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Abstract
Ordered testing procedures are multiple testing
procedures that exploit a pre-specified ordering
of the null hypotheses, from most to least promis-
ing. We analyze and compare the power of sev-
eral recent proposals using the asymptotic frame-
work of Li & Barber (2015). While accumulation
tests including ForwardStop can be quite power-
ful when the ordering is very informative, they
are asymptotically powerless when the ordering
is weaker. By contrast, Selective SeqStep, pro-
posed by Barber & Candès (2015), is much less
sensitive to the quality of the ordering. We com-
pare the power of these procedures in different
régimes, concluding that Selective SeqStep dom-
inates accumulation tests if either the ordering is
weak or non-null hypotheses are sparse or weak.
Motivated by our asymptotic analysis, we derive
an improved version of Selective SeqStep which
we call Adaptive SeqStep, analogous to Storey’s
improvement on the Benjamini-Hochberg proce-
dure. We compare these methods using the GEO-
Query data set analyzed by (Li & Barber, 2015)
and find Adaptive SeqStep has favorable perfor-
mance for both good and bad prior orderings.

1. Introduction
Since the invention of the Benjamini–Hochberg (BH) pro-
cedure (Benjamini & Hochberg, 1995), control of the false
discovery rate (FDR) has gained widespread adoption as
a reasonable measure of error in multiple hypothesis test-
ing problems. In a typical setup, we observe a sequence
of p-values p1, . . . , pn corresponding to null hypotheses
H1, . . . ,Hn, then apply some procedure to reject a subset
of them. If we makeR total rejections (also called “discov-
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eries”) of which V are true nulls (false discoveries), then
the false discovery proportion (FDP) and false discovery
rate (FDR) are defined respectively as

FDP =
V

R ∨ 1
, FDR = E FDP.

Let S = {i : Hi is rejected} and H0 = {i : Hi is true},
so that R = |S| and V = |S ∩ H0|.

We can classify testing problems into three types: batch
testing, ordered testing and online testing. In batch test-
ing, the ordering of hypotheses is irrelevant. The BH pro-
cedure and its many variants (e.g., Benjamini & Hochberg,
1997; Benjamini et al., 2006; Storey, 2002; Genovese et al.,
2006) have been shown effective in this setting both in fi-
nite samples and asymptotically (Genovese & Wasserman,
2002; Storey, 2002; Storey et al., 2004; Ferreira & Zwin-
derman, 2006).

By contrast, in ordered testing, the ordering of hypothe-
ses encodes prior information, typically telling us which
hypotheses are most “promising” (i.e., most likely to be
discoveries). For example, in genomic association studies,
biologists could have prior knowledge about which genes
are more likely to be associated with a disease of interest,
and use this knowledge to concentrate statistical power on
the more promising genes. Because prior information of
this type is quite prevalent in scientific research, procedures
that exploit it are attractive. Alternatively, the ordering may
arise from the mathematical structure of the problem. For
example, the co-integration test (Engle & Granger, 1987),
which is widely used in macro-economics, involves testing
Hj : rank(A) ≤ j where A is a coefficient matrix. Be-
cause the hypotheses are nested, it makes no sense to accept
Hj and reject Hj+1. Other examples include sequential
goodness-of-fit testing for the LASSO and other forward
selection procedures such as Lockhart et al. (2014); Kozbur
(2015); Fithian et al. (2015), which testHk :M∗ ⊂Mk−1
where M∗ is the true model and Mk−1 is the model se-
lected in (k − 1)-th step. Section 2 reviews methods for
ordered testing include ForwardStop (G’Sell et al., 2015),
Accumulation Tests (Li & Barber, 2015), SeqStep and Se-
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lective SeqStep (Barber & Candès, 2015).

