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Abstract
Topological data analysis (TDA) is an emerging
mathematical concept for characterizing shapes
in complex data. In TDA, persistence diagrams
are widely recognized as a useful descriptor of
data, and can distinguish robust and noisy topo-
logical properties. This paper proposes a kernel
method on persistence diagrams to develop a sta-
tistical framework in TDA. The proposed kernel
satisfies the stability property and provides ex-
plicit control on the effect of persistence. Fur-
thermore, the method allows a fast approxima-
tion technique. The method is applied into prac-
tical data on proteins and oxide glasses, and the
results show the advantage of our method com-
pared to other relevant methods on persistence
diagrams.

1. Introduction
Recent years have witnessed an increasing interest in uti-
lizing methods of algebraic topology for statistical data
analysis. This line of research is called topological data
analysis (TDA) (Carlsson, 2009), which has been success-
fully applied to various areas including information sci-
ence (Carlsson et al., 2008; de Silva & Ghrist, 2007), biol-
ogy (Kasson et al., 2007; Xia & Wei, 2014), brain science
(Lee et al., 2011; Petri et al., 2014; Singh et al., 2008), bio-
chemistry (Gameiro et al., 2013), and material science
(Nakamura et al., 2015a;b). In many of these applications,
it is not straightforward to provide feature vectors or de-
scriptors of data from their complicated geometric config-
urations. The aim of TDA is to detect informative topo-
logical properties (e.g., connected components, rings, and
cavities) from such data, and use them as descriptors.

A key mathematical apparatus in TDA is persistent homol-
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ogy, which is an algebraic method for extracting robust
topological information from data. To provide some intu-
ition for the persistent homology, let us consider a typical
way of constructing persistent homology from data points
in a Euclidean space, assuming that the data lie on a sub-
manifold. The aim is to make inference on the topology
of the underlying manifold from finite data. We consider
the r-balls (balls with radius r) to recover the topology
of the manifold, as popularly employed in constructing an
r-neighbor graph in many manifold learning algorithms.
While it is expected that, with an appropriate choice of r,
the r-ball model can represent the underlying topological
structures of the manifold, it is also known that the result is
sensitive to the choice of r. If r is too small, the union of
r-balls consists simply of the disjoint r-balls. On the other
hand, if r is too large, the union becomes a contractible
space. Persistent homology (Edelsbrunner et al., 2002) can
consider all r simultaneously, and provides an algebraic ex-
pression of topological properties together with their per-
sistence over r. We give a brief explanation of persistent
homology in Supplementary material A.3.

Figure 1. The union Xr of r-balls at points sampled from annuli
with noise.

The persistent homology can be visualized in a compact
form called a persistence diagram D = {(bi, di) ∈ R2 |
i ∈ I, bi ≤ di}, and this paper focuses on persistence di-
agrams, since the contributions of this paper can be fully
explained in terms of persistence diagrams. Every point
(bi, di) ∈ D, called a generator of the persistent homology,
represents a topological property (e.g., connected compo-
nents, rings, and cavities) which appears at Xbi and dis-
appears at Xdi in the r-ball model. Then, the persistence
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Figure 2. The persistence diagram of the r-ball model in Figure
1. The point x1 represents the ring α1, which is born at r = 0.14
and dies at r = 0.24. The noisy rings are plotted as the points
close to the diagonal.

di − bi of the generator shows the robustness of the topo-
logical property under the radius parameter. As an exam-
ple shown in Figure 1, the rings α1,α2 and other tiny ones
are expressed as x1, x2, and the other points in the persis-
tence diagram shown in Figure 2. A topological property
with large persistence can be regarded as a reliable struc-
ture, while that with small persistence (points close to the
diagonal) is likely to be noise. In this way, persistence di-
agrams encode topological and geometric information of
data points.

While persistence diagrams nowadays start to be applied to
various problems such as the ones listed in the beginning
of this section, statistical or machine learning methods for
analysis on persistence diagrams are still limited. In TDA,
analysts often elaborate only one persistence diagram and,
in particular, methods for handling many persistence dia-
grams, which can contain randomness from the data, are at
the beginning stage (see the end of this section for related
works). Hence, developing a statistical framework on per-
sistence diagrams is a significant issue for further success
of TDA.

