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Abstract
Memory units have been widely used to enrich
the capabilities of deep networks on capturing
long-term dependencies in reasoning and pre-
diction tasks, but little investigation exists on
deep generative models (DGMs) which are good
at inferring high-level invariant representations
from unlabeled data. This paper presents a deep
generative model with a possibly large external
memory and an attention mechanism to capture
the local detail information that is often lost in
the bottom-up abstraction process in representa-
tion learning. By adopting a smooth attention
model, the whole network is trained end-to-end
by optimizing a variational bound of data like-
lihood via auto-encoding variational Bayesian
methods, where an asymmetric recognition net-
work is learnt jointly to infer high-level invari-
ant representations. The asymmetric architecture
can reduce the competition between bottom-up
invariant feature extraction and top-down genera-
tion of instance details. Our experiments on sev-
eral datasets demonstrate that memory can sig-
nificantly boost the performance of DGMs on
various tasks, including density estimation, im-
age generation, and missing value imputation,
and DGMs with memory can achieve state-of-
the-art quantitative results.

1. Introduction
Deep learning models are able to extract abstract repre-
sentations from low-level inputs by adopting a deep ar-
chitecture with explicitly designed nonlinear transforma-
tions (Bengio et al., 2013a). Among many types of deep
models, deep generative models (DGMs) learn abstract
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representations from unlabeled data and can perform a
wide range of tasks, including density estimation, data gen-
eration and missing value imputation. Depending on the
building blocks, various types of DGMs exist, including
undirected models (Salakhutdinov & Hinton, 2009), di-
rected models (Neal, 1992; Hinton et al., 2006), autore-
gressive models (Larochelle & Murray, 2011; Gregor et al.,
2014), and Markov chain based models (Bengio et al.,
2014). Recently, DGMs have attracted much attention on
developing efficient and (approximately) accurate learning
algorithms, such as stochastic variational methods (Kingma
& Welling, 2014; Rezende et al., 2014; Bornschein & Ben-
gio, 2015; Burda et al., 2015) and Monte Carlo meth-
ods (Adams et al., 2010; Gan et al., 2015; Du et al., 2015).

Although current DGMs are able to extract high-level ab-
stract representations, they may not be sufficient in gen-
erating high-quality input samples. This is because more
abstract representations are generally invariant or less sen-
sitive to most specific types of local changes of the input.
This bottom-up abstraction progress is good for identify-
ing predictive patterns, especially when a discriminative
objective is optimized (Li et al., 2015); but it also loses
the detail information that is necessary in the top-down
generating process. It remains a challenge for DGMs to
generate real data, especially for images that have com-
plex structures. Simply increasing the model size is appar-
ently not wise, as it may lead to serious over-fitting without
proper regularization as well as heavy computation burden.
Some recent progress has been made to improve the gen-
eration quality. For example, DRAW (Gregor et al., 2015)
iteratively constructs complex images over time through a
recurrent encoder and decoder together with an attention
mechanism and LAPGAN (Denton et al., 2015) employs a
cascade of generative adversarial networks (GANs) (Good-
fellow et al., 2014) to generate high quality natural images
through a Laplacian pyramid framework (Burt & Adelson,
1983). However, no efforts have been made on enriching
the capabilities of probabilistic DGMs by designing novel
building blocks in the generative model.
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In this paper, we address the above challenges by present-
ing a new architecture for building probabilistic deep gen-
erative models with a possibly large external memory and
an attention mechanism. Although memory has been ex-
plored in various deep models for capturing long-term de-
pendencies in reasoning and prediction tasks (See Section 2
for a review), our work represents a first attempt to leverage
external memory to enrich the capabilities of probabilistic
DGMs for better density estimation, data generation and
missing value imputation. The overall architecture of our
model is an interleave between stochastic layers and deter-
ministic layers, where each deterministic layer is associated
with an external memory to capture local variant informa-
tion. An attention mechanism is used to record informa-
tion in the memory during learning and retrieve information
from the memory during data generation. This attention
mechanism can be trained because the invariant informa-
tion and local variant information are correlated, e.g., both
containing implicit label information. Both the memory
and attention mechanisms are parameterized as differen-
tiable components with some smooth nonlinear transforma-
tion functions. Such a design allows us to learn the whole
network end-to-end by developing a stochastic variational
method, which introduces a recognition network without
memory to characterize the variational distribution. Differ-
ent from (Kingma & Welling, 2014; Burda et al., 2015), our
recognition network is asymmetric to the generative net-
work. This asymmetric recognition network is sufficient
for extracting invariant representations in bottom-up infer-
ence, and is compact in parameterization. Furthermore,
this asymmetry can help reduce the competition between
bottom-up invariant feature extraction (using the recogni-
tion network) and top-down input generation (using the
deep generative model with memory).