Finally, in online testing, the ordering of hypotheses does
not necessarily encode prior knowledge; rather, it imposes
a constraint on the selection procedure, requiring that we
decide to accept or reject Hi before seeing data for later
hypotheses. Online procedures include α-investing (Foster
& Stine, 2008), generalized α-investing (Aharoni & Ros-
set, 2014), LOND and LORD (Javanmard & Montanari,
2015). We will not address the online setting here.

In Section 2 we summarize existing ordered testing pro-
cedures and propose a new procedure, Adaptive SeqStep
(AS), generalizing Selective SeqStep (SS). Our motivation
is analogous to Storey (2002)’s improvement on the BH
procedure. In Section 3, we introduce the varying coeffi-
cient two-groups (VCT) model and derive an explicit for-
mula for asymptotic power of AS and SS under this model,
comparing it to analogous results obtained by Li & Bar-
ber (2015) under similar asymptotic assumptions. Sec-
tion 4 presents a detailed comparison of the asymptotic
power of AS, SS, and accumulation tests (AT) under var-
ious regimes. In Section 5, we discuss selection of parame-
ters and evaluate the finite-sample performance by simula-
tion. In Section 6, we re-analyze the dosage response data
from Li & Barber (2015), illustrating the predictions of our
theory in real data. Section 7 concludes.

2. Ordered Testing and Adaptive SeqStep
Let π0 denote the fraction of null p-values. Unless other-
wise stated, we assume that null p-values are independent
of the non-null p-values, and are drawn i.i.d. from the uni-
form distribution U [0, 1].

We now summarize several batch testing and ordered test-
ing procedures and relate them to each other. For all of the
procedures discussed below, the set of discoveries is of the
form S(s, k) = {i ≤ k : pi ≤ s}: all p-values below
some threshold s, which arrive before some stopping index
k. Similarly R(s, k), V (s, k), and FDP(s, k) denote the
resulting values of V,R, and FDP if we select S(s, k).

Moreover, each method operates by defining some esti-
mator of FDP(s, k), then maximizing the number of re-
jections R(s, k) = |S(s, k)| subject to a constraint that
F̂DP(s, k) ≤ q, the target FDR control level. For exam-
ple, the BH procedure rejects all Hi with pi ≤ ŝBH =
max{s : s ≤ qR(s, n)/n}, and may be formulated as

max
s∈[0,1]

R(s, n) s.t. F̂DPBH(s) ≤ q; (1)

F̂DPBH(s) =
ns∑n

i=1 I(pi ≤ s) ∨ 1
=

1
π0
EV (s, n)

R(s, n) ∨ 1
.

Benjamini & Hochberg (1995) show that FDRBH ≤ π0q.
The procedure is very conservative when π0 is small be-

cause F̂DPBH(s) overestimates the true FDP. If π0 were
known, we could reduce F̂DPBH(s) by a factor π0, ob-
taining a more liberal threshold s (and therefore more re-
jections) while still controlling the FDR at level q.

In most problems, π0 is unknown. Storey et al. (2004) pro-
pose an estimator based on counting the number of p-values
above some fixed threshold λ ∈ (0, 1):

π̂0(λ) =
1 +

∑n
i=1 I(pi > λ)

n(1− λ)
=

1 +A(λ, n)

n(1− λ)
,

whereA(λ, k) = k−R(λ, k) =
∑k
i=1 I(pi > λ) counts p-

values exceeding the threshold. The logic is that, for high
enough λ, the count A(λ, n) will exclude most non-null
p-values (commonly λ = 0.5). The Storey-BH (SBH) pro-
cedure then modifies (1), solving instead

max
s∈[0,λ]

R(s, n) s.t. F̂DPSBH(s;λ) ≤ q;

F̂DPSBH(s;λ) = π̂0(λ) F̂DPBH(s)

=
s

1− λ
· 1 +A(λ, n)

R(s, n) ∨ 1
,

Storey et al. (2004) show that

FDRSBH ≤ (1− λ|H0|)q,

which can be much closer to q than π0q.