To this aim, this paper discusses kernel methods for per-
sistence diagrams (see Figure 3). Since a persistence di-
agram is a point set of variable size, it is not straightfor-
ward to apply standard methods of statistical data analy-
sis, which typically assume vectorial data. Here, to vec-
torize persistence diagrams, we employ the framework of
kernel embedding of (probability and more general) mea-
sures into reproducing kernel Hilbert spaces (RKHS). This
framework has recently been developed, leading various
new methods for nonparametric inference (Muandet et al.,
2012; Smola et al., 2007; Song et al., 2013). It is known
(Sriperumbudur et al., 2011) that, with an appropriate
choice of kernels, a signed measure can be uniquely rep-
resented by the Bochner integral of the feature vectors with
respect to the measure. Since a persistence diagram can be
regarded as a non-negative measure, it can be embedded
into an RKHS by the Bochner integral. Once such a vec-
tor representation is obtained, we can introduce any kernel
methods for persistence diagrams systematically.
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Figure 3. (1) A data X is transformed into a persistence dia-
gram Dq(X) (Section 2.1). (2) Dq(X) is mapped to a vector
EkG(µwarc

Dq(X)), where k is a kernel and w is a weight controlling
the effect of persistence (Section 3.1). (3) This vector provides
statistical methods for persistence diagrams (Section 4).

For embedding persistence diagrams in an RKHS, we pro-
pose a useful class of positive definite kernels, called per-
sistence weighted Gaussian kernel (PWGK). It is important
that the PWGK can discount the contributions of generators
close to the diagonal (small persistence), since in many ap-
plications those generators are likely to be noise. The ad-
vantages of this kernel are as follows. (i) We can explicitly
control the effect of persistence, and hence, discount the
noisy generators appropriately in statistical analysis. (ii)
As a theoretical contribution, the distance defined by the
RKHS norm for the PWGK satisfies the stability property,
which ensures the continuity from data to the vector rep-
resentation of the persistence diagram. (iii) The PWGK
allows efficient computation by using the random Fourier
features (Rahimi & Recht, 2007), and thus it is applicable
to persistence diagrams with a large number of generators,
which are seen in practical examples (Section 4).

We demonstrate the performance of the proposed kernel
method with synthesized and real-world data, including
protein datasets (taken by NMR and X-ray crystallography
experiments) and oxide glasses (taken by molecular dy-
namics simulations). We remark that these real-world prob-
lems have biochemical and physical significance in their
own right, as detailed in Section 4.

There are already some relevant works on statistical ap-
proaches to persistence diagrams. Some studies dis-
cuss how to transform a persistence diagram to a vec-
tor (Bubenik, 2015; Cang et al., 2015; Carriere et al., 2015;
Robins & Turner, 2015). In these methods, a transformed
vector is typically expressed in a Euclidean space Rk

or a function space Lp, and simple and ad-hoc sum-
mary statistics like means and variances are used for data
analysis such as principal component analysis and sup-
port vector machines. The most relevant to our method
is Reininghaus et al. (2015) (see also Kwitt et al. (2015)),
where they vectorize a persistence diagram by using the
difference of two Gaussian kernels evaluated at symmet-
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ric points with respect to the diagonal so that it vanishes
on the diagonal. We will show detailed comparisons be-
tween this method and ours. Additionally, there are some
works discussing statistical properties of persistence dia-
grams for random data points: Chazal et al. (2014b) show
convergence rates of persistence diagram estimation, and
Fasy et al. (2014) discuss confidence sets in a persistence
diagram. These works consider a different but important di-
rection to the statistical methods for persistence diagrams.

The remaining of this paper is organized as follows. In
Section 2, we review some basics on persistence diagrams
and kernel embedding methods. In Section 3, the PWGK
is proposed, and some theoretical and computational issues
are discussed. Section 4 shows experimental results, and
compares the proposed kernel method with other methods.

2. Background
We review the concepts of persistence diagrams and kernel
methods. For readers who are not familiar with algebraic
topology and homology, we give a brief summary in Sup-
plementary material. See also Hatcher (2001) as an acces-
sible introduction to algebraic topology.

2.1. Persistence diagram

Let X = {x1, . . . ,xn} be a finite subset in a metric space
(M,dM ). To analyze topological properties of X , let us
consider a fattened ball model Xr =

⋃n
i=1 B(xi; r) con-

sisting of balls B(xi; r) = {x ∈ M | dM (xi,x) ≤ r}
with radius r, and use the homology Hq(Xr) to describe
the topology of Xr. Here, for a topological space S, its
q-th homology Hq(S) (q = 0, 1, . . .) is defined as a vec-
tor space, and its dimension dimHq(S) counts the number
of connected components (q = 0), rings (q = 1), cavities
(q = 2), and so on1. For the precise definition of homology,
see Supplementary material. For example, X0.21 in Figure
1 consists of one connected component and two rings, and
hence dimH0(H0.21) = 1 and dimH1(X0.21) = 2.

