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Abstract

Existing methods for retrieving k-nearest neigh-
bours suffer from the curse of dimensionality.
We argue this is caused in part by inherent de-
ficiencies of space partitioning, which is the un-
derlying strategy used by most existing methods.
We devise a new strategy that avoids partitioning
the vector space and present a novel randomized
algorithm that runs in time linear in dimensional-
ity of the space and sub-linear in the intrinsic di-
mensionality and the size of the dataset and takes
space constant in dimensionality of the space and
linear in the size of the dataset. The proposed
algorithm allows fine-grained control over accu-
racy and speed on a per-query basis, automati-
cally adapts to variations in data density, supports
dynamic updates to the dataset and is easy-to-
implement. We show appealing theoretical prop-
erties and demonstrate empirically that the pro-
posed algorithm outperforms locality-sensitivity
hashing (LSH) in terms of approximation quality,
speed and space efficiency.

1. Introduction

The k-nearest neighbour method is commonly used both as
a classifier and as subroutines in more complex algorithms
in a wide range domains, including machine learning, com-
puter vision, graphics and robotics. Consequently, finding
a fast algorithm for retrieving nearest neighbours has been
a subject of sustained interest among the artificial intelli-
gence and the theoretical computer science communities
alike. Work over the past several decades has produced
a rich collection of algorithms; however, they suffer from
one key shortcoming: as the ambient or intrinsic dimen-
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sionality1 increases, the running time and/or space com-
plexity grows rapidly; this phenomenon is often known as
the curse of dimensionality. Finding a solution to this prob-
lem has proven to be elusive and has been conjectured to be
fundamentally impossible (Minsky & Seymour, 1969). In
this era of rapid growth in both the volume and dimension-
ality of data, it has become increasingly important to devise
a fast algorithm that scales to high dimensional space.

We argue that the difficulty in overcoming the curse of di-
mensionality stems in part from inherent deficiencies in
space partitioning, the strategy that underlies most exist-
ing algorithms. Space partitioning is a divide-and-conquer
strategy that partitions the vector space into a finite number
of cells and keeps track of the data points that each cell con-
tains. At query time, exhaustive search is performed over
all data points that lie in cells containing the query point.
This strategy forms the basis of most existing algorithms,
including k-d trees (Bentley, 1975) and locality-sensitive
hashing (LSH) (Indyk & Motwani, 1998).

While this strategy seems natural and sensible, it suffers
from critical deficiencies as the dimensionality increases.
Because the volume of any region in the vector space grows
exponentially in the dimensionality, either the number or
the size of cells must increase exponentially in the number
of dimensions, which tends to lead to exponential time or
space complexity in the dimensionality. In addition, space
partitioning limits the algorithm’s “field of view” to the cell
containing the query point; points that lie in adjacent cells
have no hope of being retrieved. Consequently, if a query
point falls near cell boundaries, the algorithm will fail to
retrieve nearby points that lie in adjacent cells. Since the
number of such cells is exponential in the dimensionality,
it is intractable to search these cells when dimensionality
is high. One popular approach used by LSH and spill trees
(Liu et al., 2004) to mitigate this effect is to partition the
space using overlapping cells and search over all points that
lie in any of the cells that contain the query point. Because

1We use ambient dimensionality to refer to the original dimen-
sionality of the space containing the data in order to differentiate
it from intrinsic dimensionality, which measures density of the
dataset and will be defined precisely later.
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the ratio of surface area to volume grows in dimension-
ality, the number of overlapping cells that must be used
increases in dimensionality; as a result, the running time
or space usage becomes prohibitively expensive as dimen-
sionality increases. Further complications arise from vari-
ations in data density across different regions of the space.
If the partitioning is too fine, most cells in sparse regions
of the space will be empty and so for a query point that
lies in a sparse region, no points will be retrieved. If the
partitioning is too coarse, each cell in dense regions of the
space will contain many points and so for a query point
that lies in a dense region, many points that are not the true
nearest neighbours must be searched. This phenomenon
is notably exhibited by LSH, whose performance is highly
sensitive to the choice of the hash function, which essen-
tially defines an implicit partitioning. A good partitioning
scheme must therefore depend on the data; however, such
data-dependent partitioning schemes would require possi-
bly expensive preprocessing and prohibit online updates to
the dataset. These fundamental limitations of space parti-
tioning beg an interesting question: is it possible to devise
a strategy that does not partition the space, yet still enables
fast retrieval of nearest neighbours?

