Supplementary Materials for
Smooth Imitation Learning for Online Sequence Prediction

A. Detailed Theoretical Analysis and Proofs
A.1. Proof of lemma 5.1

Lemma Statement. (Lemma 5.1) For a fixed x, define
w([z,a]) = ¢(a). If v is non-negative and H-smooth w.r.t.
a., then:

Va,a' : (p(a) — ga(a’))Q

The proof of Lemma 5.1 rests on 2 properties of H-smooth
functions (differentiable) in R!, as stated below

< 6H (p(a) + ¢(a

Lemma A.1 (Self-bounding property of Lipschitz-smooth
functions). Let ¢ : R — R be an H-smooth non-negative
function. Then for all a € R: |Vé(a)| < \/4Hp(a)

Proof. By mean value theorem, for any a, a’ wehave 3 7 €
(a,a’) (or (a’, a)) such that p(a’) = ¢(a) + V(n)(a’ —a).
Since ¢ is non-negative,

0 < ¢(d’) = ¢(a) + Vo(a)(a' - a)
+(Vo(n) — Vé(a))(d' —a)
< ¢(a) + Vé(a)(a' — a) + Hln — alla’ - al
< é(a) + Vp(a)(a' —a) + H|a' — al?
Choosing ' = a — V¢() proves the lemma. O

Lemma A.2 (1-d Case (Srebro et al., 2010)). Let ¢ : R —
R be an H-smooth non-negative function. Then for all
a,a’ € R:

(¢(a) — ¢(a"))

2

<6H (¢(a) + ¢(a')) (a—a')?

Proof. As before, In € (a,a’) such that ¢(a’) — ¢(a) =
Vo(n)(a’ — a). By assumption of ¢, we have |V¢(n) —
V¢(a)| < H|np — a| < H|a' — a|. Thus we have:

Vo) < [Vo(a)| + Hl|a - d| ©)

Consider two cases:

Case 1: If |a — d/| < AY Ha)l then by equation 9 we have

IVo(n)| < 6/5[Ve(a)]|. Thus

(¢(a) — d(a))’ = (Vom)? (a — ')’
36 N2
< 5 (V6(@) (a = d)

144 2

< gHgb(a) (af a')

OIS

by lemma A.l. Therefore, (¢(a) — ¢(a’))” <

6Ho(a) (a—a')* < 6H (¢(a) + d(a')) (a — o)’

Case 2: If |a — d/| > %, then equation 9 gives
IVo(n)| < 6H|a — a'|. Once again
2

(¢(a) — d(a)” = (¢(a) — ¢(a") Vo(n
[(¢(a a)
(a)

< [(¢(a) — ¢(d

) (o)
MNIVo@)(a—ad)]
)| <6H(afa)2)
6H (¢(a) + ¢(a’)) (a — a’)2

//\

N

O

Proof of Lemma 5.1. The extension to the multi-
dimensional case is straightforward. For any a,a’ € R,
consider the function ¢ : R — R such that ¢(t)
o((1 — t)a + ta’), then ¢ is a differentiable, non-negative
function and V:(¢(t)) = (Ve(a + t(a’ — a)),d’ — a).
Thus:
|6/ (t1) — ¢/ (t2)| = [{Vep(a + ti(a’ — a))—

Vo(a+ta(a —a)),d — a)l
< | Ve(a+ti(a’ —a)) = V(a+ta(a’ —a))|, [a - a

2

< H|t1 — tQ‘ Ha — a’”

Therefore ¢ is an H |a — a’||*-smooth function in R. Ap-
ply lemma A.2 to ¢, we have:

(6(1) = 6(0))* < 6H [}a —a'[(9(1) + ¢(0)) (1~ 0)?
which is the same as (p(a) — ¢(a’))? < 6H(p(a) +
p(a)) a—a'|? a

A.2. Proof of lemma 5.2

Lemma Statement. (Lemma 5.2) Given any starting state
So, Sequentially execute Tger and Ty, to obtain two sepa-
rate trajectories A = {a;}}_, and A = {d;}I_, such that
a; = Taetr(st) and a4y = weo(5t), where s = [x4, ar—1]
and 8y = [x4,d¢—1]. Assuming the policies are stable as
per Condition 1, we have Ejla;] = a¢ ¥Vt = 1,...,T,
where the expectation is taken over all random roll-outs of

Tsto-

Proof. Given a starting state sg, we prove by induction that
]E A [&t] = U¢.