We quantitatively and qualitatively evaluate our method on
several datasets in various tasks, including density estima-
tion, data generation and missing value imputation. Our
results demonstrate that an external memory together with
a proper attention mechanism can significantly improve
DGMs to obtain state-of-the-art performance.

2. Related Work
Memory has recently been leveraged in deep models to
capture long-term dependencies for various tasks, such as
algorithm inference (Graves et al., 2014), question answer-
ing (Weston et al., 2015; Sukhbaatar et al., 2015) and neural
language transduction (Grefenstette et al., 2015). The ex-
ternal memory in these models provides a way to record
information stably and interact with the environment, and
hence extends the capability of traditional learning models.
Typically the interaction, e.g., reading from and writing on
the memory, is done through an associated attention mech-

anism and the whole system is trained with supervision.
The attention mechanism can be differentiable and trained
in an end-to-end manner (Graves et al., 2014; Sukhbaatar
et al., 2015), or really discrete and trained by a Reinforce-
ment Learning algorithm (Zaremba & Sutskever, 2015).

In addition to the memory-based models mentioned above,
attention mechanisms have been used in other deep models
for various tasks, such as image classification (Larochelle
& Hinton, 2010; Ba et al., 2015), object tracking (Mnih
et al., 2014), conditional caption generation (Xu et al.,
2015), machine translation (Bahdanau et al., 2015) and im-
age generation (Graves, 2013; Gregor et al., 2015). Re-
cently, DRAW (Gregor et al., 2015) introduces a novel 2-D
attention mechanism to decide “where to read and write”
on the image and does well in generating objects with clear
track, such as handwritten digits and sequences of real dig-
its.

Compared with previous memory-based networks (Graves
et al., 2014; Weston et al., 2015), we propose to employ
an external hierarchical memory to capture variant infor-
mation at different abstraction levels trained in an unsuper-
vised manner. Besides, our memory cannot be written di-
rectly like (Graves et al., 2014; Weston et al., 2015); instead
it is updated through optimization. Compared with previ-
ous DGMs with visual attention (Tang et al., 2014; Gregor
et al., 2015), we make different assumptions about the data,
i.e., the main object (such as faces) has massive local fea-
tures, which cannot be modeled by a limited number of la-
tent factors. We employ an external memory to capture this
and the associated attention mechanism is used to retrieve
the memory, not to learn “what-where” combination on the
images. Besides, the external memory used in our model
and the memory units of LSTMs used in DRAW (Gregor
et al., 2015) can complement each other (Graves et al.,
2014). Further investigation on DRAW with external mem-
ory is our future work.

Considering the bottom-up inference procedure and top-
down generation procedure together, additional memory
mechanisms can help to reduce the competition between
invariant feature extraction and local variant reconstruc-
tion, especially when label information is provided (e.g.,
in supervised or semi-supervised setting). Similar idea is
highlighted in the Ladder Network (Valpola, 2014; Rasmus
et al., 2015), which reconstructs the input hierarchically us-
ing an extension of denoising autoencoders (dAEs) (Vin-
cent et al., 2010) with the help of lateral connections and
achieves excellent performance on semi-supervised learn-
ing (Rasmus et al., 2015). Though it is possible to interpret
the Ladder Network probabilistically as in (Bengio et al.,
2013b), we model the data likelihood directly with the help
of external memory instead of explicit lateral edges. Our
method can also be extended to do supervised or semi-
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supervised learning as in (Kingma et al., 2014), which is
our future work.