In this paper, we present a new strategy for retrieving
k-nearest neighbours that avoids discretizing the vector
space, which we call dynamic continuous indexing (DCI).
Instead of partitioning the space into discrete cells, we con-
struct continuous indices, each of which imposes an order-
ing on data points such that closeness in position serves as
an approximate indicator of proximity in the vector space.
The resulting algorithm runs in time linear in ambient di-
mensionality and sub-linear in intrinsic dimensionality and
the size of the dataset, while only requiring space con-
stant in ambient dimensionality and linear in the size of
the dataset. Unlike existing methods, the algorithm allows
fine-grained control over accuracy and speed at query time
and adapts to varying data density on-the-fly while permit-
ting dynamic updates to the dataset. Furthermore, the algo-
rithm is easy-to-implement and does not rely on any com-
plex or specialized data structure.

2. Related Work

Extensive work over the past several decades has produced
a rich collection of algorithms for fast retrieval of k-nearest
neighbours. Space partitioning forms the basis of the ma-
jority of these algorithms. Early approaches store points
in deterministic tree-based data structures, such as k-d
trees (Bentley, 1975), R-trees (Guttman, 1984) and X-trees
(Berchtold et al., 1996; 1998), which effectively partition
the vector space into a hierarchy of half-spaces, hyper-
rectangles or Voronoi polygons. These methods achieve
query times that are logarithmic in the number of data

points and work very well for low-dimensional data. Un-
fortunately, their query times grow exponentially in ambi-
ent dimensionality because the number of leaves in the tree
that need to be searched increases exponentially in ambi-
ent dimensionality; as a result, for high-dimensional data,
these algorithms become slower than exhaustive search.
More recent methods like spill trees (Liu et al., 2004),
RP trees (Dasgupta & Freund, 2008) and virtual spill
trees (Dasgupta & Sinha, 2015) extend these approaches
by randomizing the dividing hyperplane at each node. Un-
fortunately, the number of points in the leaves increases
exponentially in the intrinsic dimensionality of the dataset.

In an effort to tame the curse of dimensionality, re-
searchers have considered relaxing the problem to allow ✏-
approximate solutions, which can contain any point whose
distance to the query point differs from that of the true
nearest neighbours by at most a factor of (1 + ✏). Tree-
based methods (Arya et al., 1998) have been proposed for
this setting; unfortunately, the running time still exhibits
exponential dependence on dimensionality. Another pop-
ular method is locality-sensitive hashing (LSH) (Indyk &
Motwani, 1998; Datar et al., 2004), which relies on a hash
function that implicitly defines a partitioning of the space.
Unfortunately, LSH struggles on datasets with varying den-
sity, as cells in sparse regions of the space tend to be empty
and cells in dense regions tend to contain a large number
of points. As a result, it fails to return any point on some
queries and requires a long time on some others. This moti-
vated the development of data-dependent hashing schemes
based on k-means (Paulevé et al., 2010) and spectral parti-
tioning (Weiss et al., 2009). Unfortunately, these methods
do not support dynamic updates to the dataset or provide
correctness guarantees. Furthermore, they incur a signifi-
cant pre-processing cost, which can be expensive on large
datasets. Other data-dependent algorithms outside the LSH
framework have also been proposed, such as (Fukunaga
& Narendra, 1975; Brin, 1995; Nister & Stewenius, 2006;
Wang, 2011), which work by constructing a hierarchy of
clusters using k-means and can be viewed as performing
a highly data-dependent form of space partitioning. For
these algorithms, no guarantees on approximation quality
or running time are known.

One class of methods (Orchard, 1991; Arya & Mount,
1993; Clarkson, 1999; Karger & Ruhl, 2002) that does not
rely on space partitioning uses a local search strategy. Start-
ing from a random data point, these methods iteratively find
a new data point that is closer to the query than the previ-
ous data point. Unfortunately, the performance of these
methods deteriorates in the presence of significant varia-
tions in data density, since it may take very long to navigate
a dense region of the space, even if it is very far from the
query. Other methods like navigating nets (Krauthgamer &
Lee, 2004), cover trees (Beygelzimer et al., 2006) and rank
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cover trees (Houle & Nett, 2015) adopt a coarse-to-fine
strategy. These methods work by maintaining coarse sub-
sets of points at varying scales and progressively searching
the neighbourhood of the query with decreasing radii at in-
creasingly finer scales. Sadly, the running times of these
methods again exhibit exponential dependence on the in-
trinsic dimensionality.