Because of Xr ⊂ Xs for r ≤ s, the set X = {Xr | r ≥ 0}
becomes a filtration2. When the radius changes as in Fig-
ure 1, a new generator αi ∈ Hq(Xr) appears at some ra-
dius r = bi and disappears at a radius r = di larger than bi
(called birth and death, respectively). By gathering all gen-
erators αi (i ∈ I) in the filtration X, we obtain the collec-
tion of these birth-death pairs Dq(X) = {(bi, di) ∈ R2 |
i ∈ I} as a multi-set3. The persistence diagram Dq(X) is

1Throughout this paper we use a field coefficient for homol-
ogy.

2A filtration is a family of subsets {Xa | a ∈ A} indexed by
a totally ordered set A such that Xa ⊂ Xb for a ≤ b.

3A multi-set is a set with multiplicity of each point. We regard
a persistence diagram as a multi-set, since several generators can

defined by the disjoint union of Dq(X) and the diagonal set
∆ = {(a, a) | a ∈ R} counted with infinite multiplicity.
A point x = (b, d) ∈ Dq(X) is also called a generator of
the persistence diagram. The persistence pers(x) := d− b
of x is its lifetime and measures the robustness of x in the
filtration. We will see shortly that the diagonal set is in-
cluded in a persistence diagram to simplify the definition
of a distance on persistence diagrams.

Figure 2 shows the persistence diagram D1(X) of X given
in Figure 1. The generators x1 and x2 correspond to the
rings α1 and α2 in Figure 1, respectively. The persistence
of x2 is the longest, while the other generators including x1

have small persistences, implying that they can be seen as
noisy rings. Although there are no topological rings in X
itself, the persistence diagram D1(X) shows that there is
a robust ring α2 and several noisy rings in X. In this way,
the persistence diagram provides an informative topologi-
cal summary of Xr over all r.

We remark that, in the finite fattened ball model, there is
only one generator in D0(X) which does not disappear in
the filtration; its lifetime is ∞. Thus, from now on, we deal
with D0(X) by removing this infinite lifetime generator
in order to simplify the notation4. We also note that the
cardinality of Dq(X) obtained from the finite fattened ball
model is finite.

2.2. Stability with respect to dB

Any statistical data involve noise or stochasticity, and thus
it is desired that the persistence diagrams are stable under
perturbation of data. A popular measure to study the sim-
ilarity between two persistence diagrams D and E is the
bottleneck distance

dB(D,E) := inf
γ

sup
x∈D

∥x− γ(x)∥∞ ,

where γ ranges over all multi-bijections5 from D to E6.
Note that the cardinalities of D and E are equal by con-
sidering the diagonal set ∆ with infinite multiplicity. As a
distance between finite sets X,Y in a metric space M , let
us recall the Hausdorff distance given by

dH(X,Y ) :=

max

{
sup
x∈X

inf
y∈Y

dM (x,y), sup
y∈Y

inf
x∈X

dM (x,y)

}
.

Then, we have the following stability property (for more
general settings, see Chazal et al. (2014a)).
have the same birth-death pairs.

4This is called the reduced persistence diagram.
5A multi-bijection is a bijective map between two multi-sets

counted with their multiplicity.
6For z = (z1, z2) ∈ R2, ∥z∥∞ denotes max(|z1|, |z2|).
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Proposition 2.1. (Chazal et al., 2014a;
Cohen-Steiner et al., 2007) Let X and Y be finite
subsets in a metric space (M,dM ). Then the persistence
diagrams satisfy

dB(Dq(X), Dq(Y )) ≤ dH(X,Y ).

Proposition 2.1 provides a geometric intuition of the stabil-
ity of persistence diagrams. Assume that X is the true lo-
cation of points and Y is a data obtained from skewed mea-
surement with ε = dH(X,Y ) (Figure 4). If there is a point
(b, d) ∈ Dq(Y ), then we can find at least one generator in
X which is born in (b− ε, b+ ε) and dies in (d− ε, d+ ε).
Thus, the stability guarantees the similarity of two persis-
tence diagrams, and hence we can infer the true topological
features from one persistence diagram.

Figure 4. Two data X and Y (left) and their persistence diagrams
(right). The green region is an ε-neighborhood of Dq(Y ).