3. Probabilistic DGMs with Memory
We present a probabilistic deep generative model (DGM)
with a possibly large external memory as well as a soft at-
tention mechanism.

3.1. Overall Architecture

Formally, given a set of training data D, we assume each
x ∈ D is independently generated with a set of hierarchi-
cally organized latent factors zL, . . . , z1 as follows:

• Draw the top-layer factors zL ∼ N (0, I).
• For l = L − 1, . . . , 0, calculate the mean parameters
µl = gl(zl+1;Ml) and draw the factors zl ∼ Pl(µl),

where each gl is a nonlinear function, often assumed to be
smooth for the ease of learning. To connect with obser-
vations, the bottom layer is clamped at z0 = x. Each zl
is randomly sampled from a Gaussian distribution except
z0 whose distribution depends on the properties of the data
(e.g., Gaussian for continuous data or Multinomial for dis-
crete case). All the distributions Pl are assumed to be of an
exponential family form, with mean parameters µl.

Here, we define gl as a feed-forward deep neural network
with Il deterministic layers and a set of associated mem-
ories {M (i)

l }
Il−1
i=0 , one per layer. We parameterize each

memory as a trainable matrix with dimension ds × ns,
where ds is the number of slots in the memory and ns is
the dimension of each slot. Then, the network is formally
parameterized as follows:

• Initialize the top-layer factors h(Il)
l = zl+1.

• For i = Il − 1, . . . , 0, do the transformation h
(i)
l =

φ(h
(i+1)
l ;M

(i)
l ),

where φ is a proper (e.g., smooth) function for linear or
nonlinear transformation. The bottom layer is our output
µl = h0

l , which is called a stochastic layer as it computes
the mean parameters for a distribution to get samples from.
All the other layers are called deterministic layers.

Compared with previous DGMs, one key feature of our
model is that it incorporates an external memory at each
deterministic layer, as detailed below. The overall archi-
tecture is a stack of multiple such layers interleaved with
stochastic layers as above. In such a DGM architecture,
memory M (i)

l can recover the information that is missing
in higher-layers h(>i)

l . In other words, the higher layers do
not need to represent all details, but focusing on represent-
ing abstract invariant features if they seem more relevant to
the task at hand than the more detailed information.

3.2. General Memory Mechanism for a Single Layer

We now present a single layer with memory generally,
which is our building block for the above DGM. For no-
tation simplicity, we omit the sub-script l in the following
text. Formally, let hin denote the input information, and
hout denote the output after some deterministic transfor-
mation with memory. In our model, hin can be either the
samples of latent factors or the output from a higher-level
deterministic layer; and similarly hout can be used as the
input of either a stochastic layer or a lower-level determin-
istic layer.

A layer of standard DGMs without memory generates the
low-level generative information hg based on hin through
a proper transformation, which can be generally put as:

hg = φ(hin;Wg, bg),

where Wg and bg are the weights and biases of the trans-
formation respectively and uses it as the final output, i.e.
hout = hg .

In our DGM with memory M , we first compute the low-
level generative information hg in the same way as a stan-
dard layer, and then retrieve the memory with some proper
attention mechanism to get knowledge hm. Finally, we
combine hg and hm to get the output hout. Formally, the
memory retrieval process is parameterized as

hm = fm(ha;M),

where ha = fa(hg;A, bA) is the information used to ac-
cess the memory and computed by an attention mechanism
parameterized by a controlling matrix A and a bias vector
bA. The attention mechanism takes the generative informa-
tion hg , which is the final output of a vanilla layer described
previously, as input. fa is the mapping function in the at-
tention mechanism and fm is the mapping function in the
memory mechanism, which are deterministic transforma-
tions to be specified. The final output hout is the combina-
tion of hg and hm as follows:

hout = fc(hg,hm;C),

where C is a set of trainable parameters in the combination
function fc, which is another deterministic transformation
to be specified. We visualize the computation flow of these
two types of layers in Figure 1, where each component will
be specified next.