We direct interested readers to (Clarkson, 2006) for a com-
prehensive survey of existing methods.

3. Algorithm

Algorithm 1 Algorithm for data structure construction

Require: A dataset D of n points p1, . . . , pn, the number of sim-
ple indices m that constitute a composite index and the number
of composite indices L
function CONSTRUCT(D, m, L)

{ujl}j2[m],l2[L]

 mL random unit vectors in Rd

{Tjl}j2[m],l2[L]

 mL empty binary search trees or skip
lists

for j = 1 to m do
for l = 1 to L do

for i = 1 to n do
pi
jl  hpi, ujli

Insert (pi
jl, i) into Tjl with pi

jl being the key and
i being the value

end for
end for

end for
return {(Tjl, ujl)}j2[m],l2[L]

end function

The proposed algorithm relies on the construction of
continuous indices of data points that support both fast
searching and online updates. To this end, we use one-
dimensional random projections as basic building blocks
and construct mL simple indices, each of which orders data
points by their projections along a random direction. Such
an index has both desired properties: data points can be
efficiently retrieved and updated when the index is imple-
mented using standard data structures for storing ordered
sequences of scalars, like self-balancing binary search trees
or skip lists. This ordered arrangement of data points ex-
ploits an important property of the k-nearest neighbour
search problem that has often been overlooked: it suffices
to construct an index that approximately preserves the rel-
ative order between the true k-nearest neighbours and the
other data points in terms of their distances to the query
point without necessarily preserving all pairwise distances.
This observation enables projection to a much lower di-
mensional space than the Johnson-Lindenstrauss transform
(Johnson & Lindenstrauss, 1984). We show in the follow-
ing section that with high probability, one-dimensional ran-
dom projection preserves the relative order of two points
whose distances to the query point differ significantly re-

gardless of the ambient dimensionality of the points.

Algorithm 2 Algorithm for k-nearest neighbour retrieval

Require: Query point q in Rd, binary search trees/skip lists and
their associated projection vectors {(Tjl, ujl)}j2[m],l2[L]

, and
maximum tolerable failure probability !
function QUERY(q, {(Tjl, ujl)}j,l, ! )

Cl  array of size n with entries initialized to 0 8l 2 [L]

qjl  hq, ujli 8j 2 [m], l 2 [L]

for i = 1 to n do
for l = 1 to L do

Sl  ;
for j = 1 to m do

(p
(i)
jl , h

(i)
jl ) the node in Tjl whose key is the

ith closest to qjl

Cl[h
(i)
jl ] Cl[h

(i)
jl ] + 1

end for
for j = 1 to m do

if Cl[h
(i)
jl ] = m then

Sl  Sl [ {h
(i)
jl }

end if
end for

end for
if IsStoppingConditionSatisfied(i, Sl, ! ) then

break
end if

end for
return k points in

S
l2[L]

Sl that are the closest in
Euclidean distance in Rd to q

end function

We combine each set of m simple indices to form a com-
posite index in which points are ordered by the maximum
difference over all simple indices between the positions of
the point and the query in the simple index. The compos-
ite index enables fast retrieval of a small number of data
points, which will be referred to as candidate points, that
are close to the query point along several random directions
and therefore are likely to be truly close to the query. The
composite indices are not explicitly constructed; instead,
each of them simply keeps track of the number of its con-
stituent simple indices that have encountered any particular
point and returns a point as soon as all its constituent simple
indices have encountered that point.

At query time, we retrieve candidate points from each com-
posite index one by one in the order they are returned until
some stopping condition is satisfied, while omitting points
that have been previously retrieved from other composite
indices. Exhaustive search is then performed over candi-
date points retrieved from all L composite indices to iden-
tify the subset of k points closest to the query. Please refer
to Algorithms 1 and 2 for a precise statement of the con-
struction and querying procedures.