In ordered testing procedures, the choice variable is not the
threshold s but rather the stopping index k. For example,
Selective SeqStep (SS) (Barber & Candès, 2015) rejects all
hypotheses Hi with pi ≤ s and i ≤ k̂SS where

k̂SS = max
k≤n

{
k :

1 +
∑k
i=1 I(pi > s)∑k

i=1 I(pi ≤ s) ∨ 1
≤ 1− s

s
q

}
,

for a given s ∈ (0, 1). This can be reformulated as

max
k∈{0,...,n}

R(s, k) s.t. F̂DPSS(k; s) ≤ q;

F̂DPSS(k; s) =
s

1− s
· 1 +A(s, k)

R(s, k) ∨ 1
.

The close resemblance between F̂DPSS(k; s) and
F̂DPSBH(s;λ) suggests writing F̂DPSS as

F̂DPSS(k; s) = π̂0(s, k) F̂DPBH(s, k),

where the second argument k indicates evaluation on only
the first k p-values.

If the threshold s is low, then A(s, k) may include many
non-null p-values, leading to an upwardly-biased estimate
of φ0. This observation motivates introducing an additional
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parameter to improve the procedure, analogous to the im-
provement of SBH over BH. Defining

F̂DPAS(k; s, λ) =
s

1− λ
· 1 +A(λ, k)

R(s, k) ∨ 1
,

we arrive at our proposal, which we call Adaptive SeqStep
(AS): for some 0 ≤ s ≤ λ ≤ 1, reject all hypotheses with
pi ≤ s and i ≤ k̂AS , where

k̂AS = max{k : F̂DPAS(k; s, λ) ≤ q}. (2)

If λ > s (say, s = 0.1 and λ = 0.5), then π̂0(λ; k) may be
much less upwardly biased than π̂0(s; k), leading to a more
powerful procedure. We investigate this power comparison
in Sections 3–4.

The following theorem shows that AS achieves exact FDR
control in finite samples.

Theorem 1. Let H0 ⊂ {1, . . . , n} denote the set of nulls,
and assume that {pi : i ∈ H0} are independent of
{pi : i /∈ H0}, and i.i.d. with distribution function F0

that stochatically dominates U [0, 1]. For k̂AS defined as in
(2),

FDR(k̂AS ; s, λ) = E

(∑
i∈H0,i≤k̂AS

I(pi ≤ s)∑
i≤k̂AS

I(pi ≤ s) ∨ 1

)
≤ q.

The proof of Theorem 1 is given in Appendix A.

Another class of ordered testing procedures are accumu-
lation tests (AT) (Li & Barber, 2015), which include For-
wardStop (G’Sell et al., 2015) and SeqStep (Barber &
Candès, 2015) as special cases. Accumulation tests esti-
mate FDP via

F̂DPAT (k) =
1

k

k∑
i=1

h(pi),

for some function h ≥ 0 with
∫ 1

0
h(x)dx = 1, and rejects

all hypotheses Hi with i ≤ k̂ where

k̂ = max
{
k : F̂DPAT (k) ≤ q

}
.

ForwardStop corresponds to the case where h(x) =
− log(1 − x) and SeqStep corresponds to the case where
h(x) = CI(x > 1− 1/C) for some C > 0.

In terms of our framework, accumulation tests solve

max
k∈{0,...,n}

R(1, k) s.t. F̂DPAT (k) ≤ q.

The main difference between AT and AS is that the former
rejects all hypotheses before k̂, while the latter rejects only
those smaller than threshold s. This means that AT will

have full power if k̂ → n, while the power of AS or SS
is at most the average probability that a non-null p-value is
less than s. On the other hand, unless nearly all of the early
hypotheses are non-null, AT is likely to stop very early, as
we will explore in Section 4.

