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A. Simulation
This proof is adapted from Dassios and Zhao (2013) to our setting. We first note that the intensity λt increases by Yj at
jump time Tj . That is, the right limit λT+

j
is equal to the left limit λT−j plus Yj . Thus, after the j-th jump, the intensity λt

would follow

λt =
(
λT+

j
− a
)
e−δ(t−Tj) + a, Tj ≤ t < Tj + Sj+1,

where Tj and λT+
j

are observed at the j-th jump. Here Sj+1 is the inter-arrival time for the (j + 1)-th jump:

Sj+1 = Tj+1 − Tj .

Given the intensity function, we can derive the cumulative density function for Sj+1 as

FSj+1
(s) = 1− exp

(
−
(
λT+

j
− a
) 1− e−δs

δ
− as

)
.

Note that we can decompose Sj+1 into two simpler and independent random variables S(1)
j+1 and S(2)

j+1:

P(Sj+1 > s) = exp
(
−
(
λT+

j
− a
) 1− e−δs

δ

)
× e−as

= P
(
S
(1)
j+1 > s

)
× P

(
S
(2)
j+1 > s

)
= P

(
min

(
S
(1)
j+1, S

(2)
j+1

)
> s
)
.

We have define

F
S

(1)
j+1

(s) = P
(
S
(1)
j+1 ≤ s

)
= 1− exp

(
−
(
λT+

j
− a
) 1− e−δs

δ

)
,

F
S

(2)
j+1

(s) = P
(
S
(2)
j+1 ≤ s

)
= 1− e−as.

for 0 ≤ s <∞. Note that S(1)
j+1 is a defective random variable (Dassios and Zhao, 2013).

Now, to simulate Sj+1, we simply need to independently simulate both S(1)
j+1 and S(2)

j+1. Simulating S(2)
j+1 is trivial since

S
(2)
j+1 follows an exponential distribution with rate parameter a. To simulate S(1)

j+1, we use the inverse CDF approach:

S∗j+1 = −1

δ
ln

(
1 +

δ ln(v)

λT+
j
− a

)
if exp

(
−
λT+

j
− a

δ

)
≤ v < 1,
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we discard S∗j+1 otherwise, that is, v < exp
(
−

λ
T

+
j
−a

δ

)
(this corresponds to the defective part), where v is simulated

from a standard uniform distribution V ∼ U(0, 1).

The following Algorithm 1 simulates the Geometric Brownian Motion and the exponential Langevin dynamics, both are
crucial elements for Stochastic Hawkes:

Algorithm 1 Simulation of Stochastic Processes for each Yi

1. Given Yi−1 and {Ti−1, Ti}
2. If Y ∼ Geometric Brownian Motion, then

(a) Sample Yi through

u ∼ N(0, σ2(Ti−Ti−1)), Yi = Yi−1 exp (µ(Ti−Ti−1) + u)

If Y ∼ Exponential Langevin, then
(a) Sample Yi using

u ∼ N
(

0,
σ2

2k

(
1− e−2k(Ti−Ti−1)

))
, Yi = exp

(
log Yi−1e

−k(Ti−Ti−1) + µ(1− e−k(Ti−Ti−1)) + u
)

B. Likelihood function
The likelihood derivation can be decomposed into these basic parts:

• For the occurrence of the first event T1, note that the distribution of T1: P (T1 ≤ t) = 1− P (T1 > t) = 1− P (Nt −
N0 = 0) = 1 − exp(−

∫ t
0
λv dv). Since T1 is the time of the first event, this event must be an immigrant, thus

Z10 = 1. We get

fT1(t) =
(
a+ (λ0 − a)e−δt

)
exp

(
−
∫ t

0

a+ (λ0 − a)e−δv dv

)
.

• For the occurrence of the second event T2, we get by similar calculations P (T2 ≤ t |T1) = 1 − P (T2 > t |T1) =

1 − P (Nt − NT1
= 0) = 1 − exp(−

∫ t
T1
λv dv). Depending on whether this event is an immigrant or an offspring

(from the first event), we can write

fT2
(t) =

[(
a+ (λ0 − a)e−δt

)
exp

(
−
∫ t

T1

a+ (λ0 − a)e−δv dv

)
exp

(
−
∫ t

T1

Y1e
−δ(v−T1) dv

)]Z20

·

[
Y1 exp(−δ(t− T1)) exp

(
−
∫ t

T1

Y1e
−δ(v−T1) dv

)
exp

(
−
∫ t

T1

a+ (λ0 − a)e−δv dv

)]Z21

.

Notice that λ factorizes and following from equation and we get

fT2
(t) = (a+ (λ0 − a)e−δt)Z20(Y1 exp(−δ(t− T1)))Z21 exp

(
−
∫ t

T1

λv dv

)
.