2.3. Kernel methods for representing signed measures

Let Ω be a set and k : Ω×Ω→R be a positive definite ker-
nel on Ω, i.e., k is symmetric, and for any number of points
x1, . . . , xn in Ω, the Gram matrix (k(xi, xj))i,j=1,...,n is
nonnegative definite. A popular example of positive def-
inite kernel on Rd is the Gaussian kernel kG(x, y) =

e−
∥x−y∥2

2σ2 (σ > 0), where ∥·∥ is the Euclidean norm in
Rd. It is also known that every positive definite kernel k on
Ω is uniquely associated with a reproducing kernel Hilbert
space Hk (RKHS).

We use a positive definite kernel to represent persis-
tence diagrams by following the idea of the kernel
mean embedding of distributions (Smola et al., 2007;
Sriperumbudur et al., 2011). Let Ω be a locally compact
Hausdorff space, Mb(Ω) be the space of all finite signed
Radon measures on Ω, and k be a bounded measurable ker-
nel on Ω. Then we define a mapping from Mb(Ω) to Hk by

Ek : Mb(Ω)→Hk, µ *→
∫

k(·, x)dµ(x). (1)

The integral should be understood as the Bochner in-
tegral (Diestel & Uhl, 1977), which exists here, since∫
∥k(·, x)∥Hk

dµ(x) is finite.

For a locally compact Hausdorff space Ω, let C0(Ω) de-
note the space of continuous functions vanishing at infin-
ity7. A kernel k on Ω is said to be C0-kernel if k(x, x) is
of C0(Ω) as a function of x. If k is C0-kernel, the asso-
ciated RKHS Hk is a subspace of C0(Ω). A C0-kernel
k is called C0-universal if Hk is dense in C0(Ω). It is
known that the Gaussian kernel kG is C0-universal on Rd

(Sriperumbudur et al., 2011). When k is C0-universal, by
the mapping (1), the vector Ek(µ) in the RKHS uniquely
determines the finite signed measure µ, and thus serves as
a representation of µ.
Proposition 2.2 ((Sriperumbudur et al., 2011)). If k is C0-
universal, the mapping Ek is injective. Thus,

dk(µ, ν) = ∥Ek(µ)− Ek(ν)∥Hk

defines a distance on Mb(Ω).

3. Kernel methods for persistence diagrams
We propose a kernel for persistence diagrams, called the
Persistence Weighted Gaussian Kernel (PWGK), to embed
the diagrams into an RKHS. This vectorization of persis-
tence diagrams enables us to apply any kernel methods to
persistence diagrams. We show the stability theorem with
respect to the distance defined by the embedding, and dis-
cuss efficient computation of the PWGK.

3.1. Persistence weighted Gaussian kernel

We propose a method for vectorizing persistence diagrams
using the kernel embedding (1) by regarding a persistence
diagram as a discrete measure. In vectorizing persistence
diagrams, it is important to discount the effect of generators
located near the diagonal, since they tend to be caused by
noise. To this end, we explain slightly different two ways
of embeddings, which turn out to introduce the same inner
products for two persistence diagrams.

First, for a persistence diagram D, we introduce a weighted
measure µw

D :=
∑

x∈D w(x)δx with a weight w(x) > 0
for each generator x ∈ D (Figure 5), where δx is the Dirac
delta measure at x. The weight function w(x) discounts the
effect of generators close to the diagonal, and a concrete
choice will be discussed later. As discussed in Section 2.3,
given a C0-universal kernel k on R2

ul := {(b, d) ∈ R2 |
b < d}, the measure µw

D can be embedded as an element of
the RKHS Hk via

µw
D *→ Ek(µ

w
D) :=

∑

x∈D

w(x)k(·, x). (2)

From Proposition 2.2, this mapping does not lose any in-
formation about persistence diagrams, and Ek(µw

D) ∈ Hk

serves as a representation of the persistence diagram.
7A function f is said to vanish at infinity if for any ε > 0 there

is a compact set K ⊂ Ω such that supx∈Kc |f(x)| ≤ ε.
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As the second construction, let

kw(x, y) := w(x)w(y)k(x, y)

be the weighted kernel with the same weight function as
above, and consider the mapping

Ekw : µD *→
∑

x∈D

w(x)w(·)k(·, x) ∈ Hkw . (3)

This also defines vectorization of persistence diagrams, and
it is essentially equivalent to the first one, as seen from
the next proposition (See Supplementary material for the
proof.).
Proposition 3.1. The following mapping

Hk → Hkw , f *→ wf

defines an isomorphism between the RKHSs. Under this
isomorphism, Ek(µw

D) and Ekw(µD) are identified.

