
Supplementary Materials for
Smooth Imitation Learning for Online Sequence Prediction

A. Detailed Theoretical Analysis and Proofs
A.1. Proof of lemma 5.1

Lemma Statement. (Lemma 5.1) For a fixed x, define
πprx, asq fi ϕpaq. If ϕ is non-negative and H-smooth w.r.t.
a., then:

@a, a1 :
`

ϕpaq ´ ϕpa1q
˘2
ď 6H

`

ϕpaq ` ϕpa1q
˘
›

›a´ a1
›

›

2
.

The proof of Lemma 5.1 rests on 2 properties of H-smooth
functions (differentiable) in R1, as stated below

Lemma A.1 (Self-bounding property of Lipschitz-smooth
functions). Let φ : R Ñ R be an H-smooth non-negative
function. Then for all a P R: |∇φpaq| ď

a

4Hφpaq

Proof. By mean value theorem, for any a, a1 we have D η P
pa, a1q (or pa1, aq) such that φpa1q “ φpaq`∇φpηqpa1´aq.
Since φ is non-negative,

0 ď φpa1q “ φpaq `∇φpaqpa1 ´ aq
` p∇φpηq ´∇φpaqqpa1 ´ aq

ď φpaq `∇φpaqpa1 ´ aq `H|η ´ a||a1 ´ a|
ď φpaq `∇φpaqpa1 ´ aq `H|a1 ´ a|2

Choosing a1 “ a´ ∇φpaq
2H proves the lemma.

Lemma A.2 (1-d Case (Srebro et al., 2010)). Let φ : RÑ
R be an H-smooth non-negative function. Then for all
a, a1 P R:

`

φpaq ´ φpa1q
˘2
ď 6H

`

φpaq ` φpa1q
˘ `

a´ a1
˘2

Proof. As before, Dη P pa, a1q such that φpa1q ´ φpaq “
∇φpηqpa1 ´ aq. By assumption of φ, we have |∇φpηq ´
∇φpaq| ď H|η ´ a| ď H|a1 ´ a|. Thus we have:

|∇φpηq| ď |∇φpaq|`H|a´ a1| (9)

Consider two cases:

Case 1: If |a ´ a1| ď |∇φpaq|
5H , then by equation 9 we have

|∇φpηq| ď 6{5|∇φpaq|. Thus
`

φpaq ´ φpa1q
˘2
“ p∇φpηqq2

`

a´ a1
˘2

ď
36

25
p∇φpaqq2

`

a´ a1
˘2

ď
144

25
Hφpaq

`

a´ a1
˘2

by lemma A.1. Therefore, pφpaq ´ φpa1qq
2

ď

6Hφpaq pa´ a1q
2
ď 6H pφpaq ` φpa1qq pa´ a1q

2

Case 2: If |a ´ a1| ą |∇φpaq|
5H , then equation 9 gives

|∇φpηq| ď 6H|a´ a1|. Once again
`

φpaq ´ φpa1q
˘2
“
`

φpaq ´ φpa1q
˘

∇φpηq
`

a´ a1
˘

ď |
`

φpaq ´ φpa1q
˘

||∇φpηq||
`

a´ a1
˘

|
ď |

`

φpaq ´ φpa1q
˘

|
´

6H
`

a´ a1
˘2
¯

ď 6H
`

φpaq ` φpa1q
˘ `

a´ a1
˘2

Proof of Lemma 5.1. The extension to the multi-
dimensional case is straightforward. For any a, a1 P Rk,
consider the function φ : R Ñ R such that φptq “
ϕpp1 ´ tqa ` ta1q, then φ is a differentiable, non-negative
function and ∇tpφptqq “ x∇ϕpa ` tpa1 ´ aqq, a1 ´ ay.
Thus:

|φ1pt1q ´ φ1pt2q| “ |x∇ϕpa` t1pa1 ´ aqq´
∇ϕpa` t2pa1 ´ aqq, a1 ´ ay|

ď
›

›∇ϕpa` t1pa1 ´ aqq ´∇ϕpa` t2pa1 ´ aqq
›

›

˚

›

›a1 ´ a
›

›

ď H|t1 ´ t2|
›

›a´ a1
›

›

2

Therefore φ is an H }a´ a1}2-smooth function in R. Ap-
ply lemma A.2 to φ, we have:

pφp1q ´ φp0qq
2
ď 6H

›

›a´ a1
›

›

2
pφp1q ` φp0qq p1´ 0q2

which is the same as pϕpaq ´ ϕpa1qq2 ď 6Hpϕpaq `

ϕpa1qq }a´ a1}
2

A.2. Proof of lemma 5.2

Lemma Statement. (Lemma 5.2) Given any starting state
s0, sequentially execute πdet and πsto to obtain two sepa-
rate trajectories A “ tatu

T
t“1 and Ã “ tãtu

T
t“1 such that

at “ πdetpstq and ãt “ πstops̃tq, where st “ rxt, at´1s

and s̃t “ rxt, ãt´1s. Assuming the policies are stable as
per Condition 1, we have EÃrãts “ at @t “ 1, . . . , T ,
where the expectation is taken over all random roll-outs of
πsto.

Proof. Given a starting state s0, we prove by induction that
EÃrãts “ at.

It is easily seen that the claim is true for t “ 1.

Smooth Imitation Learning for Online Sequence Prediction

Now assuming that EÃrãt´1s “ at´1. We have

EÃrãts “ EÃrErãt|s̃tss
“ EÃrβπ̂ps̃tq ` p1´ βqπps̃tqs

“ βEÃrπ̂ps̃tqs ` p1´ βqEÃrπps̃tqs

Thus:
›

›EÃrãts ´ at
›

› “
›

›EÃrãts ´ βπ̂pstq ´ p1´ βqπpstq
›

›

“ }βEÃrπ̂ps̃tqs ` p1´ βqEÃrπps̃tqs

´ βπ̂pstq ´ p1´ βqπpstq}

ď β
›

›EÃrπ̂ps̃tqs ´ π̂pstq
›

›

` p1´ βq
›

›EÃrπps̃tqs ´ πpstq
›

›

ď β
›

›EÃrãt´1s ´ at´1

›

›

` p1´ βq
›

›EÃrãt´1s ´ at´1

›

›

“ 0

per inductive hypothesis. Therefore we conclude that
EÃrãts “ at @t “ 1, . . . , T

A.3. Proof of theorem 5.6 and corollary 5.7 - Main
policy improvement results

In this section, we provide the proof to theorem 5.6 and
corollary 5.7.

Theorem Statement. (theorem 5.6) Assume ` is convex and
L-Lipschitz-continuous, and Condition 2 holds. Let ε “
max
s„dπ

}π̂psq ´ πpsq}. Then for β P p0, 1q:

`π1pπ1q ´ `πpπq ď
βγεL

p1´ βqp1´ γq
` βp`πpπ̂q ´ `πpπqq.

Proof. First let’s review the notations: let T be the trajec-
tory horizon. For a policy π in the deterministic policy
class Π, given a starting state s0, we roll out the full tra-
jectory s0

π
ÝÑ s1

π
ÝÑ . . .

π
ÝÑ sT , where st “ rxt, πpst´1qs,

with xt encodes the featurized input at current time t, and
πpst´1q encodes the dependency on previous predictions.
Let `pπpsqq be the loss of taking action πpsq at state s, we
can define the trajectory loss of policy π from starting state
s0 as

`pπ|s0q “
1

T

T
ÿ

t“1

`pπpstqq

For a starting state distribution µ, we define policy loss
of π as the expected loss along trajectories induced by π:
`πpπq “ Es0„µr`pπ|s0qs. Policy loss `πpπq can be under-
stood as

`πpπq “

ż

s0„µ

E
xt„X

1

T

«

T
ÿ

t“1

`pπpstqq

ff

dµps0q

To prove policy improvement, we skip the subscript of al-
gorithm 1 to consider general policy update rule within

each iteration:

π1 “ πnew “ βπ̂ ` p1´ βqπ (10)

where π “ πold is the current policy (combined up until
the previous iteration), π̂ is the trained model from calling
the base regression routine TrainpS, pA|hq. Learning rate
(step-size) β may be adaptively chosen in each iteration.
Recall that this update rule reflects deterministic interpola-
tion of two policies.