Because data points are retrieved according to their posi-
tions in the composite index rather than the regions of space
they lie in, the algorithm is able to automatically adapt to
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Figure 1.(a) Examples of order-preserving (shown in green) and order-inverting (shown in red) projection directions. Any projection
direction within the shaded region inverts the relative order of the vectors by length under projection, while any projection directions
outside the region preserves it. The size of the shaded region depends on the ratio of the lengths of the vectors. (b) Projection vectors
whose endpoints lie in the shaded region would be order-inverting. (c) Projection vectors whose endpoints lie in the shaded region would
invert the order of both long vectors relative to the short vector. Best viewed in colour.

changes in data density as dynamic updates are made to
the dataset without requiring any pre-processing to esti-
mate data density at construction time. Also, unlike ex-
isting methods, the number of retrieved candidate points
can be controlled on a per-query basis, enabling the user
to easily trade off accuracy against speed. We develop two
versions of the algorithm, a data-independent and a data-
dependent version, which differ in the stopping condition
that is used. In the former, the number of candidate points
is indirectly preset according to the global data density and
the maximum tolerable failure probability; in the latter, the
number of candidate points is chosen adaptively at query
time based on the local data density in the neighbourhood
of the query. We analyze the algorithm below and show that
its failure probability is independent of ambient dimension-
ality, its running time is linear in ambient dimensionality
and sub-linear in intrinsic dimensionality and the size of
the dataset and its space complexity is independent of am-
bient dimensionality and linear in the size of the dataset.

3.1. Properties of Random 1D Projection

First, we examine the effect of projecting d-dimensional
vectors to one dimension, which motivates its use in the
proposed algorithm. We are interested in the probability
that a distant point appears closer than a nearby point under
projection; if this probability is low, then each simple index
approximately preserves the order of points by distance to
the query point. If we consider displacement vectors be-
tween the query point and data points, this probability is
then is equivalent to the probability of the lengths of these
vectors inverting under projection.
Lemma 1. Let vl , vs ! Rd such that

!
! vl

!
!

2 >
!
! vs

!
!

2,
and u ! Rd be a unit vector drawn uniformly at random.
Then the probability of vs being at least as long as vl under

projection u is at most 1 " 2
! cos! 1

" !
! vs

!
!

2 /
!
! vl

!
!

2

#
.

Proof. Assuming that vl and vs are not collinear, consider
the two-dimensional subspace spanned by vl and vs , which
we will denote as P . (If vl and vs are collinear, we define
P to be the subspace spanned by vl and an arbitrary vector
that’s linearly independent of vl .) For any vector w, we
use w" and w# to denote the components of w in P and
P # such that w = w" + w# . For w ! { vs, vl } , because
w# = 0, #w, u$ = #w, u" $. So, we can limit our attention
to P for this analysis. We parameterize u" in terms of its
angle relative to vl , which we denote as ✓. Also, we denote
the angle of u" relative to vs as  . Then,
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Observe that if
$
$#vl , u$

$
$%

$
$#vs, u$

$
$, the relative order of vl

and vs by their lengths would be inverted when projected
along u. This occurs when u" is close to orthogonal to
vl , which is illustrated in Figure 1a. Also note that the
probability of inverting the relative order of vl and vs is
small when vl is much longer than vs . On the other hand,
this probability is high when vl and vs are similar in length,
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which corresponds to the case when two data points are
almost equidistant to the query point. So, if we consider
a sequence of vectors ordered by length, applying random
one-dimensional projection will likely perturb the ordering
locally, but will preserve the ordering globally.

Next, we build on this result to analyze the order-inversion
probability when there are more than two vectors. Consider
the sample space B =

%
u ! Rd

$
$&u&2 = 1

&
and the set

U(vs, vl ) =
%
u ! B

$
$|cos ✓| %

!
! vs

!
!

2 /
!
! vl

!
!

2

&
, which is

illustrated in Figure 1b, where ✓ is the angle between u"

and vl . If we use area(U) to denote the area of the region
formed by the endpoints of all vectors in the set U , then we
can rewrite the above bound on the order-inversion proba-
bility as:

Pr

⇣���hvl, ui
��� 

���hvs, ui
���
⌘
 Pr

⇣
u 2 U(vs, vl

)

⌘

=

area(V s
l )

area(B)

= 1� 2

$
cos

�1

✓
kvsk

2

kvlk
2

◆

Lemma 2. Let
%
vl

i

&N
i =1 be a set of vectors such that!

! vl
i

!
!

2 >
!
! vs

!
!

2 ' i ! [N ]. Then the probabil-

ity that there is a subset of k$ vectors from
%
vl

i

&N
i =1

that are all not longer than vs under projection is
at most 1

k !

' N
i =1

"
1 " 2

! cos! 1
" !
! vs

!
!

