!

Ai
local,t +1

" %1
bi

local,t +1

if |A i
t +1 | > t # %(t) set ÷Ai

t +1 = ÷Ai
t + A i

t +1 (1),
A i

t +1 = A i
t +1 \ A i

t +1 (1). Similarly for Bi
t +1 .

end for
end for

(1) a local covariance matrixAi
local = Ai

local,t , a local b-
vectorbi

local = bi
local,t ,

(2) and a local neighbour setV i
t .

The local covariance matrix and b-vector are updated as
if the agent was applying the generic (single agent) conÞ-
dence ball algorithm:Ai

local, 0 = A0, bi
local, 0 = 0 ,

Ai
local,t = xi

t (x
i
t )

T + Ai
local,t %1,

andbi
local,t = r i

t x
i
t + bi

local,t %1.

DCCB Algorithm Each agentÕs local neighbour setV i
t is

initially set toV . At each time stept, agenti contacts one
other agent,j , at random fromV i

t , and both decide whether
they do or do not belong to the same cluster. To do this
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they share local estimates,ö! i
t = Ai

local,t
%1

bi
local,t andö! j

t =

Aj
local,t

%1
bj

local,t , of the unknown parameter of the bandit
problem they are solving, and see if they are further apart
than a threshold functionc = cthresh

& (t), so that if

) ö! i
t # ö! j

t ) 2 - cthresh
& (t), (11)

then V i
t +1 = V i

t \ { j } and V j
t +1 = V j

t \ { i } . Here +
is a parameter of an extra assumption that is needed, as
in (Gentile et al., 2014), about the process generating the
context setsDi

t :

(A) Each context setDi
t = { xk } k is Þnite and contains

i.i.d. random vectors such that for all,k, ) xk ) ( 1
and E(xk xT

k ) is full rank, with minimal eigenvalue
+ > 0.

We deÞnecthresh
& (t), as in (Gentile et al., 2014), by

cthresh
& (t) :=

R
$

2d log(t) + 2 log(2 /' ) + 1
$

1 + max { A&(t, '/ (4d)) , 0}
(12)

whereA&(t, ' ) := &t
$ # 8 log t +3

$ # 2
.

t log t +3
$ .

The DCCB algorithm is pretty much the same as the DCB
algorithm, except that it also applies the pruning protocol
described. In particular, each agent,i , when sharing its
information with another,j , has three possible actions:

(1) if (11) is not satisÞed andV i
t = V j

t , then the agents
share simply as in the DCB algorithm;

(2) if (11) is satisÞed, then both agents remove each other
from their neighbour sets and reset their buffers and
active matrices so that

A i = (0 , 0, . . . , Ai
local ), Bi = (0 , 0, . . . , bi

local ),

and ÷Ai = Ai
local , ÷bi = bi

local , (13)

and similarly for agentj .
(3) if (11) is not satisÞed butV i

t 3= V j
t , then no sharing or

pruning occurs.

It is proved in the theorem below, that under this sharing
and pruning mechanism, in high probability after some Þ-
nite time each agenti Þnds its true cluster, i.e.V i

t = Uk .
Moreover, since the algorithm resets to its local informa-
tion each time a pruning occurs, once the true clusters have
been identiÞed, each cluster shares only information gath-
ered within that cluster, thus avoiding introducing a bias by
sharing information gathered from outside the cluster be-
fore the clustering has been identiÞed. Full pseudo-code for
the DCCB algorithm is given in Algorithm 1, and the dif-
ferences with the DCB algorithm are highlighted in blue.
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The DCCB algorithm is pretty much the same as the DCB
algorithm, except that it also applies the pruning protocol
described. In particular, each agent, i, when sharing its
information with another, j, has three possible actions:

(1) if (11) is not satisfied and V i

t

= V j

t

, then the agents
share simply as in the DCB algorithm;

(2) if (11) is satisfied, then both agents remove each other
from their neighbour sets and reset their buffers and
active matrices so that

Ai

= (0, 0, . . . , Ai

local

), Bi

= (0, 0, . . . , bi

local

),

and ˜Ai

= Ai

local

,˜bi

= bi

local

, (13)

and similarly for agent j.
(3) if (11) is not satisfied but V i

t

6= V j

t

, then no sharing or
pruning occurs.

It is proved in the theorem below, that under this sharing
and pruning mechanism, in high probability after some fi-
nite time each agent i finds its true cluster, i.e. V i

t

= Uk.
Moreover, since the algorithm resets to its local informa-
tion each time a pruning occurs, once the true clusters have
been identified, each cluster shares only information gath-
ered within that cluster, thus avoiding introducing a bias by
sharing information gathered from outside the cluster be-
fore the clustering has been identified. Full pseudo-code for
the DCCB algorithm is given in Algorithm 1, and the dif-
ferences with the DCB algorithm are highlighted in blue.
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Figure 1. Here we plot the performance of DCCB in comparison
to CLUB, CB-NoSharing and CB-InstSharing. The plots show
the ratio of cumulative rewards achieved by the algorithms to the
cumulative rewards achieved by the random algorithm.