We are interested in quantifying the policy improvement
when updating π to π1. Specifically, we want to bound

Γ “ `π1pπ1q ´ `πpπq

where `πpπq (respectively `π1pπ1q) denotes the trajectory
loss of π (respectively π1) on the state distribution induced
by π (resp. π1)

We will bound the loss difference of old and new policies
conditioned on a common starting state s0. Based on up-
date rule (10), consider rolling out π1 and π from the same
starting state s0 to obtain two separate sequences π1 ÞÝÑ
ts0 Ñ s11 . . . Ñ s1T u and π ÞÝÑ ts0 Ñ s1 . . . Ñ sT u
corresponding to the same stream of inputs x1, . . . , xT .

Γps0q “
1

T

T
ÿ

t“1

`pπ1ps1tqq ´ `pπpstqq

“
1

T

T
ÿ

t“1

`pπ1ps1tqq ´ `pπ
1pstqq ` `pπ

1pstqq ´ `pπpstqq

(11)

Assume convexity of ` (e.g. sum of square losses):

`pπ1pstqq “ `pβπ̂pstq ` p1´ βqπpstqq

ď β`pπ̂pstqq ` p1´ βq`pπpstqq

Thus we can begin to bound individual components of
Γps0q as

`pπ1ps1tqq ´ `pπpstqq ď `pπ1ps1tqqq ´ `pπ
1pstqq

` β r`pπ̂pstqq ´ `pπpstqqs

Since ` is L-Lipschitz continuous, we have

`pπ1ps1tqq ´ `pπ
1pstqq ď L

›

›π1ps1tq ´ π
1pstq

›

›

ď Lγ
›

›s1t ´ st
›

› (12)

where (12) is due to the smoothness condition [2] of policy
class Π. Given a policy class Π with γ ă 1, the following
claim can be proved by induction:
Claim: }s1t ´ st} ď

βε
p1´βqp1´γq

Proof. For the base case, given the same start-
ing state s0, we have s11 “ rx1, π

1ps0qs

and s1 “ rx1, πps0qs. Thus }s11 ´ s1} “

}π1ps0q ´ πps0q} “ }βπ̂ps0q ` p1´ βqπps0q ´ πps0q} “

β }π̂ps0q ´ πps0q} ď βε ď βε
p1´βqp1´γq .

In the inductive case, assume we have
›

›s1t´1 ´ st´1

›

› ď

Smooth Imitation Learning for Online Sequence Prediction

βε
p1´βqp1´γq . Then similar to before, the definition of s1t and
st leads to
›

›s1t ´ st
›

› “
›

›

“

xt, π
1ps1t´1q

‰

´ rxt, πpst´1qs
›

›

“
›

›π1ps1t´1q ´ πpst´1q
›

›

ď
›

›π1ps1t´1q ´ π
1pst´1q

›

›`
›

›π1pst´1q ´ πpst´1q
›

›

ď γ
›

›s1t´1 ´ st´1

›

›` β }π̂pst´1q ´ πpst´1q}

ď γ
βε

p1´ βqp1´ γq
` βε

ď
βε

p1´ βqp1´ γq

Applying the claim to equation (12), we have

`pπ1ps1tqq ´ `pπ
1pstqq ď

βγεL

p1´ βqp1´ γq

which leads to

`pπ1ps1tq ´ `pπpstqqq ď
βγεL

p1´ βqp1´ γq

` βp`pπ̂pstqq ´ `pπpstqqq (13)

Integrating (13) over the starting state s0 „ µ and input
trajectories txtuTt“1, we arrive at the policy improvement
bound:

`π1pπ1q ´ `πpπq ď
βγεL

p1´ βqp1´ γq
` βp`πpπ̂q ´ `πpπqq

where `πpπ̂q is the expected loss of the trained policy π̂ on
the state distribution induced by policy π (reduction term,
analogous to policy advantage in the traditional MDP ter-
minologies (Kakade & Langford, 2002))