2 /
!
! vl

i

!
!

2

##
. Fur-

thermore, if k$ = N , this probability is at most
mini %[N ]

%
1 " 2

! cos! 1
" !
! vs

!
!

2 /
!
! vl

i

!
!

2

#&
.

Proof. For a given subset I ( [N ] of size k$,
the probability that all vectors indexed by ele-
ments in I are not longer than vs under pro-
jection u is at most Pr

"
u !

(
i %I U(vs, vl

i )
#

=

area
" (

i %I U(vs, vl
i )

#
/area (B). So, the prob-

ability that this occurs on some subset I is at
most Pr

)
u !

*
I & [N ]:|I |= k !

(
i %I U(vs, vl

i )
+

=

area
) *

I & [N ]:|I |= k !

(
i %I U(vs, vl

i )
+

/area (B).

Observe that each point in
*

I & [N ]:|I |= k !

(
i %I U(vs, vl

i )

must be covered by at least k$ U(vs, vl
i )’s. So,

k0 · area

0

@
[

I✓[N ]:|I|=k!

\

i2I

U(vs, vl
i)

1

A 
NX
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area
⇣

U(vs, vl
i)

⌘

It follows that the probability this event occurs on some

subset I is bounded above by 1
k !

' N
i =1

area(U (vs ,v l
i ))

area(B ) =
1
k !

' N
i =1

"
1 " 2

! cos! 1
" !
! vs

!
!

2 /
!
! vl

i

!
!

2

##
.

If k$ = N , we use the fact that area
) (

i %[N ] U(vs, vl
i )

+
%

mini %[N ]
%

area
"
U(vs, vl

i )
#&

to obtain the desired re-
sult.

Intuitively, if this event occurs, then there are at least k$

vectors that rank above vs when sorted in nondecreasing
order by their lengths under projection. This can only oc-
cur when the endpoint of u falls in a region on the unit
sphere corresponding to

*
I & [N ]:|I |= k !

(
i %I U(vs, vl

i ). We
illustrate this region in Figure 1c for the case of d = 3.

Theorem 3. Let
%
vl

i

&N
i =1 and

%
vs

i !

&N !

i ! =1 be sets of vectors
such that

!
! vl

i

!
!

2 > &vs
i ! &2 ' i ! [N ], i$ ! [N$]. Then the

probability that there is a subset of k$vectors from
%
vl

i

&N
i =1

that are all not longer than some vs
i ! under projection is

at most 1
k !

' N
i =1

"
1 " 2

! cos! 1
" !
! vs

max

!
!

2 /
!
! vl

i

!
!

2

##
, where!

! vs
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!
!

2 ) & vs
i ! &2 ' i$ ! [N$].

Proof. The probability that this event occurs is at most
Pr

)
u !

*
i ! %[N ! ]

*
I & [N ]:|I |= k !

(
i %I U(vs

i ! , vl
i )

+
. We

observe that for all i, i$,
%
✓

$
$|cos ✓| % &vs

i ! &2 /
!
! vl

i

!
!

2
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U(vs
i ! , vl

i ) ( U(vs
max , vl

i ).

If we take the intersection followed by union on
both sides, we obtain

*
I & [N ]:|I |= k !

(
i %I U(vs

i ! , vl
i ) (

*
I & [N ]:|I |= k !

(
i %I U(vs

max , vl
i ). Because this is true

for all i$,
*

i ! %[N ! ]

*
I & [N ]:|I |= k !

(
i %I U(vs

i ! , vl
i ) (

*
I & [N ]:|I |= k !

(
i %I U(vs

max , vl
i ).

Therefore, this probability is bounded above by
Pr

)
u !

*
I & [N ]:|I |= k !

(
i %I U(vs

max , vl
i )

+
. By Lemma 2,

this is at most 1
k !

' N
i =1

"
1 " 2

! cos! 1
" !
! vs

max

!
!

2 /
!
! vl

i

!
!

2

##
.

3.2. Data Density

We now formally characterize data density by defining the
following notion of local relative sparsity:

DeÞnition 4. Given a dataset D ( Rd , let Bp(r) be the
set of points in D that are within a ball of radius r around
a point p. We say D has local relative sparsity of (⌧, �) at a
point p ! Rd if for all r such that |Bp(r)| ) ⌧ , |Bp(�r)| %
2 |Bp(r)|, where � ) 1.