Note that under the identification of Proposition 3.1, we
have

⟨Ek(µ
w
D), Ek(µ

w
E)⟩Hk = ⟨Ekw(µD), Ekw(µE)⟩Hkw ,

and thus the two constructions introduce the same similar-
ity (and hence distance) among persistence diagrams. We
apply methods of data analysis to vector representations
Ek(µw

D) or Ekw(µD). The first construction may be more
intuitive by the direct weighting of a measure, while the
second one is also practically useful since all the parameter
tuning is reduced to kernel choice.

For a practical purpose, we propose to use the Gaussian

kernel kG(x, y) = e−
∥x−y∥2

2σ2 (σ > 0) for k, and warc(x) =
arctan(Cpers(x)p) (C, p > 0) for a weight function. The
corresponding positive definite kernel is

kPWG(x, y) = warc(x)warc(y)e
− ∥x−y∥2

2σ2 . (4)

We call it Persistence Weighted Gaussian Kernel (PWGK).
Since the Gaussian kernel is C0-universal and w > 0 on
R2

ul, d
warc
kG

(D,E) := ∥EkG(µ
warc
D )−EkG(µ

warc
E )∥HkG

de-
fines a distance on the persistence diagrams. We also note
that warc is an increasing function with respect to persis-
tence. Hence, a noisy (resp. essential) generator x gives a
small (resp. large) value warc(x). By adjusting the param-
eters C and p, we can control the effect of the persistence.

3.2. Stability with respect to dwarc
kG

Given a data X , we vectorize the persistence diagram
Dq(X) as an element EkG(µ

warc

Dq(X)) of the RKHS. Then,
for practical applications, this map X *→ EkG(µ

warc

Dq(X))
should be stable with respect to perturbations to the data
as discussed in Section 2.2. The following theorem shows
that the map has the desired property (See Supplementary
material for the proof.).
Theorem 3.2. Let M be a compact subset in Rd, X,Y ⊂
M be finite subsets and p > d+ 1. Then

dwarc
kG

(Dq(X), Dq(Y )) ≤ L(M,d;C, p,σ)dH(X,Y ),

where L(M,d;C, p,σ) is a constant depending on
M,d,C, p,σ.

Let Pfinite(M) be the set of finite subsets in a compact sub-
set M ⊂ Rd. Since the constant L(M,d;C, p,σ) is inde-
pendent of X and Y , Theorem 3.2 concludes that the map

Pfinite(M)→HkG , X *→ EkG(µ
warc

Dq(X))

is Lipschitz continuous. To the best of our knowledge, a
similar stability result has not been obtained for the other
Gaussian type kernels (e.g., Reininghaus et al. (2015) does
not deal with the Hausdorff distance.). Our stability result
is achieved by incorporating the weight function warc with
appropriate choice of p.

3.3. Kernel methods on RKHS

Once persistence diagrams are represented by the vectors
in an RKHS, we can apply any kernel methods to those
vectors. The simplest choice is to consider the linear kernel

KL(D,E) = ⟨EkG(µ
warc
D ), EkG(µ

warc
E )⟩HkG

=
∑

x∈D

∑

y∈E

warc(x)warc(y)kG(x, y)

on the RKHS. We can also consider a nonlinear kernel on
the RKHS, such as the Gaussian kernel:

KG(D,E) = exp

(
−
dwarc
kG

(D,E)2

2τ2

)
, (5)

where τ is a positive parameter and

dwarc
kG

(D,E)2 := ∥EkG(µ
warc
D )− EkG(µ

warc
E )∥2HkG

=
∑

x∈D

∑

x′∈D

warc(x)warc(x
′)kG(x, x

′)

+
∑

y∈E

∑

y′∈E

warc(y)warc(y
′)kG(y, y

′)

− 2
∑

x∈D

∑

y∈E

warc(x)warc(y)kG(x, y).
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Note that we can observe better performance with non-
linear kernels for some complex tasks (Muandet et al.,
2012) and the RKHS Gaussian kernel KG is universal
(Christmann & Steinwart, 2010). In Section 4, we apply
KG for SVM, kernel PCA, and kernel change point detec-
tion.

3.4. Computation of Gram matrix

Let D = {Dℓ | ℓ = 1, . . . , n} be a collection of persistence
diagrams. In many practical applications, the number of
generators in a persistence diagram can be large, while n
is often relatively small: in Section 4.3, for example, the
number of generators is 30000, while n = 80.