This means in the worst case, as we choose β Ñ 0, we
have r`π1pπ1q ´ `πpπqs Ñ 0, meaning the new policy does
not degrade much for a small choice of β. However if
`πpπ̂q ´ `πpπq ! 0, we can choose β to enforce mono-
tonic improvement of the policy by adaptively choosing β
that minimizes the right-hand side. In particular, let the re-
duction term be ∆ “ `πpπq ´ `πpπ̂q ą 0 and let δ “ γεL

1´γ ,
then for β “ ∆´δ

2∆ we have the following monotonic policy
improvement:

`π1pπ1q ´ `πpπq ď ´
p∆´ δq2

2p∆` δq

A.4. Proof of theorem 5.5 - T -dependent improvement

Theorem Statement. (theorem 5.5) Assume ` is con-
vex and L-Lipschitz, and Condition 1 holds. Let ε “
max
s„dπ

}π̂psq ´ πpsq}. Then:

`π1pπ1q ´ `πpπq ď βεLT ` β p`πpπ̂q ´ `πpπqq .

In particular, choosing β P p0, 1{T q yields:

`π1pπ1q ´ `πpπq ď εL` β p`πpπ̂q ´ `πpπqq .

Proof. The proof of theorem 5.5 largely follows the struc-
tute of theorem 5.6, except that we are using the slighty
weaker Condition 1 which leads to weaker bound on the
policy improvement that depends on the trajectory horizon
T . For any state s0 taken from the starting state distribu-
tion µ, sequentially roll-out policies π1 and π to receive
two separate trajectories π1 : s0 Ñ s11 Ñ . . . Ñ s1T and
π1 : s0 Ñ s1 Ñ . . . Ñ sT . Consider a pair of states
s1t “ rxt, π

1ps1t´1qs and st “ rxt, πpst´1qs corresponding
to the same input feature xt, as before we can decompose
`pπ1ps1tqq´ `pπpstqq “ `pπ1ps1tqq´ `pπ

1pstqq` `pπ
1pstqq´

`pπpstqq ď L }π1ps1tq ´ π
1pstq} ` βp`pπ̂pstqq ´ `pπpstqqq

due to convexity and L-Lipschitz continuity of `.

Condition 1 further yields: `pπ1ps1tqq ´ `pπpstqq ď

L }s1t ´ st} ` βp`pπ̂pstqq ´ `pπpstqqq. By the construction
of the states, note that
›

›s1t ´ st
›

› “
›

›π1ps1t´1q ´ πpst´1q
›

›

ď
›

›π1ps1t´1q ´ π
1pst´1q

›

›`
›

›π1pst´1q ´ πpst´1q
›

›

ď
›

›s1t´1 ´ st´1

›

›` βp}π̂pst´1q ´ πpst´1q}q

ď
›

›s1t´1 ´ st´1

›

›` βε

(by condition 1 and definition of ε).

From here, one can use this recursive relation to easily
show that }s1t ´ st} ď βεt for all t P r1, T s.

Averaging over the T time steps and integrating over the
starting state distribution, we have:

`π1pπ1q ´ `πpπq ď βεLpT ` 1q{2` βp`πpπ̂q ´ `πpπqq

ď βεLT ` βp`πpπ̂q ´ `πpπqq

In particular, β P p0, 1{T q yields `π1pπ1q ´ `πpπq ď εL `
βp`πpπ̂q ´ `πpπqq.

A.5. Proof of proposition 5.8 - smooth expert
proposition

Proposition Statement. (Proposition 5.8) Let ω be the
average supervised training error from F , i.e. ω “

min
fPF

Ex„X r}fprx, 0sq ´ a
˚}s. Let the rolled-out trajectory

of current policy π be tatu. If the average gap between π
and π˚ is such that Et„Uniformr1:T s r}a

˚
t ´ at´1}s ě 3ω `

ηp1`λq, then using ta˚t u as feedback will cause the trained
policy π̂ to be non-smooth, i.e.:

Et„Uniformr1:T s r}ât ´ ât´1}s ě η,

for tâtu the rolled-out trajectory of π̂.