Intuitively, � represents a lower bound on the increase in ra-
dius when the number of points within the ball is doubled.
When � is close to 1, the dataset is dense in the neighbour-
hood of p, since there could be many points in D that are al-
most equidistant from p. Retrieving the nearest neighbours
of such a p is considered “hard”, since it would be difficult
to tell which of these points are the true nearest neighbours
without computing the distances to all these points exactly.

We also define a related notion of global relative sparsity,
which we will use to derive the number of iterations the
outer loop of the querying function should be executed and
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a bound on the running time that is independent of the
query:
DeÞnition 5. A dataset D has global relative sparsity of
(⌧, �) if for all r and p ! Rd such that |Bp(r)| ) ⌧ ,
|Bp(�r)| % 2 |Bp(r)|, where � ) 1.

Note that a dataset with global relative sparsity of (⌧, �)
has local relative sparsity of (⌧, �) at every point. Global
relative sparsity is closely related to the notion of expan-
sion rate introduced by (Karger & Ruhl, 2002). More
specifically, a dataset with global relative sparsity of (⌧, �)
has (⌧, 2(1 / log 2 " ) )-expansion, where the latter quantity is
known as the expansion rate. If we use c to denote the ex-
pansion rate, the quantity log2 c is known as the intrinsic
dimension (Clarkson, 2006), since when the dataset is uni-
formly distributed, intrinsic dimensionality would match
ambient dimensionality. So, the intrinsic dimension of a
dataset with global relative sparsity of (⌧, �) is 1/ log2 �.

3.3. Data-Independent Version

In the data-independent version of the algorithm, the outer
loop in the querying function executes for a preset number
of iterations k̃. The values of L, m and k̃ are fixed for all
queries and will be chosen later.

We apply the results obtained above to analyze the algo-
rithm. Consider the event that the algorithm fails to return
the correct set of k-nearest neighbours – this can only oc-
cur if a true k-nearest neighbour is not contained in any of
the Sl ’s, which entails that for each l ! [L], there is a set of
k̃ " k + 1 points that are not the true k-nearest neighbours
but are closer to the query than the true k-nearest neigh-
bours under some of the projections u1l , . . . , uml . We an-
alyze the probability that this occurs below and derive the
parameter settings that ensure the algorithm succeeds with
high probability. Please refer to the supplementary material
for proofs of the following results.
Lemma 6. For a dataset with global rel-
ative sparsity (k, �), there is some k̃ !
⌦(max(k log(n/k), k(n/k)1! log 2 " )) such that the
probability that the candidate points retrieved from a given
composite index do not include some of the true k-nearest
neighbours is at most some constant ↵ < 1.
Theorem 7. For a dataset with global relative spar-
sity (k, �), for any ✏ > 0, there is some L and k̃ !
⌦(max(k log(n/k), k(n/k)1! log 2 " )) such that the algo-
rithm returns the correct set of k-nearest neighbours with
probability of at least 1 " ✏.

The above result suggests that we should choose k̃ !
⌦(max(k log(n/k), k(n/k)1! log 2 " )) to ensure the algo-
rithm succeeds with high probability. Next, we analyze the
time and space complexity of the algorithm. Proofs of the
following results are found in the supplementary material.

Theorem 8. The algorithm takes
O(max(dk log(n/k), dk(n/k)1! 1/d !

)) time to retrieve the
k-nearest neighbours at query time, where d$ denotes the
intrinsic dimension of the dataset.

Theorem 9. The algorithm takes O(dn + n log n) time to
preprocess the data points in D at construction time.

Theorem 10. The algorithm requires O(d + log n) time to
insert a new data point and O(log n) time to delete a data
point.

Theorem 11. The algorithm requires O(n) space in addi-
tion to the space used to store the data.

3.4. Data-Dependent Version

Conceptually, performance of the proposed algorithm de-
pends on two factors: how likely the index returns the true
nearest neighbours before other points and when the algo-
rithm stops retrieving points from the index. The preceding
sections primarily focused on the former; in this section,
we take a closer look at the latter.