3. Asymptotic Power Calculation
3.1. Varying Coefficient Two-group (VCT) Model

We now derive the asymptotic power of AS and SS under
the following simple model:

Definition 1 (Varying Coefficient Two-groups (VCT)
Model). An VCT(F0, F1;π(·)) model is a sequence of in-
dependent p-values pi ∈ [0, 1] such that

pi ∼ (1− π (i/n))F0 + π (i/n)F1

for some distinct distributions F0 and F1 and a non-
negative function π(t) : [0, 1] → [0, 1]. F0 and F1 are the
null and non-null distributions and π(t) is the local non-
null probability for k = nt.

For simplicity, we will take F0 to be uniform. Following
Genovese et al. (2006), we also assume that F1 is strictly
concave, so the density f1 of non-null p-values is strictly
decreasing; in other words, smaller p-values imply stronger
evidence against the null.

The cumulative non-null probability Π(t) is

Π(t) =
1

t

∫ t

0

π(s)ds.

The quantity Π(t) is essential to our results. It can be re-
garded as the average proportion of non-null hypotheses in
the first nt-hypotheses since

#{i ≤ nt : i 6∈ H0}
nt

≈ 1

t

∫ t

0

π(s)ds = Π(t).

Our setting is very similar to that of Li & Barber (2015) ex-
cept that they impose conditions on Π(t) directly. Proposi-
tion 1 in Appendix B reveals the relation between the VCT
model and the assumptions of Li & Barber (2015).

3.2. Asymptotic Power for AS and SS

Because the SS method is a special case of the AS method
with λ = s, it is sufficient to analyze the general case of
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AS. Assuming a VCT model, for large n, we have

F̂DPAS(bntc) =
s

1− λ
· 1 +A(λ, bntc)

R(s, bntc)

≈ s

1− λ
· (1−Π(t))(1− λ) + Π(t)(1− F1(λ))

(1−Π(t))s+ Π(t)F1(s)

=
1 + Π(t)

(
1−F1(λ)

1−λ − 1
)

1 + Π(t)
(
F1(s)
s − 1

) , FDP∗AS(t).

Because F1 is strictly concave, we have 1−F1(λ)
1−λ < 1 <

F1(s)
s , and FDP∗AS(t) is a strictly decreasing function of

Π(t). Thus, in the limit, F̂DPAS(k) is determined by the
fraction of non-nulls Π(t), with more non-nulls leading to a
lower estimate of FDP. Setting FDP∗AS(t) = q and solving
for Π(t), we obtain the critical non-null fraction

χAS(s, λ, q, F1) =
1− q

1− 1−F1(λ)
1−λ + q

(
F1(s)
s − 1

) . (3)

t

0 0.2 k̂ n       t* 0.4

0
q

χ
1

FDP*(t)
FDP(nt)
Π(t)

Figure 1. Illustration of the asymptotic behavior of AS. The bro-
ken curves show population limits for the simulation of Section 4,
with parameters set to λ = 0.5, s = q = γ = 0.2, µ = 2, b = 5.
At t∗AS , Π(t) = χAS , leading to FDP∗

AS(t) = q. The red curve
shows a realization of F̂DPAS(nt) with n = 3000.

If Π(k/n) > χAS then, with high probability, we will
have F̂DPAS(k) ≤ q, implying k̂AS ≥ k. The proportion
k̂AS/n of scanned hypotheses is approximately

t∗AS = max{t : Π(t) ≥ χAS}, (4)

and the realized power is approximately

PowAS =
#{i ≤ k̂ : i 6∈ H0, pi ≤ s}

#{i ≤ n : i 6∈ H0}

=
k̂

n
· #{i ≤ k̂ : i 6∈ H0, pi ≤ s}/k̂

#{i ≤ n : i 6∈ H0}/n

≈ F1(s) · t
∗
ASΠ(t∗AS)

Π(1)
. (5)

Theorem 2 confirms our heuristic approximations.

Theorem 2. Consider a VCT model with

• Π(t) is strictly decreasing and Lipschitz on [0, 1] with
Π(1) > 0;

• F0 is the uniform distribution on [0, 1] and f1 = F ′1 is
strictly decreasing on [0, 1].