Proof. Recall that Πλ is formed by regularizing a class of
supervised learners F with the singleton class of smooth
function H fi thpaq “ au, via a hyper-parameter λ

Smooth Imitation Learning for Online Sequence Prediction

that controls the trade-off between being close to the two
classes.

Minimizing over Πλ can be seen as a regularized optimiza-
tion problem:

π̂px, aq “ argmin
πPΠ

`pπprx, asqq

“ argmin
fPF,hPH

pfpx, aq ´ a˚q2 ` λpfpx, aq ´ hpaqq2

“ argmin
fPF

pfpx, aq ´ a˚q2 ` λpfpx, aq ´ aq2

(14)

where hyper-parameter λ trades-off the distance of fpx, aq
relative to a (smoothness) and a˚ (imitation accuracy), and
a P R1.

Such a policy π, at execution time, corresponds to the reg-
ularized minimizer of:

at “ πprx, at´1sq

“ argmin
a

}a´ fprxt, at´1sq}
2
` λ }a´ at´1}

2

“
fprxt, at´1sq ` λat´1

1` λ
(15)

where f P F is the minimizer of equation 14

Thus we enforce smoothness of learning policy from Πλ

by encouraging low first order difference of consecu-
tive actions of the executed trajectory tatu. In prac-
tice, we may contrain this first order difference relative
to the human trajectory 1

T

řT
t“1 }at ´ at´1} ď η, where

η9 1
T

řT
t“1

›

›a˚t ´ a
˚
t´1

›

›.

Consider any given iteration with the following set-up: we
execute old policy π “ πold to get rolled-out trajectory
tatu

T
t“1. Form the new data set as D “ tpst, a˚t quTt“1 with

predictors st “ rxt, at´1s and feedback labels simply the
human actions a˚t . Use this data set to train a policy π̂ by
learning a supervised f̂ P F from D. Similar to π, the
execution of π̂ corresponds to ât where:

ât “ π̂prxt, ât´1sq

“ argmin
a

›

›

›
a´ f̂prxt, ât´1sq

›

›

›

2

` λ }a´ ât´1}
2

“
f̂prxt, ât´1sq ` λât´1

1` λ
(16)

Denote by f0 the ”naive” supervised learner from F . In

other words, f0 “ argmin
fPF

T
ř

t“1
}fprxt, 0sq ´ a

˚
t }

2. Let ω be

the average gap between human trajectory and the rolled-
out trajectory of f0, i.e.

ω “
1

T

T
ÿ

t“1

}f0prxt, 0sq ´ a
˚
t }

Note that it is reasonable to assume that the average errors

of f and f̂ are no worse than f0, since in the worst case we
can simply discard the extra features at´1 (resp. ât´1) of
f (resp. f̂) to recover the performance of the naive learner
f0:

1

T

T
ÿ

t“1

}fprxt, at´1sq ´ a
˚
t } ď ω

1

T

T
ÿ

t“1

›

›

›
f̂prxt, ât´1sq ´ a

˚
t

›

›

›
ď ω

Assume that the old policy π “ πold is ”bad” in the sense
that the rolled-out trajectory tatuTt“1 differs substantially
from human trajectory ta˚t u

T
t“1. Specifically, denote the

gap:

1

T

T
ÿ

t“1

}a˚t ´ at´1} “ Ω " ω

This means the feedback correction a˚t to st “ rxt, at´1s

is not smooth. We will show that the trained policy π̂ from
D will not be smooth.

From the definition of at and ât from equations 15 and 16,
we have for each t:

at´ât “
λ

1` λ
pat´1´ât´1q`

fprxt, at´1sq ´ f̂prxt, ât´1sq

1` λ

Applying triangle inequality and summing up over t, we
have:

1

T

T
ÿ

t“1

}at ´ ât} ď 2ω

From here we can provide a lower bound on the smooth-
ness of the new trajectory ât, as defined by the first order
difference 1

T

řT
t“1 }ât ´ ât´1}. By definition of ât:

}ât ´ ât´1} “

›

›

›

›

›

f̂prxt, ât´1sq ´ ât´1

1` λ

›

›

›

›

›

“

›

›

›

›

›

f̂prxt, ât´1sq ´ a
˚
t ` a

˚
t ´ at´1 ` at´1 ´ ât´1

1` λ

›

›

›

›

›

ě

}a˚t ´ at´1} ´

›

›

›
f̂prxt, ât´1sq ´ a

˚
t

›

›

›
´ }at´1 ´ ât´1}

1` λ

Again summing up over t and taking the average, we ob-
tain:

1

T

T
ÿ

t“1

}ât ´ ât´1} ě
Ω´ 3ω

1` λ

Hence for Ω " ω, meaning the old trajectory is suffi-
ciently far away from the ideal human trajectory, setting
the learning target to be the ideal human actions will cause
the learned trajectory to be non-smooth.

Smooth Imitation Learning for Online Sequence Prediction

B. Imitation Learning for Online Sequence
Prediction With Smooth Regression
Forests

B.1. Variant of SIMILE Using Smooth Regression
Forest Policy Class

We provide a specific instantiation of algorithm 1 that
we used for our experiment, based on a policy class Π
as a smooth regularized version of the space of tree-
based ensembles. In particular, F is the space of ran-
dom forests and H is the space of linear auto-regressors
H fi thpat´1:t´τ q “

řτ
i“1 ciat´iu. In combination, F

andH form a complex tree-based predictor that can predict
smooth sequential actions.

Empirically, decision tree-based ensembles are among
the best performing supervised machine learning method
(Caruana & Niculescu-Mizil, 2006; Criminisi et al., 2012).
Due to the piece-wise constant nature of decision tree-
based prediction, the results are inevitably non-smooth. We
propose a recurrent extension based on H, where the pre-
diction at the leaf node is not necessarily a constant, but
rather is a smooth function of both static leaf node predic-
tion and its previous predictions. By merging the power-
ful tree-based policy class with a linear auto-regressor, we
provide a novel approach to train complex models that can
accommodate smooth sequential prediction using model-
based smooth regularizer, at the same time leveraging the
expressiveness of complex model-free function class (one
can similarly apply the framework to the space of neural
networks). Algorithm 2, which is based on SIMILE, de-
scribes in more details our training procedure used for the
automated camera planning experiment. We first describe
the role of the linear autoregressor class H, before dis-
cussing how to incorporate H into decision tree training
to make smooth prediction (see the next section).

The autoregresor hπpa´1, . . . , a´τ q is typically selected
from a class of autoregressors H. In our experiments, we
use regularized linear autoregressors asH.

Consider a generic learning policy π with a rolled-out tra-
jectory A “ tatu

T
t“1 corresponding to the input sequence

X “ txtu
T
t“1. We form the state sequence S “ tstu

T
t“1 “

trxt, . . . , xt´τ , at´1, . . . , at´τ su
T
t“1, where τ indicates the

past horizon that is adequate to approximately capture the
full state information. We approximate the smoothness of
the trajectory A by a linear autoregressor

hπ ” hπpstq ”
τ
ÿ

i“1

ciat´i

for a (learned) set of coefficients tciuτi“1 such that at «
hπ pstq. Given feedback target pA “ tâtu, the joint loss

Algorithm 2 Imitation Learning for Online Sequence Pre-
diction with Smooth Regression Forest
Input: Input features X “ txtu