It is easily seen that the claim is true for ¢ = 1.

Smooth Imitation Learning for Online Sequence Prediction

Now assuming that Ex[a;—1] = a;—1. We have

Ezla:] = Ez[E[at]s:]]
= Ez[B7(3:) + (1 = B)m(34)]
= BEz[7(5:)] + (1 — B)Ez[7(51)]
Thus:
|Exlae] — ai| = [Exla] — B7(se) — (1= B)m(se)|

< BBz [7 ()] - 7 (se)]
+ (1= B) [Ez[w(50)] — 7 (s0)]

5HE ag— 1]_at 1”
()H [Clt 1]_at 1||

=0

per inductive hypothesis. Therefore we conclude that
]EA[ELt]:CLt Vtzl,,T]

A.3. Proof of theorem 5.6 and corollary 5.7 - Main
policy improvement results

In this section, we provide the proof to theorem 5.6 and
corollary 5.7.

Theorem Statement. (theorem 5.6) Assume { is convex and
L-Lipschitz-continuous, and Condition 2 holds. Let ¢ =
max |7 (s) —m(s)|. Then for g€ (0,1):

s~dx

ByeL

< m + B(&T(ﬁ') — fﬂ-(ﬂ')).

Proof. First let’s review the notations: let 1" be the trajec-
tory horizon. For a policy 7 in the deterministic policy
class II, glven a startmg state S0, we roll out the full tra-
jectory so = 51 > ... > sp, where s; = [z, m(s¢_1)],
with x; encodes the featurized input at current time ¢, and
m(s¢—1) encodes the dependency on previous predictions.
Let ¢((s)) be the loss of taking action 7(s) at state s, we
can define the trajectory loss of policy 7 from starting state
Sp as

U(m]sg) = T Zé 7(s¢))

For a starting state dlstrlbutlon 1, we define policy loss
of 7 as the expected loss along trajectories induced by 7:
Ur(m) = Egy~p[l(m|s0)]. Policy loss £ (m) can be under-
stood as

&r(ﬂ'):f E !

Ti~X T
So~ M

T

Z é(W(St))] dp(s0)

t=1

To prove policy improvement, we skip the subscript of al-
gorithm 1 to consider general policy update rule within

each iteration:

/
T = Tpew

=07+ (1-p)r (10)
where m = w4 is the current policy (combined up until
the previous iteration), 7 is the trained model from calling
the base regression routine Train(S, A|h) Learning rate
(step-size) 0 may be adaptively chosen in each iteration.
Recall that this update rule reflects deterministic interpola-
tion of two policies.

We are interested in quantifying the policy improvement
when updating 7 to 7. Specifically, we want to bound
[=/{u(n') —£r(m)

where £ () (respectively £, (7)) denotes the trajectory
loss of 7 (respectively ') on the state distribution induced
by 7 (resp. 7')

We will bound the loss difference of old and new policies
conditioned on a common starting state so. Based on up-
date rule (10), consider rolling out 7’ and 7 from the same
starting state sg to obtain two separate sequences w’ ——
{so = s1... > sp}andm —> {s9 — s1... = s}
corresponding to the same stream of inputs z1, ..., x7.

o) = 2 3 ()~ tn(on)

t=1
Z m(s¢)) + €' (se)) — £(m(s1))