3.3. Concrete Examples with Hierarchical Memory
Mechanisms

With the above building blocks, we can stack multiple lay-
ers to build a DGM as in Section 3.1. For simplicity, here
we consider a generative model with only one stochastic
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attention 

memory

combination
function

standard layer

Figure 1. Architecture comparison between a standard layer (top-
left part) and a layer with memory (the whole figure).

layer and I deterministic layers to explain our memory
mechanism, which can be straightforwardly extended to
cases with multiple stochastic layers.

Let the top most information to be the random samples
from the prior, i.e., h(I+1) = z. Using permutation invari-
ant architecture as an example, we compute the low-level
generative information h

(i)
g based on the input h(i+1) as:

h(i)
g = φ(W (i)

g h(i+1) + b(i)g ).

We further retrieve the knowledge h
(i)
m from memory.

Though various strategies exist, we consider the simple one
that adopts a linear combination of slots in memory as

h(i)
m = fm(h(i)

a ) =M (i)h(i)
a ,

where the coefficients h(i)
a are computed as

h(i)
a = fa(h

(i)
g ) = σ(A(i)h(i)

g + b
(i)
A ),

and σ(x) = 1/(1 + exp(−x)) is the sigmoid function.
Therefore, each element of h

(i)
a is a real value in the in-

terval (0, 1), which represents the preference of x to the
corresponding memory slot. An alternative soft attention
function used in our experiment is the softmax function,
which normalizes the summation of the preference values
on all slots to be one (Bahdanau et al., 2015). A hard atten-
tion mechanism trained with Reinforcement Learning (Xu
et al., 2015) can be further investigated in the future work.

The most straightforward choice of the composition func-
tion is the element-wise summation:

h(i) = h(i)
g + h(i)

m ,

where the memory encodes the residual between the true
target h(i) and the generative information h

(i)
g . However,

in practise, we found that a more flexible composition func-
tion can lead to a better result. Inspired by the Ladder Net-
work (Valpola, 2014; Rasmus et al., 2015), we specify the
combination function of h(i)

m and h
(i)
g as element wise mul-

tiple layer perceptron with optionally final nonlinearity φ:

h(i) = fc(h
(i)
g ,h(i)

m ) = φ(a(i) + b
(i)
1 c(i)),

where the inside linear part a(i) is the summation of scaled
inputs and cross terms as well as biases:

a(i) = a
(i)
1 + a

(i)
2 � h(i)

m + a
(i)
3 � h(i)

g

+ a
(i)
4 � h(i)

g � h(i)
m ,

and the inside nonlinear part c(i) is computed similarly but
goes through a sigmoid function:

c(i) = σ(c
(i)
1 + c

(i)
2 � h(i)

m + c
(i)
3 � h(i)

g

+ c
(i)
4 � h(i)

g � h(i)
m ),

where � is the element wise product. The output in our
model only depends on the top-down signals hg initially,
instead of the auxiliary information as in the Ladder Net-
work, which will be discussed in the experiment setting.
(W

(i)
g , b

(i)
g ,M (i), A(i), b

(i)
A , a

(i)
1,2,3,4, b

(i)
1 , c

(i)
1,2,3,4) are train-

able parameters in single layer. We illustrate each compo-
nent in Figure. 1.

4. Inference and Learning
Learning a DGM is generally challenging due to the highly
nonlinear transformations in multiple layers plus a stochas-
tic formalism. To develop a variational approximation
method, it is important to have a rich family of variational
distributions that can well-characterize the nonlinear trans-
forms. Significant progress has been made recently on
stochastic variational inference methods with a sophisti-
cated recognition model to parameterize the variational dis-
tributions (Kingma & Welling, 2014; Rezende et al., 2014).
In this section, we develop such an algorithm for our DGM
with memory.

Let θg be the collection of parameters in the DGM. Then
the joint distribution of each data x and the corresponding
latent factor z can be generally put in a factorized form:

p(x, z;θg) = p(z;θg)p(x|z;θg),

where the prior is often of a simple form, such as spheri-
cal Gaussian in our experiments, and the form of the con-
ditional distribution p(x|z;θg) is chosen according to the
data and its mean parameters depend on the external mem-
ories through a deep architecture as stated above.
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Figure 2. A model with one stochastic layer and two determinis-
tic layers, where z is shared by the P -net and Q-net.