T
t“1, expert demonstration

A˚ “ ta˚t uTt“1, base routine Forest, past horizon τ ,
sequence of σ P p0, 1q

1: Initialize A0 Ð A˚,S0 Ð t
“

xt:t´τ , a
˚
t´1:t´τ

‰

u,

h0 “ argmin
c1,...,cτ

T
ř

t“1

`

a˚t ´
řτ
i“1 cia

˚
t´i

˘2

2: Initial policy π0 “ π̂0 ÐForestpS0,A0| h0q

3: for n “ 1, . . . , N do
4: An “ ta

n
t u Ð tπn´1p

“

xt:t´τ , a
n´1
t´1:t´τ

‰

qu

//sequential roll-out old policy
5: Sn Ð tsnt “

“

xt:t´τ , a
n
t´1:t´τ

‰

u //Form states
in 1d case

6: pAn “ tpant “ σant ` p1´ σqa
˚
t u @s

n
t P Sn

// collect smooth 1-step feedback

7: hn “ argmin
c1,...,cτ

T
ř

t“1

`

ânt ´
řτ
i“1 ciâ

n
t´i

˘2
//update ci

via regularized least square
8: π̂n ÐForestpSn, pAn| hnq // train with smooth

decision forests. See section B.2
9: β Ð errorpπq

errorpπ̂q`errorpπq //set β to weighted
empirical errors

10: πn “ βπ̂n ` p1´ βqπn´1 // update policy
11: end for
output Last policy πN

function thus becomes

`pa, âtq “ `dpa, âtq ` λ`Rpa, stq

“ pa´ âtq
2 ` λpa´

τ
ÿ

i“1

ciat´iq
2

Here λ trades off between smoothness versus absolute im-
itation accuracy. The autoregressor hπ acts as a smooth
linear regularizer, the parameters of which can be updated
at each iteration based on feedback target pA according to

hπ “ argmin
hPH

›

›

›

pA´ hppAq
›

›

›

2

“ argmin
c1,...,cτ

p

T
ÿ

t“1

pât ´
τ
ÿ

i“1

ciât´iq
2q, (17)

In practice we use a regularized version of equation (17)
to learn a new set of coefficients tciuτi“1. The Forest
procedure (Line 8 of algorithm 2) would use this updated
hπ to train a new policy that optimizes the trade-off be-
tween at « ât (feedback) versus smoothness as dictated
by at «

řτ
i“1 ciat´i.

B.1.1. SMOOTH REGULARIZATION WITH LINEAR
AUTOREGRESSORS

Our application of Algorithm 1 to realtime camera planning
proceeds as follows: At each iteration, we form a state se-

Smooth Imitation Learning for Online Sequence Prediction

quence S based on the rolled-out trajectory A and tracking
input data X such that st “ rxt, . . . , xt´τ , at´1, . . . , at´τ s
for appropriate τ that captures the history of the sequential
decisions. We generate feedback targets pA based on each
st P S following ât “ σat ` p1´ σqa˚t using a parameter
σ P p0, 1q depending on the Euclidean distance between A
and A˚. Typically, σ gradually decreases to 0 as the rolled-
out trajectory improves on the training set. After gener-
ating the targets, a new linear autoregressor hπ (new set
of coefficients tciuτi“1) is learned based on pA using regu-
larized least squares (as described in the previous section).
We then train a new model π̂ based on S, pA, and the up-
dated coefficients tciu, using Forest - our recurrent de-
cision tree framework that is capable of generating smooth
predictions using autoregressor hπ as a smooth regularizer
(see the following section for how to train smooth decision
trees). Note that typically this creates a ”chicken-and-egg”
problem. As the newly learned policy π̂ is greedily trained
with respect to pA, the rolled-out trajectory of π̂ may have a
state distribution that is different from what the previously
learned hπ would predict. Our approach offers two reme-
dies to this circular problem. First, by allowing feedback
signals to vary smoothly relative to the current rolled-out
trajectory A, the new policy π̂ should induce a new au-
toregresor that is similar to previously learned hπ . Second,
by interpolating distributions (Line 10 of Algorithm 2) and
having pA eventually converge to the original human trajec-
tory A˚, we will have a stable and converging state distri-
bution, leading to a stable and converging hπ .

Throughout iterations, the linear autoregressor hπ and reg-
ularization parameter λ enforces smoothness of the rolled-
out trajectory, while the recurrent decision tree framework
Forest learns increasingly accurate imitation policy. We
generally achieve a satisfactory policy after 5-10 iterations
in our sport broadcasting data sets. In the following sec-
tion, we describe the mechanics of our recurrent decision
tree training.