(1D
Assume convexity of £ (e.g. sum of square losses):
(' (s¢)) = L(BT(se) + (1 = B)m(se))
< Bl(#(se)) + (1 = B)e(m(st))
Thus we can begin to bound individual components of
T(sp) as
U(r'(s7)) = L(m(se)) < L' (7)) — €' (s4))
+ BT (s1)) = £(m(s0))]
Since ¢ is L-Lipschitz continuous, we have
U’ (1)) — €' (s0)) < L' (s5) — 7' (s¢) |
< Ly|s; — s¢| (12)
where (12) is due to the smoothness condition [2] of policy
class II. Given a policy class II with v < 1, the following

claim can be proved by induction:

Claim: |5} — s < 77

Proof. For the base case, given the same start-
ing state sg, we have s = [z1, 7 (s0)]
Thus |s] —s1] =

and s1 = [z1,7(s0)]-
|7 (s0) = m(s0)ll = [B7(s0) + gl — B)m(s0) — m(s0)|l =
B7(s0) — m(s0)| < Be < a—pa—:

In the inductive case, assume we have |sj_; — s¢_1|

| <

N

Smooth Imitation Learning for Online Sequence Prediction

676. Then similar to before, the definition of s} and
1-p(1-v) t
s; leads to

It = st = [z, 7' (st-0)] = [, m(se-0)]|
= |7’ (si—1) = m(se-1)|
< |7 (siy) = 7' (se—1)| + |7 (se=1) — m(s0—1)|
<

v]sia = s + Bl7(si-1) — m(se-1)

e
ST
B
(1=p5)1=7)
O
Applying the claim to equation (12), we have
")) — (' (s pyeL
which leads to
")) — 0(r(s pyeL
+ B(U(7(se)) — Um(se))) (13)

Integrating (13) over the starting state so ~ p and input
trajectories {x;}7_,, we arrive at the policy improvement
bound:

o (7'('/) ByeL

T=pa-7 + Blx () — Lx(T))

where £, (7) is the expected loss of the trained policy 7 on
the state distribution induced by policy 7 (reduction term,
analogous to policy advantage in the traditional MDP ter-
minologies (Kakade & Langford, 2002)) O]

—lp(m) <

This means in the worst case, as we choose 5 — 0, we
have [(/(7") — £ ()] — 0, meaning the new policy does
not degrade much for a small choice of 5. However if
l.(7) — £:(7) « 0, we can choose 8 to enforce mono-
tonic improvement of the policy by adaptively choosing 3
that minimizes the right-hand side. In particular, let the re-
duction termbe A = (7)) — £-(7) > O and let 6 = I’fy
then for 5 = %we have the following monotonic policy
1mprovement:

_ Kﬁ(ﬁ) < ,M

b () 2(A +0)

A.4. Proof of theorem 5.5 - T-dependent improvement

Theorem Statement. (theorem 5.5) Assume (is con-
vex and L-Lipschitz, and Condition 1 holds. Let ¢ =
max |7 (s) — w(s)|. Then:

Lo (7)) — U (7) < BeLT + B (Un(7) — Ur(7)) .

In particular, choosing 3 € (0,1/T) yields:
b (7)) — U (m) < €L + B (Un(7) — £ (7))

Proof. The proof of theorem 5.5 largely follows the struc-
tute of theorem 5.6, except that we are using the slighty
weaker Condition 1 which leads to weaker bound on the
policy improvement that depends on the trajectory horizon
T. For any state sg taken from the starting state distribu-
tion u, sequentially roll-out policies 7’ and 7 to receive
two separate trajectories 7’ : — s/ and
7w i 89 — 83 — ... — sp. Consider a pair of states
sy = [ze, 7' (s4_1)] and s; = [x4, 7(s¢—1)] corresponding
to the same input feature z;, as before we can decompose
U (5})) — U (s0)) = £((s3)) — (' (1)) + £ (1)) —
U(st)) < L'(s}) — 7' (s0)] + BE((s0)) — Um(s1))
due to convexity and L-Lipschitz continuity of /.

Condition 1 further yields: £(7'(s})) — €(m(s:)) <

L |s; — st| + B(€(7(st)) — €(m(st))). By the construction
of the states, note that

Sog — 8) — ...

st = st = |7 (s1-1) = 7(s0-1)]

“77/(5::—1) - W’(St—l)H + HTF/(St—l) - W(St—l)H
|st—1 = sia| + B A (se—1) — 7(s:-1)])
[st-1 = sea] + Be

(by condition 1 and definition of ¢).