As in (Kingma & Welling, 2014), we adopt deep neural
networks to parameterize a recognition model as the ap-
proximate posterior distribution q(z|x;θr), where θr is the
collection of the parameters in the recognition model (de-
noted by Q-Net, as it characterizes distribution q). Since
theQ-Net implements the bottom-up abstraction process to
identify invariant features, it is unnecessary to have an ex-
ternal memory. Furthermore, the Q-Net without memory
is compact in parameterization. The overall architecture is
asymmetric, as illustrated in Figure 2, where the compo-
nents at the left side of the dot line together with sampling
z from q(z|x) is the Q-Net and the components at the right
side of the dot line with z sampled from the prior is the gen-
erative model (denoted by P -Net, as it characterizes model
distribution p). The solid arrow means the correspond-
ing component is used as input of next component and the
dash arrow means the corresponding component is used as
the training target of next component, as explained below.
The components representing external memory and asso-
ciated attention mechanisms are filled with shallow gray.
We omit the components corresponding to the combination
functions for better visualization.

We define the Q-Net as follows. Following the example
with one stochastic layer and I deterministic layers in the
previous section, we extract the high-level features ĥ(i+1)

as follows:

ĥ(i+1) = φ(V (i)ĥ(i) + b(i)r ),

where φ is a proper nonlinear function and (V (i), b
(i)
r ) are

trainable parameters. The bottom layer is the input data,
i.e. ĥ(0) = x and the top layer is still factorized Gaussian
distribution. The mean of z is computed by linear transfor-
mation of ĥ(I) and the variance of z is computed similarly
but with a final exponential nonlinearity.

A variational lower bound of log-likelihood for per data x
can be formulated as:

L(θg,θr;x) , Eq(z|x;θr)[log p(x, z;θg)−log q(z|x;θr)].

We add local reconstruction error terms as an optional reg-
ularizer, and jointly optimize the parameters in the genera-
tive model and the recognition model:

min
θg,θr

1

|D|
∑
x∈D

(
L(θg,θr;x) +

I∑
i=1

λ(i)||h(i) − ĥ(i)||22
)
,

where the relative weights λ(i) are prefixed hyperparam-
eters. We optimize the objective with a stochastic gradi-
ent variational Bayes (SGVB) method (Kingma & Welling,
2014). Note that we cannot send the message of a inter-
mediate layer in the recognition model to a layer in the
generative model through a lateral connection as in Lad-
der Network (Valpola, 2014; Rasmus et al., 2015) because
that indeed changes the distribution of p(x|z) according to
the data x. However, we do not use any information of x in
the generative model explicitly and the correctness of the
variational bound can be verified.

We employ batch normalization layers (Ioffe & Szegedy,
2015) in both the recognition model and generative model
to accelerate the training procedure, and the intermediate
features in local reconstruction error terms are replaced by
a corresponding normalized version. To compare with stat-
of-the-art results, we also train our method as in impor-
tance weighted autoencoders (IWAE) (Burda et al., 2015),
which uses importance weighting estimate of log likelihood
with multiple samples in the training procedure to achieve
a strictly tighter variational lower bound.

5. Experiments
We now present both quantitative and qualitative evalua-
tions of our method on the real-valued MNIST, OCR-letters
and Frey faces datasets for various tasks. The MNIST
dataset (Lecun et al., 1998) consists of 50,000 training,
10,000 validation and 10,000 testing images of handwrit-
ten digits and each image is of 28 × 28 pixels. The OCR-
letters dataset (Bache & Lichman, 2013) consists of 32,152
training, 10,000 validation and 10,000 testing letter images
of size 16 × 8 pixels. The Frey faces dataset consists of
1,965 real facial expression images of size 28 × 20 pixels.
We model MNIST and OCR-letters datasets as Bernoulli
distribution and model Frey faces dataset as Gaussian dis-
tribution at data level.