One strategy, which is used by the data-independent ver-
sion of the algorithm, is to stop after a preset number of it-
erations of the outer loop. Although simple, such a strategy
leaves much to be desired. First of all, in order to set the
number of iterations, it requires knowledge of the global
relative sparsity of the dataset, which is rarely known a pri-
ori. Computing this is either very expensive in the case of
large datasets or infeasible in the case of streaming data, as
global relative sparsity may change as new data points ar-
rive. More importantly, it is unable to take advantage of the
local relative sparsity in the neighbourhood of the query. A
method that is capable of adapting to local relative sparsity
could potentially be much faster because query points tend
to be close to the manifold on which points in the dataset
lie, resulting in the dataset being sparse in the neighbour-
hood of the query point.

Ideally, the algorithm should stop as soon as it has re-
trieved the true nearest neighbours. Determining if this is
the case amounts to asking if there exists a point that we
have not seen lying closer to the query than the points we
have seen. At first sight, because nothing is known about
unseen points, it seems not possible to do better than ex-
haustive search, as we can only rule out the existence of
such a point after computing distances to all unseen points.
Somewhat surprisingly, by exploiting the fact that the pro-
jections associated with the index are random, it is possible
to make inferences about points that we have never seen.
We do so by leveraging ideas from statistical hypothesis
testing.

After each iteration of the outer loop, we perform a hypoth-
esis test, with the null hypothesis being that the complete
set of the k-nearest neighbours has not yet been retrieved.
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Rejecting the null hypothesis implies accepting the alterna-
tive hypothesis that all the true k-nearest neighbours have
been retrieved. At this point, the algorithm can safely ter-
minate while guaranteeing that the probability that the al-
gorithm fails to return the correct results is bounded above
by the significance level. The test statistic is an upper
bound on the probability of missing a true k-nearest neigh-
bour. The resulting algorithm does not require any prior
knowledge about the dataset and terminates earlier when
the dataset is sparse in the neighbourhood of the query; for
this reason, we will refer to this version of the algorithm as
the data-dependent version.

More concretely, as the algorithm retrieves candidate
points, it computes their true distances to the query and
maintains a list of k points that are the closest to the
query among the points retrieved from all composite in-
dices so far. Let p̃( i ) and p̃max

l denote the ith closest
candidate point to q retrieved from all composite indices
and the farthest candidate point from q retrieved from
the lth composite index respectively. When the number
of candidate points exceeds k, the algorithm checks if
, L

l =1
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1 "

"
2
! cos! 1

" !
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✏, where ✏ is the maximum tolerable failure probability, af-
ter each iteration of the outer loop. If the condition is satis-
fied, the algorithm terminates and returns

%
p̃( i )

&k

i =1 .

We show the correctness and running time of this algorithm
below. Proofs of the following results are found in the sup-
plementary material.

Theorem 12. For any ✏ > 0, m and L, the data-dependent
algorithm returns the correct set of k-nearest neighbours
of the query q with probability of at least 1 " ✏.

Theorem 13. On a dataset with global rel-
ative sparsity (k, �), given fixed parameters
m and L, the data-dependent algorithm takes

O
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time with high probability to retrieve the k-nearest
neighbours at query time, where d$ denotes the intrinsic
dimension of the dataset.

Note that we can make the denominator of the last argu-
ment arbitrarily close to 1 by choosing a large L.

4. Experiments

We compare the performance of the proposed algorithm to
that of LSH, which is arguably the most popular method for
fast nearest neighbour retrieval. Because LSH is designed
for the approximate setting, under which the performance
metric of interest is how close the points returned by the al-
gorithm are to the query rather than whether the returned
points are the true k-nearest neighbours, we empirically

evaluate performance in this setting. Because the distance
metric of interest is the Euclidean distance, we compare to
Exact Euclidean LSH (E2LSH) (Datar et al., 2004), which
uses hash functions designed for Euclidean space.

We compare the performance of the proposed algorithm
and LSH on the CIFAR-100 and MNIST datasets, which
consist of 32 * 32 colour images of various real-world ob-
jects and 28 * 28 grayscale images of handwritten digits
respectively. We reshape the images into vectors, with each
dimension representing the pixel intensity at a particular lo-
cation and colour channel of the image. The resulting vec-
tors have a dimensionality of 32* 32* 3 = 3072 in the case
of CIFAR-100 and 28* 28 = 784 in the case of MNIST, so
the dimensionality under consideration is higher than what
traditional tree-based algorithms can handle. We combine
the training set and the test set of each dataset, and so we
have a total of 60, 000 instances in CIFAR-100 and 70, 000
instances in MNIST.