N

NN

From here, one can use this recursive relation to easily
show that ||s}, — s;| < Bet forall t € [1,T].

Averaging over the T' time steps and integrating over the
starting state distribution, we have:
Uns (7") = Ln(m) < BeL(T + 1)/2 + B(Ln (7) — Lr(m))
< BeLT + Bl (7)) — br(m))
In particular, 8 € (0,1/T') yields ¢ (7') — £ (7) < €L +
B(lr(7) — lx(m)). J

A.5. Proof of proposition 5.8 - smooth expert
proposition

Proposition Statement. (Proposition 5.8) Let w be the
average supervised training error from F, ie. w =
3111}__1 Euwx [If([x,0]) — a*|]. Let the rolled-out trajectory
€

of current policy 7 be {a;}. If the average gap between 7
and 7 is such that By ypiformr1:1 [[af — ai—1]] = 3w +
N(L+N), then using {af} as feedback will cause the trained
policy 7 to be non-smooth, i.e.:

Et~Uniform[1:T] [Hdt - dt—lﬂ] =1,
for {as} the rolled-out trajectory of .

Proof. Recall that IT) is formed by regularizing a class of
supervised learners F with the singleton class of smooth
function H = {h(a) = a}, via a hyper-parameter \

Smooth Imitation Learning for Online Sequence Prediction

that controls the trade-off between being close to the two
classes.

Minimizing over I, can be seen as a regularized optimiza-
tion problem:

#(x,a) = argmin (7 ([x, a]))

mell
= argmin (f(z,a) — a*)* + A(f(2,a) — h(a))?
feF,heH
= argmin(f(z,a) — a*)® + A\(f(z,a) — a)?
feF
(14)

where hyper-parameter A trades-off the distance of f(z,a)
relative to a (smoothness) and a¢* (imitation accuracy), and
aeR.

Such a policy , at execution time, corresponds to the reg-
ularized minimizer of:
ar = 7([z, ar-1])

= argmin [a — f([zs,a:1])* + A — ar1 |
a
f(['rh a’t—l]) + /\at_l
- 15
1+) (15)
where f € F is the minimizer of equation 14

Thus we enforce smoothness of learning policy from IIy

by encouraging low first order difference of consecu-

tive actions of the executed trajectory {a;}. In prac-

tice, we may contrain this first order difference relative
. T

to the human trajectory 7 >,_, |a; — a;—1]| < 7, where

nocg Sz lof — o,

Consider any given iteration with the following set-up: we
execute old policy m = m,q to get rolled-out trajectory
{a;}T_,. Form the new data set as D = {(s;,a¥)}_; with
predictors s; = [z, a;—1] and feedback labels simply the
human actions a}. Use this data set to train a policy 7 by
learning a supervised f € F from D. Similar to 7, the
execution of 7 corresponds to G; where:

ay = ﬁ'([l‘t, dt—l])

~ 2
— argmin |a — f([z, 4)|+ Aa— aa)

- f([xt7 at—1]) + Aag—1
- 1+ (16)

Denote by fy the “naive” supervised learner from F. In
T
other words, fo = argmin) | f([x¢,0]) — af|*. Letw be
feF t=1

the average gap between human trajectory and the rolled-
out trajectory of fo, i.e.

|
=fgwhdmﬂh—@ﬂ

Note that it is reasonable to assume that the average errors

of f and f are no worse than fp, since in the worst case we
can simply discard the extra features a;—; (resp. a;—1) of
f (resp. f) to recover the performance of the naive learner
Jo:

T

Z xtaat 1

)—ai| <w

*
([2¢, ap—1] *atH<w

Assume that the old policy m = 7,4 is ”bad” in the sense
that the rolled-out trajectory {a;}7_, differs substantially
from human trajectory {a}}_,. Specifically, denote the

gap-:

—ZHat —a1| =2 >»w

t=1
This means the feedback correction af to s; = [x¢,as—1]
is not smooth. We will show that the trained policy 7 from
‘D will not be smooth.