If the persistence diagrams contain at most m points, each
element of the Gram matrix (KG(Di, Dj))i,j=1,...,n in-

volves O(m2) evaluation of e−
∥x−y∥2

2σ2 , resulting the com-
plexity O(m2n2) for obtaining the Gram matrix. Hence,
reducing computational cost with respect to m is an impor-
tant issue, since in many applications n is relatively small

We solve this computational issue by using the ran-
dom Fourier features (Rahimi & Recht, 2007). To be
more precise, let z1, . . . , zM be random variables from
the 2-dimensional normal distribution N((0, 0),σ−2I)
where I is the identity matrix. This method ap-

proximates e−
∥x−y∥2

2σ2 by 1
M

∑M
a=1 e

√
−1zax(e

√
−1zay)∗,

where ∗ denotes the complex conjugation. Then,∑
x∈Di

∑
y∈Dj

w(x)w(y)kG(x, y) is approximated by
1
M

∑M
a=1 B

a
i (B

a
j )

∗, where Ba
ℓ =

∑
x∈Dℓ

w(x)e
√
−1zax.

As a result, the computational complexity of the approxi-
mated Gram matrix is O(mnM + n2M).

We note that approximation by the random Fourier features
can be sensitive to the choice of σ. If σ is much smaller
than ∥x− y∥, the relative error can be large. For exam-
ple, in the case of x = (1, 2), y = (1, 2.1) and σ = 0.01,

e−
∥x−y∥2

2σ2 is about 10−22 while we observed the approxi-
mated value can be about 10−3 with M = 103. As a whole,
these m2 errors may cause a critical error to the approxima-
tion. Moreover, if σ is largely deviated from the ensemble

∥x− y∥ for x ∈ Di, y ∈ Dj , then most values e−
∥x−y∥2

2σ2

become close to 0 or 1.

In order to obtain a good approximation and extract mean-
ingful values, choice of parameter is important. For super-
vised learning such as SVM, we use the cross-validation
(CV) approach. For unsupervised case, we follow the
heuristics proposed in Gretton et al. (2007). In Section
4.3, we set σ = median{σ(Dℓ) | ℓ = 1, . . . , n}, where
σ(D) = median{∥xi − xj∥ | xi, xj ∈ D, i < j}, so that
σ takes close values to many ∥x− y∥. For the parameter C,
we also set C = (median{pers(Dℓ) | ℓ = 1, . . . , n})−p,

where pers(D) = median{pers(xi) | xi ∈ D}. Similarly,
τ is defined by median{dwarc

kG
(Di, Dj) | 1 ≤ i < j ≤ n}.

In this paper, since all points of data are in R3, we set p = 5
from the assumption p > d+ 1 in Theorem 3.2.

4. Experiments
We demonstrate the performance of the PWGK using syn-
thesized and real data. In this section, all persistence di-
agrams are 1-dimensional (i.e., rings) and computed by
CGAL (Da et al., 2015) and PHAT (Bauer et al., 2014).

4.1. Comparison to the persistence scale space kernel

The most relevant work to our method is Reininghaus et al.
(2015). They propose a positive definite kernel called per-
sistence scale space kernel (PSSK for short) KPSS on the
persistence diagrams:

KPSS(D,E) = ⟨Φt(D),Φt(E)⟩L2(R2
ul)

=
1

8πt

∑

x∈D

∑

y∈E

e−
∥x−y∥2

8t − e−
∥x−ȳ∥2

8t ,

where Φt(D)(x) = 1
4πt

∑
y∈D e−

∥x−y∥2
4t − e−

∥x−ȳ∥2
4t , and

ȳ = (y2, y1) for y = (y1, y2). Note that the PSSK also
takes zero on the diagonal by subtracting the Gaussian ker-
nels for y and ȳ.

While both methods discount noisy generators, the PWGK
has the following advantages over the PSSK. (i) The
PWGK can control the effect of the persistence by C and p
in warc independently of the bandwidth parameter σ in the
Gaussian factor, while in the PSSK only one parameter t
must control the global bandwidth and the discounting ef-
fect. (ii) The approximation by the random Fourier features
is not applicable to the PSSK, since it is not shift-invariant
in total. We also note that, in Reininghaus et al. (2015),
only the linear kernel is considered on the RKHS, while
our approach involves a nonlinear kernel on the RKHS.

Regarding the approximation of the PSSK, Nyström
method (Williams & Seeger, 2001) or incomplete
Cholesky factorization (Fine & Scheinberg, 2001) can
be applied. In evaluating the kernels, we need to calculate
(k(x, y))x∈Di,y∈Dj

, which is not symmetric. We then need
to apply Nyström or incomplete Cholesky to the symmetric
but big positive definite matrix (k(x, y))x∈Di,y∈Dj

i,j=1,...,n

of size

O(nm). Either, we need to apply incomplete Cholesky
to the non-symmtric matrix (k(x, y))x∈Di,y∈Dj

for all
the combination of (i, j), which requires considerable
computational cost for large n. In contrast, the random
Fourier features can be applied to the kernel function
irrespective to evaluation points, and the same Fourier
expansion can be applied to any (i, j). This guarantees the
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Table 1. Results of SVM with PWGK, PSSK, and Gaussian. Av-
erage classification rates (%) for 99 test data sets are shown.