Then k̂AS/n
a.s.→ t∗AS and

PowAS
a.s.→ F1(s) · t

∗
ASΠ(t∗AS)

Π(1)
= F1(s) ·

∫ t∗AS

0
π(u)du∫ 1

0
π(u)du

,

with t∗AS defined as in (4).

Interpreting (4–5), we see that if Π(1) > χAS then
t∗AS = 1 and k̂AS = n with high probability: all pi < s
are rejected and power is roughly F1(s). Conversely, if
χAS > supt∈[0,1] Π(t) then k̂AS = op(n) and the method
is asymptotically powerless. Figure 1 illustrates an inter-
mediate case with 0 < t∗AS < 1.

From Theorem 2 we see there are two ways to increase
the asymptotic power: either increase s (which we can do
directly), or increase t∗AS . To increase t∗AS we must de-
crease χAS(s, λ, q, F1), which itself is increasing in s and
decreasing in λ.

Increasing λ always increases the asymptotic power. Be-
cause SS is a special case of AS, this implies that SS can
always be improved by increasing λ above s, yielding a
less biased estimator of the null fraction. Note, however,
that taking λ→ 1 is not practical in finite samples: we still
need large enough A(λ, k) for the estimator to be stable.

Increasing s has an ambiguous effect on the asymptotic
power. A smaller s leads to a smaller χAS , and there-
fore a larger stopping index k̂AS ; however, it also applies
a more stringent rejection threshold for hypotheses with
i ≤ k̂AS . By contrast, larger s is more liberal for i ≤ k̂AS
but tends to give smaller k̂AS . If s is too large, χ could
even exceed Π(0), leading to a total loss of power. Small
s avoids this catastrophe: if lims→0 F1(s)/s = ∞ then
lims→0 χAS = 0. This implies that we can always have
nonzero power if we take s small enough, but the power
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can never exceed F1(s) even if k̂AS ≈ n. Intuitively, then,
using a large s is more aggressive, gambling that Π is large
enough to overcome the larger value of χAS .

3.3. Asymptotic Power for AT

For AT, Li & Barber (2015) prove that

PowAT
a.s.→ t∗ATΠ(t∗AT )

Π(1)
(6)

where t∗AT = max{t : Π(t) ≥ χAT }, where

χAT (h, q, F1) =
1− q
1− ν

, (7)

and ν = Ep∼F1h(p). They also show that SeqStep, which
uses h(x) = CI(x > 1 − 1/C) : C ∈ (0, 1), is most
powerful among all accumulation tests with h bounded by
C. Reparameterizing with λ = 1 − 1/C, we can write
h(x) = 1

1−λI(x > λ). Then, ν = 1−F1(λ)
1−λ and

χAT =
1− q

1− 1−F1(λ)
1−λ

. (8)

Comparing (8) with (3) and recalling that F1(s) > s by
concavity, we see that χAS < χAT . Therefore, t∗AS ≥ t∗AT ,
implying that AT will tend to stop earlier than AS. Even so,
AT could be more powerful due to the extra factor F1(s) in
(5) which is absent from (6). If f1(x) = F ′1(x), we have

ν =

∫ 1

0
h(p)f1(p)dp∫ 1

0
h(p)dp

≥ inf
x∈[0,1]

f1(x),

where the last term equals f1(1) if F1 is strictly concave.
Thus, for any choice of h (bounded or otherwise), we have
χAT ≥ 1−q

1−f1(1) .

4. Power Comparisons
In this section we analyze the results of Section 3 to extract
further information about when each of AS, SS, and AT
performs better or worse, and how and when the choice
of s affects the performance of AS. There are three salient
features of the VCT model to consider:

Signal density Π(1) =
∫ 1

0
π(t)dt gives the expected total

number of nulls. Note Π(1) = 1− π0.

Signal strength If the non-null p-values tend to be very
small, we say the signals are strong.