From the definition of a; and a; from equations 15 and 16,
we have for each ¢:

A . f(@e, ai-1]) — f([we, ai-1])

ar=y = 75 (-1 =0+ 1+ A

Applying triangle inequality and summing up over ¢, we
have:

1 T
T lar — du]) < 2w
t=1

From here we can provide a lower bound on the smooth-
ness of the new trajectory a., as defined by the first order
difference £ Zthl |a: — a;—1|. By definition of a;:

f([xbétfl]) — Qg1

las — a1 = H

14+ A
fA([xtv ar—1]) —af +af —ap—1 + a1 — a1
1+ A
la = aall = | Fwesae]) = af| = a1 = g
1+ A

Again summing up over ¢ and taking the average, we ob-
tain:

*Z\Iat—at 1 = 1+)\

Hence for » w, meaning the old trajectory is suffi-
ciently far away from the ideal human trajectory, setting
the learning target to be the ideal human actions will cause
the learned trajectory to be non-smooth. O

Smooth Imitation Learning for Online Sequence Prediction

B. Imitation Learning for Online Sequence
Prediction With Smooth Regression
Forests

B.1. Variant of SIMILE Using Smooth Regression
Forest Policy Class

We provide a specific instantiation of algorithm 1 that
we used for our experiment, based on a policy class II
as a smooth regularized version of the space of tree-
based ensembles. In particular, F is the space of ran-
dom forests and H is the space of linear auto-regressors
H = {h(at—1.4—r) = X2_; ¢iaz—;}. In combination, F
and H form a complex tree-based predictor that can predict
smooth sequential actions.

Empirically, decision tree-based ensembles are among
the best performing supervised machine learning method
(Caruana & Niculescu-Mizil, 2006; Criminisi et al., 2012).
Due to the piece-wise constant nature of decision tree-
based prediction, the results are inevitably non-smooth. We
propose a recurrent extension based on 7/, where the pre-
diction at the leaf node is not necessarily a constant, but
rather is a smooth function of both static leaf node predic-
tion and its previous predictions. By merging the power-
ful tree-based policy class with a linear auto-regressor, we
provide a novel approach to train complex models that can
accommodate smooth sequential prediction using model-
based smooth regularizer, at the same time leveraging the
expressiveness of complex model-free function class (one
can similarly apply the framework to the space of neural
networks). Algorithm 2, which is based on SIMILE, de-
scribes in more details our training procedure used for the
automated camera planning experiment. We first describe
the role of the linear autoregressor class H, before dis-
cussing how to incorporate H into decision tree training
to make smooth prediction (see the next section).

The autoregresor h,(a_1,...,a_,) is typically selected
from a class of autoregressors . In our experiments, we
use regularized linear autoregressors as H.

Consider a generic learning policy 7 with a rolled-out tra-
jectory A = {a;}_; corresponding to the input sequence
X = {x;}Z_,. We form the state sequence S = {s;}7_, =
{[w¢y. . 24—ryas_1,...,as_+]}i_1, where 7 indicates the
past horizon that is adequate to approximately capture the
full state information. We approximate the smoothness of
the trajectory A by a linear autoregressor

he = he(s¢) = Z Cilli—;
=1

for a (learned) set of coefficients {c¢;}7_; such that a; ~
hr (s¢). Given feedback target A = {a.}, the joint loss

Algorithm 2 Imitation Learning for Online Sequence Pre-
diction with Smooth Regression Forest

Input: Input features X = {z;}7_,, expert demonstration
A* = {a}}]_,, base routine Forest, past horizon 7,
sequence of o € (0, 1)