Our basic competitors are VAE (Kingma & Welling, 2014)
and IWAE (Burda et al., 2015). We add the memory mech-
anisms to these methods and denote our models as MEM-
VAE and MEM-IWAE, respectively. In all experiments ex-
cept the visualization in Appendix D, MEM-VAE employs
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the sigmoid function and element-wise MLP as the atten-
tion and composition functions respectively.

Our implementation is based on Theano (Bastien et al.,
2012).1 We use ADAM (Kingma & Ba, 2015) in all ex-
periments with parameters β1 = 0.9, β2 = 0.999 (decay
rates of moving averages) and ε = 10−4 (a constant that
prevents overflow). As a default, the global learning rate
is fixed as 10−3 for 1,000 epochs and annealed by a fac-
tor 0.998 for 2,000 epochs with minibatch size 100. Ini-
tially, We set ai3 and ci3 as vectors filled with ones and
(a

(i)
1,2,4, b

(i)
1 , c

(i)
1,2,4) as vectors filled with zeros to avoid poor

local optima. This means that we initialize the output as
signals from top-down inference, which is different from
the Ladder Network (Rasmus et al., 2015). We initialize
the memory matrix as Gaussian random variables and other
parameters following (Glorot & Bengio, 2010). We specify
φ as rectified linear units (ReLu) (Nair & Hinton, 2010) in
both the generative model and the recognition model.

We do not tune the hyper-parameters of our method heavily.
We choose a model with one stochastic layer and two de-
terministic layers as the default setting. The values of λ(1)

and λ(2) are fixed as 0.1 following Ladder Network (Ras-
mus et al., 2015). We do not include a local reconstruction
error term at data level since the variational lower bound
penalizes the reconstruction error of data already. The di-
mension of slots in memory ds is the same as that of the
corresponding generative information hg because we use
element-wise combination function fc. We employ the
memory mechanism in both deterministic layers and make
the total number of slots n(1)s + n

(2)
s to be 100 to keep

the number of additional parameters relatively small. We
choose a 70-30 architecture according to the validation per-
formance on the MNIST dataset and then make it default
for all experiments if not mentioned.

5.1. Density Estimation

We follow (Burda et al., 2015) to split the MNIST dataset
into 60,000 training data and 10,000 testing data after
choosing the hyper-parameters. We train both the base-
lines and our models with 1, 5 and 50 importance samples
respectively and evaluate the test likelihood with 5,000 im-
portance samples as in (Burda et al., 2015). In each training
epoch, we binarize the data stochastically as the input. The
results of VAE, IWAE-5 (trained with 5 importance sam-
ples) and IWAE-50 (trained with 50 importance samples)
with one stochastic layer in (Burda et al., 2015) are -86.76,
-85.54 and -84.78 nats respectively. However, we use 500
hidden units in the deterministic layers and 100 latent vari-
ables in the stochastic layer to achieve a stronger baseline
result with a different architecture and more parameters.

1Source code at https://github.com/zhenxuan00/MEM_DGM

Table 1. Log likelihood estimation on MNIST and OCR-letters
datasets. Results are from [1] (Murray & Salakhutdinov, 2009),
[2] (Burda et al., 2015), [3] (Bornschein & Bengio, 2015),
[4] (Larochelle & Murray, 2011) and [5] (Gregor et al., 2014).
Results with * are evaluated on binarised MNIST dataset.

MODELS MNIST OCR-LETTERS

VAE -85.67 -30.09
MEM-VAE(ours) -84.41 -29.09

IWAE-5 -84.49 -28.69
MEM-IWAE-5(ours) -83.26 -27.65

IWAE-50 -83.67 -27.60
MEM-IWAE-50(ours) -82.84 -26.90

DBN[1] -84.55 -
S2-IWAE-50[2] -82.90 -

RWS-SBN/SBN[3]* -85.48 -29.99
RWS-NADE/NADE[3]* -85.23 -26.43
NADE[4]* -88.86 -27.22
DARN[5]* -84.13 -28.17

We present our likelihood results in Table 1. We can see
that our methods improve the results of baselines (both
VAE and IWAE) significantly and achieve state-of-the-art
results on the real-valued MNIST dataset with permuta-
tion invariant architectures. DRAW (Gregor et al., 2015)
achieves -80.97 nats by exploiting the spatial information.
Our method MEM-IWAE-50 even outperforms S2-IWAE-
50, which is the best model in (Burda et al., 2015) with two
stochastic layers and four deterministic layers.