RKHS-Linear RKHS-Gauss
PWGK 60.0 83.0
PSSK 49.5 54.5
Gauss 57.6 69.7

efficient computational cost.

The detailed comparisons will be experimentally verified
in Sections 4.2 and 4.3. With respect to the parameter t in
the PSSK, since e−

∥x−ȳ∥2
8t is only used to vanish the value

of the feature map Φt(D) on the diagonal, we set t = σ2

4
by using the same σ defined in Section 3.4.

4.2. Classification with synthesized data

We first use the proposed method for a classification task
with SVM, and compare the performance with the PSSK.
The synthesized data are generated as follows. Each data
set assumes one or two circles, and data points are located
at even spaces along the circle(s). It always contains one
larger circle S1 of radius ro1 raging from 1 to 10, and it may
have a smaller circle S2 of radius 0.2 (10 points) with prob-
ability 1/2. Roughly speaking, the class label Y is made
by XOR(z0, z1), where zi (i = 0, 1) is a binary variable:
z0 = 1 if the smaller S2 exists, and z1 = 1 if the birth and
death (bo, do) of the generator corresponding to S1 satis-
fies bo < AB and do > AD for fixed thresholds AB , AD.
We can control bo and do by choosing the number of points
No

1 along S1 (for birth) and the radius ro1 (for death). To
generate the data points, we add noise effects to make the
classification harder: the radius r1 and sample size N1 are
in fact given by adding noise to r01 and No

1 , and S1 are
made according to the shifted r1 and N1, while the class
label is given by the non-shifted ro1 and No

1 . For the precise
description of the data generation procedure, see Supple-
mentary material. By this construction, the classifier needs
to look at both of the location of the generator and the ex-
istence of the generator for the smaller one around the di-
agonal.

SVMs are trained with persistence diagrams given by 100
data sets, and evaluated with 99 independent test data sets.
For the kernel on RKHS, we used both of the linear and
Gaussian kernels. The hyper-parameters (σ, C) in the
PWGK and t in the PSSK are chosen by the 10-fold cross-
validation, and the degree p in the weight of the PWGK is
set to be 5. The variance parameter in the RKHS-Gaussian
kernel is set by the median heuristics. We also apply the
Gaussian kernel (without any weights) for embedding per-
sistence diagrams to RKHS. In Table 1, we can see that
the PSSK does not work well for this problem, even worse
than the Gaussian kernel, and the classification rate by the

linear RKHS kernel used originally in Reininghaus et al.
(2015) is almost the chance level. This must be caused
by the difficulty in handling the global location of gener-
ators and close look around the diagonal simultaneously.
This classification task involves strong nonlinearity on the
RKHS, as seen in the large improvement by PWGK+Gauss
kernel.

4.3. Analysis of SiO2

In this experiment, we compare the PWGK and the PSSK
to the non-trivial problem of glass transition on SiO2, fo-
cusing also on their computational efficiency.

When we rapidly cool down the liquid state of SiO2, it
avoids the usual crystallization and changes into a glass
state. Understanding the liquid-glass transition is an im-
portant issue for the current physics and industrial applica-
tions (Greaves & Sen, 2007). For estimating the glass tran-
sition temperature by simulations, we first prepare atomic
configurations of SiO2 for a certain range of temperatures,
and then draw the temperature-enthalpy graph. The graph
consists of two lines in high and low temperatures with
slightly different slopes which correspond to the liquid and
the glass states, respectively, and the glass transition tem-
perature is conventionally estimated as an interval of the
transient region combining these two lines (e.g., see Elliott
(1990)). However, since the slopes of the two lines are
close to each other, determining the interval is a subtle
problem, and usually the rough estimate of the interval is
only available. Hence, it is desired to develop a mathemat-
ical framework to detect the glass transition temperature.