Quality of the ordering If the prior information is very
good then Π(t) is steep, with Π(0) = 1 in the limit
of very good information; if the prior ordering is com-
pletely useless then Π(t) = Π(1) for all t.

First, note that if signals are very strong, then most of the
non-null p-values are close to 1. In that case,

1− F1(λ)

1− λ
≈ 0 ⇒ χAS ≈

1− q

1 + q
(
F1(s)
s − 1

) ,
even for relatively small values of λ, possibly including
λ = s. As a result, λ plays a very small role in determining
χAS and AS will behave similarly to SS. By contrast, if the
signals are weaker, the difference is greater.

Second, if the ordering is very good, with Π(0) ≈ 1 and
Π(t) correspondingly very steep, then we can afford to
use a larger s for the AS procedure without worrying that
χAS > Π(0) (though we still cannot allow χAS to exceed
1). By contrast, if the ordering is poor and Π(t) is very
flat, then a small change in s could move χAS from be-
low Π(1) (for which k̂AS ≈ n) to above Π(0) (for which
k̂AS = op(n)), and so we are forced to be very cautious.

Finally, examining (7), we see that AT is highly aggres-
sive compared to AS. Suppose q = 0.1. Then, regardless
of the choice of h, AT is powerless unless at least 90%
of the early hypotheses are non-null, requiring that either
the signals are very dense or the ordering is very informa-
tive. In addition, the signals must be quite strong: even if
Π(0) = 1, AT is asymptotically powerless unless

ν = Ep∼F1
h(p) < q � 1 = Ep∼F0

h(p).

4.1. Numerical Results

We now illustrate the above comparisons with a numerical
example. We consider the VCT model where F0 is uniform
and F1 is the distribution of one-tailed p-values from a nor-
mal test. That is, p = Φ̄(z) = 1−Φ(z) where z ∼ N(µ, 1)
and Φ is the standard normal CDF. Thus,

F1(x) = Φ̄(Φ̄−1(x)− µ),

with µ determining the signal strength.

For the local non-null density, we take

π(t) = γe−bt · b

1− e−b
, γ ∈ (0, 1), b > 0.

The factor b/(1 − e−b) is a normalization constant guar-
anteeing Π(1) =

∫ 1

0
π(t)dt = γ. Thus, γ determines the

signal density, while b determines the quality of the prior
ordering, with a larger b corresponding to a better ordering
and b→ 0 corresponding to a useless ordering. b is implic-
itly upper-bounded by the constraint π(0) = γ · b

1−e−b ≤ 1;
let bmax denote the maximal value.

Figure 2 shows the asymptotic power for four methods, all
using q = 0.1: AS with s = q and λ = 0.5, AS with
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Figure 2. Asymptotic Power of AS (with s = q and s = 0.1q),
SS (with s = q) and AT (with ν = 0) under four regimes:
(sparse/weak) γ = 0.01, µ = 1; (sparse/strong) γ = 0.01, µ =
2; (dense/weak) γ = 0.2, µ = 1; (dense/strong) γ = 0.2, µ = 2.
The x-axis measures b and a larger b corresponds to a more infor-
mative ordering.

s = 0.1q and λ = 0.5, SS with s = q, and AT. AT is
not implemented with a specific h, but rather with ν = 0,
giving the best possible power that any h could achieve.
Four regimes are shown corresponding to two levels each
of µ and γ: µ = 1 (weak signals) vs. µ = 2 (strong sig-
nals), and γ = 0.01 (sparse signals) vs. γ = 0.2 (dense
signals). In each regime, we plot the asymptotic power of
each method for b ∈ (0, bmax].

Unsurprisingly, all of the methods perform better with
stronger, denser signals and better prior orderings, but their
sensitivities to these parameters are quite different. Com-
paring the two AS methods, we see that smaller (less ag-
gressive) s makes the method less sensitive to the ordering
quality: its power is usually positive, but it is outperformed
by AS(s = q) when the ordering is excellent. AT is even
more aggressive than the other two, and is asymptotically
powerless unless the ordering is excellent.