To compare with a broader family of benchmarks, we fur-
ther quantitatively evaluate our model on the OCR-letters
dataset. We use 200 hidden units in the deterministic layers
and 50 latent variables in the stochastic layer as the dimen-
sion of the input is much smaller. The test log-likelihood
is evaluated with 100,000 importance samples as in (Born-
schein & Bengio, 2015) and shown in Table 1. Again, our
methods outperform the baseline approaches significantly
and are comparable with the best competitors, which often
employ autoregressive connections (Larochelle & Murray,
2011; Gregor et al., 2014) that are effective on small im-
ages with simple structures. Note that these sophisticated
structures are not exclusive to our memory mechanisms. A
systematic investigation of using memory with such struc-
tures is our future work.

5.2. Analysis of Our Model

We now present a careful analysis of our model to investi-
gate the possible reasons for the outstanding performance.

Classification: We investigate the effect of external mem-
ory on the training of the recognition model by classifica-
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(a) Layer 2 (b) Layer 1 (c) Layer 2 (d) Layer 1

Figure 3. (a-b): Averaged activations on each memory slot over different classes of testing data on MNIST dataset in layer 2 and layer 1
respectively. (c-d): 2-D visualization for correlation between classes for layer 2 and layer 1 respectively (best view in color).

tion and MEM-VAE outperforms VAE (See details in Ap-
pendix A).

A larger baseline: We test VAE with a 530-530-100 ar-
chitecture, which has almost the same number of param-
eters as MEM-VAE. The log-likelihood trained with 1, 5
and 50 importance samples on MNIST are -85.69, -84.43
and -83.58 respectively. We can see that using our mem-
ory leads to much better results than simply increasing the
model size. A comparison of number of parameters used in
all of the models can be seen in Appendix B.

Importance of memory: We test the relative importance
of the memory mechanism and local reconstruction error
regularizer. MEM-VAE in the default settings but with-
out local reconstruction error regularizer achieves a test log
density estimation of -84.44 nats. VAE with additional lo-
cal reconstruction regularizer achieves test log density esti-
mation of -85.68 nats. These experiments demonstrate that
the memory mechanism plays a central role in the recov-
ery of detailed information. The local reconstruction error
regularizer may help more provided supervision.

Preference of memory slots over classes: We investigate
the preference of memory slots over different classes in
MEM-VAE. We average ha and normalize the activations
for each class and visualize the matrices in Figure 3(a-b),
where each column represents a slot and each row repre-
sents a class (0-9 in top-down order). The averaged and
normalized activations are used as the intensities for the
corresponding positions in the matrices. Furthermore, we
compute the correlation coefficients between activations of
different classes and visualize them in a 2-D graph in Fig-
ure 3(c-d), where each node represents a class and each
edge represents the correlation between two endpoints. The
larger the correlation is, the wider and darker the edge is.
We observe that the trained attention model can access the
memory based on the implicit label information in the in-
put, which accords with our assumption. The activations
are correlated for those digits that share similar structures
such as “7” and “9”. Furthermore, different layers of mem-
ory focus on different patterns. For example, layer 1 has a
strong activation of a vertical line pattern which is shared
among digits “1”, “4”, “7” and “9”, while layer 2 activates

(a) IWAE-50 (b) MEM-IWAE-50

Figure 4. (a-b): Random generation from IWAE-50 and MEM-
IWAE-50 on MNIST dataset respectively.

most to a semi-circle pattern which is shared among dig-
its “3”, “5” and “8”. Besides, layer 1 has almost the same
2D-visualization result as the raw data.

Visualization: We visualize the generative information hg

and memory information hm by mapping these vectors to
images (See details in Appendix C and D respectively).