1: Initialize Ag — A*,So «— {[z:t—r,af 1,4}

T
ho = argmin Y, (af — X7, cia;"fi)Q
Cly.-Cr t=1
2: Initial policy 7y = 7ty «Forest(So, Ao| ho)
3: forn=1,...,N do
4: An = {af} <~ {’/Tn—l([xt:t—~magb:llzt,T])}
/Isequential roll-out old policy
[Ze0—r,af 14|} /l[Form states
R in 1d case
6: A, ={a} =oca} +(1—o0)af} Vsp €8S,
/I collect smooth 1-step feedback
T
7. hy = argmin Y (a? — Y7, ¢ar)’

Cl,..,Cr t=1

50 S, «— {s¥

/lupdate c;

via regularized least square
8: ftp «<Forest(Sy,A,| hy) [/ train with smooth
decision forests. See section B.2

9 f < ﬁl@orw Ilset 3 to weighted
empirical errors
10: m, = Bin + (1= B)mp_1 /Il update policy

11: end for
output Last policy 7y

function thus becomes
U a,ar) = Lg(a,ar) + Mr(a, st)

-
= (a—a;)® + Na — 2 ciar_;)?
i=1

Here A trades off between smoothness versus absolute im-
itation accuracy. The autoregressor h, acts as a smooth
linear regularizer, the parameters of which can be updated

at each iteration based on feedback target A according to
~ ~ 2

hy = argmin HA — h(A) H

heH
T T
= argmin() (a; — 2 citie—i)%), (17)
ClyeesCr p—1q i=1

In practice we use a regularized version of equation (17)
to learn a new set of coefficients {¢;}7_,. The Forest
procedure (Line 8 of algorithm 2) would use this updated
h. to train a new policy that optimizes the trade-off be-
tween a; ~ a; (feedback) versus smoothness as dictated
by a; ~ D1, ciap—;.

B.1.1. SMOOTH REGULARIZATION WITH LINEAR
AUTOREGRESSORS

Our application of Algorithm 1 to realtime camera planning
proceeds as follows: At each iteration, we form a state se-

Smooth Imitation Learning for Online Sequence Prediction

quence S based on the rolled-out trajectory A and tracking
input data X such that s; = [z, ..., %47, Q4—1, ..., Q1]
for appropriate 7 that captures the history of the sequential
decisions. We generate feedback targets A based on each
st € S following a; = oa; + (1 — o)af using a parameter
o € (0, 1) depending on the Euclidean distance between A
and A*. Typically, o gradually decreases to 0 as the rolled-
out trajectory improves on the training set. After gener-
ating the targets, a new linear autoregressor h, (new set
of coefficients {c;}7_;) is learned based on A using regu-
larized least squares (as described in the previous section).
We then train a new model 7 based on S, A, and the up-
dated coefficients {c;}, using Forest - our recurrent de-
cision tree framework that is capable of generating smooth
predictions using autoregressor i, as a smooth regularizer
(see the following section for how to train smooth decision
trees). Note that typically this creates a ”chicken-and-egg”
problem. As the newly learned policy 7 is greedily trained
with respect to A, the rolled-out trajectory of 7 may have a
state distribution that is different from what the previously
learned A, would predict. Our approach offers two reme-
dies to this circular problem. First, by allowing feedback
signals to vary smoothly relative to the current rolled-out
trajectory A, the new policy 7 should induce a new au-
toregresor that is similar to previously learned h,. Second,
by interpolating distributions (Line 10 of Algorithm 2) and
having A eventually converge to the original human trajec-
tory A*, we will have a stable and converging state distri-
bution, leading to a stable and converging h..

Throughout iterations, the linear autoregressor h, and reg-
ularization parameter A enforces smoothness of the rolled-
out trajectory, while the recurrent decision tree framework
Forest learns increasingly accurate imitation policy. We
generally achieve a satisfactory policy after 5-10 iterations
in our sport broadcasting data sets. In the following sec-
tion, we describe the mechanics of our recurrent decision
tree training.