Figure 1. Here we plot the performance of DCCB in comparison
to CLUB, CB-NoSharingand CB-InstSharing. The plots show
the ratio of cumulative rewards achieved by the algorithms to the
cumulative rewards achieved by the random algorithm.
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3.1. Results for DCCB

Theorem 6. Assume that (A) holds, and let, denote the
smallest distance between the bandit parameters! k . Then
there exists a constantC = C(,, |V |, +, ' ), such that with
probability 1 # ' the total cumulative regret of clusterk
when the agents employ DCCB is bounded by

R t (
3

max
C*

2N (' ), C + 4 log2(|V |
3
2 C)

D
|Uk |

+ ( (|Uk |, d, t)
5
) ! ) 2

+ 4e() (t) + 3 R)

(

|Uk |t ln
!

(1 + |Uk |t/d )d
"

,

whereN and( are as deÞned in Theorem 1, and) (t) :=

R

(

2 ln
!

(1 + |Uk |t/d )d
"

+ ) ! ) 2.

The constantC(,, |V |, +, ' ) is the time that you have to
wait for the true clustering to have been identiÞed,

The analysis follows the following scheme: When the true
clusters have been correctly identiÞed by all nodes, within
each cluster the algorithm, and thus the analysis, reduces
to the case of Section 2.1. We adapt results from (Gentile
et al., 2014) to show how long it will be before the true
clusters are identiÞed, in high probability. The proof is de-
ferred to Appendices A.4 and A.5.

4. Experiments and Discussion

Experiments We closely implemented the experimental
setting and dataset construction principles used in (Li et al.,
2016a;b), and for a detailed description of this we refer
the reader to (Li et al., 2016a). We evaluated DCCB on
three real-world datasets against its centralised counter-
part CLUB, and against the benchmarks used therein, CB-
NoSharing, and CB-InstSharing. The LastFM dataset com-
prises of91 users, each of which appear at least95 times.
The Delicious dataset has87users, each of which appear at
least95 times. The MovieLens dataset contains100users,
each of which appears at least250times. The performance
was measured using the ratio of cumulative reward of each
algorithm to that of the predictor which chooses a random
action at each time step. This is plotted in in Figure 1.
From the experimental results it is clear that DCCB per-
forms comparably to CLUB in practice, and both outper-
form CB-NoSharing, and CB-InstSharing.

Relationship to existing literature There are several
strands of research that are relevant and complimentary to
this work. First, there is a large literature on single agent
linear bandits, and other more, or less complicated ban-
dit problem settings. There is already work distributed
approaches to multi-agent, multi-armed bandits, not least

(Sz¬or«enyi et al., 2013) which examines$-greedy strategies
over a peer to peer network, and provided an initial inspira-
tion for this current work. The paper (Kalathil et al., 2014)
examines the extreme case when there is no communication
channel across which the agents can communicate, and all
communication must be performed through obesrvation of
action choices alone. Another approach to the multi-armed
bandit case, (Nayyar et al., 2015), directly incorporates the
communication cost into the regret.

Second, there are several recent advances regarding the
state-of-the-art methods for clustering of bandits. The work
(Li et al., 2016a) is a faster variant of (Gentile et al., 2014)
which adopt the strategy of boosted training stage. In (Li
et al., 2016b) the authors not only cluster the users, but also
cluster the items under collaborative Þltering case with a
sharp regret analysis.

Finally, the paper (Tekin & van der Schaar, 2013) treats
a setting similar to ours in which agents attempt to solve
contextual bandit problems in a distributed setting. They
present two algorithms, one of which is a distributed ver-
sion of the approach taken in (Slivkins, 2014), and show
that they achieve at least as good asymptotic regret perfor-
mance in the distributed approach as the centralised algo-
rithm achieves. However, rather than sharing information
across a limited communication channel, they allow each
agent only to ask another agent to choose their action for
them. This difference in our settings is reßected worse re-
gret bounds, which are of orderO(T2/ 3) at best.

DiscussionOur analysis is tailored to adapt proofs from
(Abbasi-Yadkori et al., 2011) about generic conÞdence ball
algorithms to a distributed setting. However many of the
elements of these proofs, including Propositions 1 and 2
could be reused to provide similar asymptotic regret guar-
antees for the distributed versions of other bandit algo-
rithms, e.g., the Thompson sampling algorithms, (Agrawal
& Goyal, 2013; Kaufmann et al., 2012; Russo & Van Roy,
2014).

Both DCB and DCCB are synchronous algorithms. The
work on distributed computation through gossip algorithms
in (Boyd et al., 2006) could alleviate this issue. The current
pruning algorithm for DCCB guarantees that techniques
from (Sz¬or«enyi et al., 2013) can be applied to our algo-
rithms. However the results in (Boyd et al., 2006) are more
powerful, and could be used even when the agents only
identify a sub-network of the true clustering.

Furthermore, there are other existing interesting algorithms
for performing clustering of bandits for recommender sys-
tems, such as COFIBA in (Li et al., 2016b). It would be in-
teresting to understand how general the techniques applied
here to CLUB are.
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