SS is dominated by AS(s = q) in all cases, as predicted,
but the improvement is less dramatic when the signals are
strong; in that case 1−F1(λ)

1−λ ≈ 0.05 and 1−F1(s)
1−s ≈ 0.26

are both small compared to 1 + q
(
F1(s)
s − 1

)
≈ 1.66.

5. Selection of Parameters
5.1. Selecting λ

As explained in Section 3.2, a large λ reduces χAS and im-
proves asymptotic power. However, in finite samples, the
procedure will be unstable if λ is too close to 1. One natural
suggestion is to set λ = 0.5, analogous to Storey’s sugges-
tion for the Storey-BH procedure (Storey et al., 2004).

5.2. Selecting s

As discussed in Section 3.2, s has an ambiguous effect on
the asymptotic power. The oracle choice s∗, which max-
imizes asymptotic power, is unknown in practice and de-
pends on knowing parameters like Π(t) and F1(x). Al-
though we could plug in estimators of the parameters b and
µ, or simply choose the value of s giving us the largest
power on our data, the validity of such procedures would
not be guaranteed by our results here.

In our view s > q is intuitively unappealing because it
would mean using a more liberal rejection cutoff than un-
adjusted marginal testing. We suggest s = q as a heuris-
tic, moderately aggressive default. This will give non-zero
power as long as

F1(q)

1− q
>

1−Π(0)

Π(0)
. (9)

(9) can be easily derived from (3) and (4), provided λ is
close to 1 such that 1−F1(λ)

1−λ ≈ 0, and is not too stringent.
For example, if q = 0.1, F1(0.1) ≥ 0.5, then (9) holds
provided Π(0) > 0.64. That is, if the non-nulls have rea-
sonably strong signal and most of the early p-values are
non-null, then s = q is small enough. If we do not find
these values of F1(0.1) and Π(0) plausible, we can repeat
this reasoning for smaller values of s until we arrive at as-
sumptions we do find plausible.

5.3. Finite Sample Performance

Now we evaluate the finite sample performances of the
above two heuristics for λ and s. Figure 3 displays the
distribution of realized power for AS using λ = 0.5 vs.
λ = 0.95, and s = q vs. s = s∗. We set q = 0.1, γ =
0.2, µ = 2, b = 3.65, in which case Π(0) = 0.75,Π(1) =
0.2. Each panel shows power for n = 100, 500, 1000, and
10, 000. For each setting we simulate 500 realizations of
the fraction of all non-nulls that the method discovers. It is
clear that large λ is less stable especially when n is small.

We see from Figure 3 that the performance of λ = 0.5 is
more stable than that of λ = 0.95. On the other hand, the
choice s = q has a comparable power to the oracle ap-
proach. This justifies the simple choice s = q as a moder-
ately aggressive default choice for fairly strong signals and
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Figure 3. Finite-sample power using s ∈ {s∗, q} and λ ∈
{0.5, 0.95}. Red dashed line corresponds to the asymptotic
power.

a good prior ordering; note however that if the signals were
much weaker or the ordering much worse, s = q could be
powerless.

6. Data Example: Dosage Response Data
Li & Barber (2015) analyzed the performance of several
ordered testing methods using the GEOquery data of Davis
& Meltzer (2007). In this section we reproduce and extend
their analysis, adding the SS and AS methods as competi-
tors. Where possible we have re-used the R code provided
by Li & Barber (2015) at their website.

The GEOquery data consist of gene expression measure-
ments at 4 different dosage levels of an estrogen treatment
for breast cancer, plus control (no dose). At each of the 5
dosage levels, the gene expression of n = 22, 283 genes is
measured in 5 trials. The problem is to test whether each
gene is differentially expressed in the lowest dosage versus
the control condition, while using data from other dosage
levels to obtain a prior ordering on the genes.