We randomize the instances that serve as queries using
cross-validation. Specifically, we randomly select 100 in-
stances to serve as query points and the designate the re-
maining instances as data points. Each algorithm is then
used to retrieve approximate k-nearest neighbours of each
query point among the set of all data points. This procedure
is repeated for ten folds, each with a different split of query
vs. data points.

We compare the number of candidate points that each algo-
rithm requires to achieve a desired level of approximation
quality. We quantify approximation quality using the ap-
proximation ratio, which is defined as the ratio of the radius
of the ball containing approximate k-nearest neighbours to
the radius of the ball containing true k-nearest neighbours.
So, the smaller the approximation ratio, the better the ap-
proximation quality. Because dimensionality is high and
exhaustive search must be performed over all candidate
points, the time taken for compute distances between the
candidate points and the query dominates the overall run-
ning time of the querying operation. Therefore, the number
of candidate points can be viewed as an implementation-
independent proxy for the running time.

Because the hash table constructed by LSH depends on the
desired level of approximation quality, we construct a dif-
ferent hash table for each level of approximation quality.
On the other hand, the indices constructed by the proposed
method are not specific to any particular level of approxi-
mation quality; instead, approximation quality can be con-
trolled at query time by varying the number of iterations of
the outer loop. So, the same indices are used for all levels of
approximation quality. Therefore, our evaluation scheme is
biased towards LSH and against the proposed method.

We adopt the recommended guidelines for choosing param-
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(a) (b) (c)

Figure 2.(a-b) Comparison of the speed of the proposed method (labelled as DCI) and LSH on (a) CIFAR-100 and (b) MNIST. Each
curve represents the mean number to candidate points required to achieve varying levels of approximation quality over ten folds and the
shaded area represents ±1 standard deviation. (c) Comparison of the space efficiency of the proposed method and LSH on CIFAR-100
and MNIST. The height of each bar represents the average amount of memory used by each method to achieve the performance shown
in (a) and (b).

eters of LSH and used 24 hashes per table and 100 tables.
For the proposed method, we used m = 25 and L = 2
on CIFAR-100 and m = 15 and L = 3 on MNIST, which
we found to work well in practice. In Figures 2a and 2b,
we plot the performance of the proposed method and LSH
on the CIFAR-100 and MNIST datasets for retrieving 25-
nearest neighbours.

For the purposes of retrieving nearest neighbours, MNIST
is a more challenging dataset than CIFAR-100. This is be-
cause the instances in MNIST form dense clusters, whereas
the instances in CIFAR-100 are more visually diverse and
so are more dispersed in space. Intuitively, if the query
falls inside a dense cluster of points, there are many points
that are very close to the query and so it is difficult to
distinguish true nearest neighbours from points that are
only slightly farther away. Viewed differently, because true
nearest neighbours tend to be extremely close to the query
on MNIST, the denominator for computing the approxima-
tion ratio is usually very small. Consequently, returning
points that are only slightly farther away than the true near-
est neighbours would result in a large approximation ratio.
As a result, both the proposed method and LSH require far
more candidate points on MNIST than on CIFAR-100 to
achieve comparable approximation ratios.

We find the proposed method achieves better performance
than LSH at all levels of approximation quality. Notably,
the performance of LSH degrades drastically on MNIST,
which is not surprising since LSH is known to have difficul-
ties on datasets with large variations in data density. On the
other hand, the proposed method requires 61.3% " 78.7%
fewer candidate points than LSH to achieve the same ap-
proximation quality while using less than 1/20 of the mem-
ory.

5. Conclusion

In this paper, we delineated the inherent deficiencies of
space partitioning and presented a new strategy for fast
retrieval of k-nearest neighbours, which we dub dynamic
continuous indexing (DCI). Instead of discretizing the vec-
tor space, the proposed algorithm constructs continuous in-
dices, each of which imposes an ordering of data points in
which closeby positions approximately reflect proximity in
the vector space. Unlike existing methods, the proposed
algorithm allows granular control over accuracy and speed
on a per-query basis, adapts to variations to data density
on-the-fly and supports online updates to the dataset. We
analyzed the proposed algorithm and showed it runs in time
linear in ambient dimensionality and sub-linear in intrinsic
dimensionality and the size of the dataset and takes space
constant in ambient dimensionality and linear in the size
of the dataset. Furthermore, we demonstrated empirically
that the proposed algorithm compares favourably to LSH in
terms of approximation quality, speed and space efficiency.
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