Iterating in similar fashion, we arrive at the likelihood function for Stochastic Hawkes.
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C. Itô’s Processes — Stochastic Differential Equations
We give a brief review on the Itô’s process and subsequently Itô’s formula which we used to derive the solutions to the
Geometric Brownian Motion and exponential Langevin to facilitate simulation and inference algorithms.

Bt := B(t) represents the 1-d Brownian motion, or otherwise known as Wiener process. It has the following properties:

• The mapping t 7→ Bt is continuous with B0 := 0.

• Fix T < ∞. Meshing [0, T ] as 0 < T0 < T1 < ... < TN = T , the increments BTi − BTi−1
are independent for

i = 1, 2, ..., N .

• For all s < t, the increment Bt −Bs has a normal distribution with mean 0 and variance t− s.

The stochastic process Y ≡ {Yt}t≥0 that solves

Yt = Y0 +

∫ t

0

µ(s, Ys) ds+

∫ t

0

κ(s, Ys) dBs (1)

is known as the Itô process. The functionals µ and κ are the drift and volatility function, respectively. The stochastic
differential equation equivalent of the Itô’s process is

dYt = µ(t, Yt) dt+ κ(t, Yt) dBt . (2)

The Itô’s formula is an essential tool used to find the differential of a time-dependent function of a stochastic process.
Intuitively, the Ito formula corresponds to a chain rule in the stochastic process. To explain this, we first explain the case
of the ordinary differential equation

d

dt
Yt = µ(t, Yt). (3)

Let q be a function of Yt, by Leibnitz chain rule, we get

d

dt
q(t, Yt) = µ(t, Yt)

∂

∂Y
q(t, Yt), t ≥ 0.

Defining the linear operator Ť = µ∂Y , we get dq(t, Yt) = Ť q(t, Yt) dt where Ť q(t, Yt) = µ(t, Yt) ∂Y q(t, Yt). We have
the following Itô’s Formula, see also Kloeden and Platen (1999):

Theorem 1 Let Yt satisfies the stochastic differential equation

Yt = Y0 +

∫ t

0

µ(s, Ys) ds+

∫ t

0

κ(s, Ys) dBs . (4)

Let q(t, Yt) ∈ C2
∞[(0, T )× R]. Then q satisfies the stochastic differential equation

dq(t, Yt) = Ťt,xq(t, Yt) dt+ Ťx,xq(t, Yt) dBt . (5)

where Ťt,x and Ťx,x are defined by

Ťt,x = ∂t + µ∂Y +
1

2
κ2∂2Y ,

Ťx,x = κ∂Y .

Invoking Itô’s formula to the SDEs satisfied by Geometric Brownian Motion and exponential Langevin yields explicit
formula for Y as presented in Section 3.
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D. The Acceptance Probabilities for Metropolis Hastings Algorithms
The following table complements the remaining Acceptance Probabilities that we mentioned in the main text.

Table 1. Acceptance Probabilities for Metropolis Hastings Algorithms.
VARIABLE ACCEPTANCE PROBABILITY

λ0 A
(
λ′0
)
=
∏N(T )
i=1

(a+(λ′0−a)e
−δTi

a+(λ0−a)e−δTi

)Zi0(λ′0
λ0

)αY0−1
exp

(
−
(
λ′0 − λ0

)(
1
δ

(
1− e−δT

)
+ βλ0

))
δ A

(
δ′
)
=
∏N(T )
i=1

(a+(λ0−a) e−δ
′Ti

a+(λ0−a) e−δTi

)Zi0( δ′
δ

)αδ−1
exp

{
−
(
δ′ − δ

)[∑N(T )
i=1

∑
j<i Zij(Ti −

Tj)
]
− (λ0 − a)

[
1
δ′

(
1− e−δ

′T
)
− 1

δ

(
1− e−δT

)]
−
∑N(T )
i=1 Yi

[
1
δ′

(
1− e−δ

′(T−Ti)
)
− 1

δ

(
1−

e−δ(T−Ti)
)]

−
(
δ′ − δ

)
βδ
}

Yi - EXPONENTIAL LANGEVIN A(Y ′i ) = exp
[
− 1

δ
(Y ′i − Yi)(1 − e−δ(T−Ti)) − k

σ2φ−i φ
+
i

{(
log
( Y ′i
Yi−1φi

)
− µξiφ

−
i

)2 −(
log
(

Yi
Yi−1φi

)
− µξiφ

−
i

)2} − k

σ2φ−i φ
+
i

{(
log
( Yi+1

Y ′i φi+1

)
− µξi+1φ

−
i+1

)2 − ( log ( Yi+1

Yiφi+1

)
−

µξi+1φ
−
i+1

)2}] · (Y ′i
Yi

)∑NT
r=i+1 Zri−1
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