For each gene, Li & Barber (2015) carry out a t-test com-
paring expression under the highest dose versus the expres-
sion under the lowest dose and control, pooled together.
Let T̃i denote the t-statistic and p̃i the p-value for gene i
using the high-dose data. Next, they compute one-sided
permutation p-values pi comparing lowest dose to control,
using the sign of T̃i to determine which side. Finally, they
order the p-values p1, . . . , pn according to the ordering of
p̃1, . . . , p̃n and apply an ordered testing procedure. For a
more detailed explanation of the experiment, see Li & Bar-
ber (2015).

The top panel of Figure 4 reproduces Figure 6 of Li & Bar-
ber (2015) (with different axis limits), but including the SS

and AS procedures analyzed here as competing methods.
Both the HingeExp and AS methods perform quite well
compared to the other methods, with SS coming in third
place. In light of the foregoing theory, we can conclude that
the high-dose data are doing an excellent job discriminat-
ing between null and non-null hypotheses — for example,
the HingeExp method rejects the first 600 hypotheses at the
q = 0.1 level, essentially implying that at least 540 of the
first 600 genes in the ordering are truly non-null. The BH
and Storey-BH methods, which are performed without any
regard to the (highly informative) ordering, are unable to
make any rejections.

For the lower panel of Figure 4, we repeat the same anal-
ysis, but with one change: instead of comparing with the
highest dose to obtain T̃i, we instead compare with the
second-lowest dose. This has the affect of attenuating the
signal strength of T̃i, and thereby deteriorating the quality
of the prior ordering. With a weaker ordering, all of the
AT methods suffer major losses in power, so that the AS
method is the clear winner, with SS in second place. As
before, the BH and Storey methods have no power. This
panel confirms the message of our theoretical analysis that
AS and SS are more robust to weaker orderings.
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Figure 4. Power of AS, SS, and several AT methods on the dosage
response data analyzed by Li & Barber (2015).
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7. Conclusions and Future Directions
We have proposed Adaptive SeqStep (AS), which extends
Selective SeqStep (SS) and improves on it in a manner
analogous to Storey’s improvement on the BH procedure.
We have shown it controls FDR exactly in finite sam-
ples and analyzed its asymptotic power in detail, using the
varying coefficient two-groups (VCT) model as a bench-
mark for comparing ordered testing procedures. For VCT
models, we show that AS dominates SS asymptotically
and outperforms AT except possibly in regimes with very
good hypothesis ordering and very strong signals. Note
that perfect ordering of hypotheses is implicit in the math-
ematical structure of many problems such as sequential
goodness-of-fit testing; as a result AT could still be a suit-
able choice for these. Although we have proposed the
heuristic s = q for selecting s, it would be interesting to
investigate whether there is a good way to estimate a good
s from the data.

A natural extension of AS is to allow s and λ to be different
across the hypotheses. Intuitively, for those which have a
higher chance to be non-null, we could use a more liberal
threshold. Once the conditions for exact FDR control are
established, we can derive the “optimal” s-sequence and λ-
sequence under the asymptotic framework. We leave this
as future work.

Another interesting direction is to compare AS and AT with
BH-type methods. Genovese & Wasserman (2002) has ob-
tained the explicit formula for the power of BH procedure
and it is not hard to obtain it in our more framework. The
comparison should reveal more similarities and differences
between these two genres.

Finally, AS is a natural fit for the “multiple knockoffs” ex-
tension of the knockoffs procedure suggested at the end
of Barber & Candès (2015). Because the original knock-
off procedure only produces 1-bit p-values, AS and SS are
essentially equivalent, with s = λ = 0.5 the most nat-
ural settings of those parameters. However, a multiple-
knockoff procedure could yield p-values lying in { i

k+1 :
i = 1, 2, . . . , k + 1} by using k knockoffs for each predic-
tor variable. It would be interesting to see whether using
the AS instead of SS procedure would give a meaningful
improvement.
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