5.3. Random Generation

We further evaluate the random generations from the base-
line and our model empirically on MNIST and Frey faces
datasets, which is shown in Figure 4 and Figure 5 respec-
tively. We label unclear or meaningless images with red
rectangles. This is done by majority voting of several vol-
unteers. We do not select any pictures for both datasets.

For the MNIST dataset, the setting is same as in Sec-
tion 5.1. We observe that the memory mechanism helps
a lot to get clear and meaningful samples as in Figure 4.

For Frey faces dataset, we randomly split into 1,865 train-
ing data and 100 testing data. We use a single deterministic
layer with 200 hidden units and a stochastic layer with 10
latent factors and set n(1)s to be 20 as the number of train-
ing samples is small. We use one sample of the recogni-
tion model in both of the training and testing procedure as
in (Kingma & Welling, 2014). We find that the minibatch
size effects the results a lot, and the quality of visualization
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(a) VAE (b) MEM-VAE

Figure 5. (a-b): Random generation from VAE and MEM-VAE
on Frey faces dataset respectively.

and the averaged test log density are inconsistent (Theis
et al., 2016). Specifically, setting the minibatch size to be
100, VAE achieves test log density of 1308 nats, which re-
produces the result with same architectures in (Kingma &
Welling, 2014), but the visualization is somehow unclear;
while setting the minibatch size to be 10, VAE achieves
test log density of 1055 nats, but the visualization is much
better. All of the parameters are set referred to (Kingma
& Welling, 2014) or based on the performance of test log
density of VAE. We also find that MEM-VAE outperforms
VAE in both cases in terms of the quantitative test likeli-
hood and qualitative visualization — the corresponding log
density of MEM-VAE are 1330 and 1240 nats respectively.
The random samples given minibatch size 100 is shown in
Figure 5, where we can see that all samples of MEM-VAE
are clear but some of VAE cannot present all details in the
facial expression successfully.

5.4. Missing Value Imputation

Finally, we evaluate our method on the task of missing
value imputation with three different types of noise, includ-
ing (1) RECT-12 means that a centered rectangle of size
12 × 12 is missing; (2) RAND-0.6 means that each pixel
is missing with a prefixed probability 0.6; and (3) HALF
means that the left half of the image is missing. For both
VAE and MEM-VAE, the missing values are randomly ini-
tialized and then inferred by a Markov chain that samples
latent factors based on the current guess of missing values
and then refines the missing values based on the current
latent factors. We compare the mean square error (MSE)
results after 100 epochs of inference as in Table 2 on the
MNIST dataset. The results demonstrate that DGM with
external memory can capture the underlying structures of
data better than vanilla methods under different types of

Table 2. MSE results on MNIST dataset with different types of
noise.

NOISE TYPE VAE MEM-VAE

RECT-12 0.1403 0.1362
RAND-0.6 0.0194 0.0187
HALF 0.0550 0.0539

noise. Besides, MEM-VAE has better qualitative results
(See Appendix E).

6. Conclusions and Future Work
In this paper, we introduce a novel building block for deep
generative models (DGMs) with an external memory and
an associated soft attention mechanism. In the top-down
generative procedure, the additional memory helps to re-
cover the local detail information, which is often lost in
the bottom-up abstraction procedure for learning invariant
representations. Various experiments on handwritten digits
and letters as well as real faces datasets demonstrate that
our method can substantially improve the vanilla DGM on
density estimation, random generation and missing value
imputation tasks, and we can achieve state-of-the-art re-
sults among a broad family of benchmarks.

There are three possible extensions of our method:

• The use of other types of memory and attention mech-
anisms in DGMs can be further investigated. Particu-
larly, the combination of external memory and visual
attention as well as recurrent networks (Gregor et al.,
2015) may achieve better results in generative tasks.

• A class conditional DGM (Kingma et al., 2014) with
memory can potentially achieve better performance on
both classification and generation because the external
memory helps to reduce the competition between the
invariant feature extraction and detailed generation,
and explicit label information can make the whole sys-
tem be easier to train.

• Our method can be further applied to convolutional
neural networks by sharing parameters across differ-
ent channels and then employed in non-probabilistic
DGMs such as LAPGAN (Denton et al., 2015) to re-
fine generation on high-dimensional data.
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