B.2. Smooth Regression Tree Training

Given states s as input, a decision tree specifies a parti-
tioning of the input state space. Let D “ tpsm, âmqu

M
m“1

denote a training set of state/target pairs. Conventional re-
gression tree learning aims to learn a partitioning such that
each leaf node, node, makes a constant prediction via min-
imizing the squared loss function:

ānode “ argmin
a

ÿ

ps,âqPDnode

`dpa, âq

“ argmin
a

ÿ

ps,âqPDnode

pâ´ aq2, (18)

whereDnode denotes the training data fromD that has par-
titioned into the leaf node. For squared loss, we have:

ānode “ mean tâ |ps, âq P Dnode u . (19)

In the recurrent extension to Forest, we allow the deci-
sion tree to branch on the input state s, which includes the
previous predictions a´1, . . . , a´τ . To enforce more ex-
plicit smoothness requirements, let hπpa´1, . . . , a´τ q de-
note an autoregressor that captures the temporal dynamics
of π over the distribution of input sequences dx, while ig-
noring the inputs x. At time step t, hπ predicts the behavior
at “ πpstq given only at´1, . . . , at´τ .

Our policy class Π of recurrent decision trees π makes
smoothed predictions by regularizing the predictions to be
close to its autoregressor hπ . The new loss function in-
corporates both the squared distance loss `d, as well as a
smooth regularization loss such that:

LDpaq “
ÿ

ps,âqPD

`dpa, âq ` λ`Rpa, sq

“
ÿ

ps,âqPD

pa´ âq2 ` λpy ´ hπpsqq
2

where λ is a hyper-parameter that controls how much we
care about smoothness versus absolute distance loss.

Making prediction: For any any tree/policy π, each leaf
node is associated with the terminal leaf node value ānode
such that prediction ã given input state s is:

ãpsq ” πpsq “ argmin
a

pa´ ānodepsqq
2 ` λpa´ hπpsqq

2,

(20)

“
ānodepsq ` λhπpsq

1` λ
. (21)

where nodepsq denotes the leaf node of the decision tree
that s branches to.

Setting terminal node value: Given a fixed hπ and deci-
sion tree structure, navigating through consecutive binary
queries eventually yields a terminal leaf node with associ-
ated training data Dnode Ă D.

One option is to set the terminal node value ānode to satisfy:

ānode “ argmin
a

ÿ

ps,âqPDnode

`dpãps|aq, âq

“ argmin
a

ÿ

ps,âqPDnode

pãps|aq ´ âq2 (22)

“ argmin
a

ÿ

ps,âqPDnode

ˆ

a` λhπpsq

1` λ
´ â

˙2

for ãps|aq defined as in (21) with a ” ānodepsq. Similar to
(19), we can write the closed-form solution of (22) as:

ānode “ mean tp1` λqâ´ λhπpsq |ps, âq P Dnode u . (23)

When λ “ 0, (23) reduces to (19).

Smooth Imitation Learning for Online Sequence Prediction

Note that (22) only looks at imitation loss `d, but not
smoothness loss `R. Alternatively in the case of joint imi-
tation and smoothness loss, the terminal leaf node is set to
minimize the joint loss function:

ānode “ argmin
a
LDnodepãps|aqq

“ argmin
a

ÿ

ps,âqPDnode

`dpãps|aq, âq ` λ`Rpãps|aq, sq

“ argmin
a

ÿ

ps,âqPDnode

pãps|aq ´ âq2 ` λpãps|aq ´ hπpsqq
2

(24)

“ argmin
a

ÿ

ps,âqPDnode

ˆ

a` λhπpsq

1` λ
´ â

˙2

` λ

ˆ

a` λhπpsq

1` λ
´ hπpsq

˙2

“ mean tâ |ps, âq P Dnode u , (25)

Node splitting mechanism: For a node representing a sub-
set Dnode of the training data, the node impurity is defined
as:

Inode “ LDnodepānodeq

“
ÿ

ps,âqPDnode

`dpānode, âq ` λ`Rpānode, sq

“
ÿ

ps,âqPDnode

pānode ´ âq
2 ` λpānode ´ hπpsqq

2

where ānode is set according to equation (23) or (25) over
ps, âq’s in Dnode. At each possible splitting point where
Dnode is partitioned into Dleft and Dright, the impu-
rity of the left and right child of the node is defined simi-
larly. As with normal decision trees, the best splitting point
is chosen as one that maximizes the impurity reduction:
Inode ´

|Dleft|
|Dnode|Ileft ´

|Dright|
|Dnode| Iright