Our strategy is to regard the glass transition temperature as
the change point and detect it from a collection D = {Dℓ |
ℓ = 1, . . . , n} of persistence diagrams made by atomic
configurations of SiO2, where ℓ is the index of the tem-
peratures listed in the decreasing order. We use the kernel
Fisher discriminant ratio KFDRn,ℓ,γ(D) (Harchaoui et al.,
2009) as a statistical quantity for the change point detec-
tion. Here, we set γ = 10−3 in this paper, and the index
ℓ achieving the maximum of KFDRn,ℓ,γ(D) corresponds
to the estimated change point. The KFDR is calculated by
the Gram matrix (K(Di, Dj))i,j=1,...,n with respect to the
kernel K.

We compute D with n = 80 from the data used in
(Nakamura et al., 2015a;b). Since the persistence dia-
grams of SiO2 contain huge amount of points, we ap-
ply the random Fourier features and the Nyström meth-
ods (Drineas & Mahoney, 2005) for the approximations of
the PWGK with the Gaussian RKHS and the PSSK, re-
spectively. The sample sizes used in both approximations
are denoted by M and c, where c is the number of cho-
sen columns. Figrue 6 summarizes the plots of the change
points for several sample sizes and the computational time.
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Figure 6. (Left) Estimated change points by the approximated
PWGK (top) and the PSSK (bottom). The parameters M and c
are the sample numbers used in both approximations. At each pa-
rameter, both methods are tested multiple times and the black dots
and the gray dots mean the majority and the minority of estimated
change points, respectively. (Right) Computational time.

The interval of the glass transition temperature T estimated
by the conventional method explained above is 2000K ≤
T ≤ 3500K, which corresponds to 35 ≤ ℓ ≤ 50.

The computational complexity of the random Fourier fea-
tures with respect to the sample size is O(M), while that
of the Nyström method involves matrix inversion of O(c3).
For this reason, the PSSK with c > 500 cannot be per-
formed in reasonable time, and hence we cannot check the
convergence of the change points with respect to the sample
size as shown in Figure 6. On the other hand, the PWGK
plot shows the convergence to ℓ = 37, implying that ℓ = 37
is the true change point. We here emphasize that the com-
putation to obtain ℓ = 37 by the PWGK is much faster than
the PSSK.

Figure 7. (Left) The KFDR plots of the PWGK (M = 1000) and
the PSSK (c = 500). (Right) The 2-dimensional KPCA plot of
the PWGK.

Figure 7 shows the normalized plots of KFDRn,ℓ,γ(D) and
the 2-dimensional plot given by KPCA (the color is given
by the result of the change point detection by the PWGK).
As we see from the figure, the KPCA plot shows the clear
phase change between before (red) and after (blue) the
change point. This strongly suggests that the glass tran-

Table 2. CV classification rates (%) of SVM with PWGK and
MTF (cited from Cang et al. (2015)).

Protein-Drug Hemoglobin
PWGK 100 88.90

MTF-SVM (nbd) 93.91 / (bd) 98.31 84.50

sition occurs at the detected change point.

4.4. Protein classification

We apply the PWGK to two classification tasks studied in
Cang et al. (2015). They use the molecular topological fin-
gerprint (MTF) as a feature vector for the input to the SVM.
The MTF is given by the 13 dimensional vector whose el-
ements consist of the persistences of some specific gener-
ators (e.g., the longest, second longest, etc.) in persistence
diagrams. We compare the performance of the PWGK with
the Gaussian RKHS kernel and the MTF method under the
same setting of the SVM reported in Cang et al. (2015).

The first task is a protein-drug binding problem, and we
classify the binding and non-binding of drug to the M2
channel protein of the influenza A virus. For each form,
15 data were obtained by NMR experiments, in which 10
data are used for training and the remaining for testing. We
randomly generated 100 ways of partitions, and calculated
the classification rates.

In the second problem, the taut and relaxed forms of
hemoglobin are to be classified. For each form, 9 data were
collected by the X-ray crystallography. We select one data
from each class for testing, and use the remaining for train-
ing. All the 81 combinations are performed to calculate the
CV classification rates.

The results of the two problems are shown in Table 2. We
can see that the PWGK achieves better performance than
the MTF in both problems.

5. Conclusion
In this paper, we have proposed a kernel framework for
analysis with persistence diagrams, and the persistence
weighted Gaussian kernel as a useful kernel for the frame-
work. As a significant advantage, our kernel enables one to
control the effect of persistence in data analysis. We have
also proven the stability result with respect to the kernel
distance. Furthermore, we have analyzed the synthesized
and real data by using the proposed kernel. The change
point detection, the principal component analysis, and the
support vector machine using the PWGK derived meaning-
ful results in physics and biochemistry. From the viewpoint
of computations, our kernel provides an accurate and effi-
cient approximation to compute the Gram matrix, suitable
for practical applications of TDA.
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