B.2. Smooth Regression Tree Training

Given states s as input, a decision tree specifies a parti-
tioning of the input state space. Let D = {(s,,, am)}M_;
denote a training set of state/target pairs. Conventional re-
gression tree learning aims to learn a partitioning such that
each leaf node, node, makes a constant prediction via min-
imizing the squared loss function:

Gnoge = argmin Z Ly(a,a)
% (5,8)€Dnoge
—argmin Y| (a—a), (18)

a N
(Saa)eDnode

where D, 4. denotes the training data from D that has par-
titioned into the leaf node. For squared loss, we have:

Gnode = mean {a|(s,a) € Dpoge } - (19)

In the recurrent extension to Forest, we allow the deci-
sion tree to branch on the input state s, which includes the
previous predictions a_1,...,a_-. To enforce more ex-
plicit smoothness requirements, let h,(a_1,...,a_;) de-
note an autoregressor that captures the temporal dynamics
of 7 over the distribution of input sequences dy, while ig-
noring the inputs x. At time step ¢, h, predicts the behavior

a; = w(s¢) givenonly a;_1,...,a—r.

Our policy class II of recurrent decision trees m makes
smoothed predictions by regularizing the predictions to be
close to its autoregressor h,. The new loss function in-
corporates both the squared distance loss ¢4, as well as a
smooth regularization loss such that:

Lp(a) = Z ly(a,a) + Mg(a,s)

(s,a)eD
= D) (=) + My — ha(s))®
(s,a)eD
where A is a hyper-parameter that controls how much we
care about smoothness versus absolute distance loss.

Making prediction: For any any tree/policy 7, each leaf
node is associated with the terminal leaf node value a,oq4e
such that prediction a given input state s is:

a(s) = 7(s) = argmin (a — &node(s))Q + AMa — h,r(s))z7
(20)
_ a'node(s) +)\hﬂ'(s)) Q1)

14+ A
where node(s) denotes the leaf node of the decision tree
that s branches to.

Setting terminal node value: Given a fixed h, and deci-
sion tree structure, navigating through consecutive binary
queries eventually yields a terminal leaf node with associ-
ated training data D, 4. < D.

One option is to set the terminal node value @,,,4. to satisfy:

Onode = argmin 2 Lq(a(s|a),a)

a N
(8,8)€Dnoae

argmin Z

a N
(S:a)EDnode

2
= argmin Z (W — d)

a ~
(Sva)EDnode

(@(s|a) — a)? (22)

for a(s|a) defined as in (21) with @ = @p,o40(5). Similar to
(19), we can write the closed-form solution of (22) as:

Gnoge = mean {(1 + N)a — A (8) [(8,a) € Dpoge }- (23)
When A = 0, (23) reduces to (19).

Smooth Imitation Learning for Online Sequence Prediction

Note that (22) only looks at imitation loss ¢4, but not
smoothness loss £i. Alternatively in the case of joint imi-
tation and smoothness loss, the terminal leaf node is set to
minimize the joint loss function:

Unoge = argmin ‘CDnode (a’(sla’))
= argmin 2 Ly(a(s|a),a) + Mr(a(s|a), s)
* (5,:8)€Dneae

—argmin Y (a(sla) — a)® + Aa(s|a) — ha(s))?

a N
(Sya)eDnode

(24)
, 0+ M (s))
= argmin Z (—a
@ (5,8)€Dnoue LA
a+ Mg (s) 2
+ A <1+)\ - hﬂ'(s)>
=mean {a|(s,a) € Dpoge } (25)

Node splitting mechanism: For a node representing a sub-
set D, qe Of the training data, the node impurity is defined
as:

Inode = ‘CD,\COe (anode)
= Z éd(a}nodea d) + >\€R(afnodea 3)

(57&)€Dnode

= Z (dnode - d)Z + A(anode - hw(s)>2
(8,a)EDroge
where @,q4¢ 1 set according to equation (23) or (25) over
(s,a)’s in Dyoq.. At each possible splitting point where
Dy oge is partitioned into Dic¢e and Dyjgne, the impu-
rity of the left and right child of the node is defined simi-
larly. As with normal decision trees, the best splitting point
is chosen as one that maximizes the impurity reduction:

| Dics Dl 7
Inode ‘Dnode‘jleft [Droac] Irlght

