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Abstract

We present a framework for accelerating a spec-
trum of machine learning algorithms that require
computation of bilinear inverse forms u>A�1u,
where A is a positive definite matrix and u a
given vector. Our framework is built on Gauss-
type quadrature and easily scales to large, sparse
matrices. Further, it allows retrospective compu-
tation of lower and upper bounds on u>A�1u,
which in turn accelerates several algorithms. We
prove that these bounds tighten iteratively and
converge at a linear (geometric) rate. To our
knowledge, ours is the first work to demonstrate
these key properties of Gauss-type quadrature,
which is a classical and deeply studied topic.
We illustrate empirical consequences of our re-
sults by using quadrature to accelerate machine
learning tasks involving determinantal point pro-
cesses and submodular optimization, and observe
tremendous speedups in several instances.

1. Introduction
Symmetric positive definite matrices arise in many areas
in a variety of guises: covariances, kernels, graph Lapla-
cians, or otherwise. A basic computation with such matri-
ces is evaluation of the bilinear form uT f(A)v, where f is
a matrix function and u, v are given vectors. If f(A) =

A�1, we speak of computing a bilinear inverse form (BIF)
uTA�1v. For example, with u=v=e

i

(ith canonical vector)
uT f(A)v = (A�1

)

ii

is the ith diagonal entry of the inverse.

In this paper, we are interested in efficiently computing
BIFs, primarily due to their importance in several machine
learning contexts, e.g., evaluation of Gaussian density at a
point, the Woodbury matrix inversion lemma, implemen-
tation of MCMC samplers for Determinantal Point Pro-
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cesses (DPP), computation of graph centrality measures,
and greedy submodular maximization (see Section 2).

When A is large, it is preferable to compute uTA�1v itera-
tively rather than to first compute A�1 (using Cholesky) at
a cost of O(N3

) operations. One could think of using con-
jugate gradients to solve Ax = v approximately, and then
obtain uTA�1v = uTx. But several applications require
precise bounds on numerical estimates to u>A�1v (e.g.,
in MCMC based DPP samplers such bounds help decide
whether to accept or reject a transition in each iteration–see
Section 5.1), which necessitates a more finessed approach.

Gauss quadrature is one such approach. Originally pro-
posed in (Gauss, 1815) for approximating integrals, Gauss-
and Gauss-type quadrature (i.e., Gauss-Lobatto (Lobatto,
1852) and Gauss-Radau (Radau, 1880) quadrature) have
since found application to bilinear forms including com-
putation of uTA�1v (Bai et al., 1996). Bai et al. also show
that Gauss and (right) Gauss-Radau quadrature yield lower
bounds, while Gauss-Lobatto and (left) Gauss-Radau yield
upper bounds on the BIF uTA�1v.

However, despite its long history and voluminous exist-
ing work (see e.g., (Golub & Meurant, 2009)), our under-
standing of Gauss-type quadrature for matrix problems is
far from complete. For instance, it is not known whether
the bounds on BIFs improve with more quadrature itera-
tions; nor is it known how the bounds obtained from Gauss,
Gauss-Radau and Gauss-Lobatto quadrature compare with
each other. We do not even know how fast the iterates of
Gauss-Radau or Gauss-Lobatto quadrature converge.

Contributions. We address all the aforementioned prob-
lems and make the following main contributions:

– We show that the lower and upper bounds generated by
Gauss-type quadrature monotonically approach the tar-
get value (Theorems 4 and 6; Corr. 7). Furthermore,
we show that for the same number of iterations, Gauss-
Radau quadrature yields bounds superior to those given
by Gauss or Gauss-Lobatto, but somewhat surprisingly
all three share the same convergence rate.

– We prove linear convergence rates for Gauss-Radau and
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Gauss-Lobatto explicitly (Theorems 5 and 8; Corr. 9).

– We demonstrate implications of our results for two tasks:
(i) scalable Markov chain sampling from a DPP; and
(ii) running a greedy algorithm for submodular optimiza-
tion. In these applications, quadrature accelerates com-
putations, and the bounds aid early stopping.

Indeed, on large-scale sparse problems our methods lead to
even several orders of magnitude in speedup.

Related Work. There exist a number of methods for ef-
ficiently approximating matrix bilinear forms. Brezinski
(1999) and Brezinski et al. (2012) use extrapolation of ma-
trix moments and interpolation to estimate the 2-norm er-
ror of linear systems and the trace of the matrix inverse.
Fika et al. (2014) extend the extrapolation method to BIFs
and show that the derived one-term and two-term approx-
imations coincide with Gauss quadrature, hence providing
lower bounds. Further generalizations address x⇤f(A)y for
a Hermitian matrix A (Fika & Mitrouli, 2015). In addi-
tion, other methods exist for estimating trace of a matrix
function (Bai & Golub, 1996; Brezinski et al., 2012; Fika
& Koukouvinos, 2015) or diagonal elements of matrix in-
verse (Bekas et al., 2007; Tang & Saad, 2012).

Many of these methods may be applied to computing BIFs.
But they do not provide intervals bounding the target value,
just approximations. Thus, a black-box use of these meth-
ods may change the execution of an algorithm whose de-
cisions (e.g., whether to transit in a Markov Chain) rely
on the BIF value to be within a specific interval. Such
changes can break the correctness of the algorithm. Our
framework, in contrast, yields iteratively tighter lower and
upper bounds (Section 4), so the algorithm is guaranteed to
make correct decisions (Section 5).

2. Motivating Applications
BIFs are important to numerous problems. We recount be-
low several notable examples: in all cases, efficient compu-
tation of bounds on BIFs is key to making the algorithms
practical.

Determinantal Point Processes. A determinantal point
process (DPP) is a distribution over subsets of a set Y
(|Y| = N ). In its L-ensemble form, a DPP uses a positive
semidefinite kernel L 2 RN⇥N , and to a set Y ✓ Y assigns
probability P (Y ) / det(L

Y

) where L
Y

is the submatrix
of L indexed by entries in Y . If we restrict to |Y | = k, we
obtain a k-DPP. DPP’s are widely used in machine learn-
ing, see e.g., the survey (Kulesza & Taskar, 2012).

Exact sampling from a (k-)DPP requires eigendecomposi-
tion of L (Hough et al., 2006), which is prohibitive. For
large N , Metropolis Hastings (MH) or Gibbs sampling are
preferred and state-of-the-art. Therein the core task is to

compute transition probabilities – an expression involving
BIFs – which are compared with a random scalar thresh-
old. For MH (Belabbas & Wolfe, 2009; Anari et al., 2016),
the transition probabilities from a current subset (state) Y
to Y 0 are min{1, L

u,u

�L
u,Y

L�1

Y

L
Y,u

} for Y 0
= Y [{u};

and min{1, L
u,u

� L
u,Y

0L�1

Y

0 L
Y

0
,u

} for Y 0
= Y \{u}. In

a k-DPP, the moves are swaps with transition probabili-

ties min

n

1,
Lu,u�Lu,Y 0L

�1

Y 0 LY 0,u

Lv,v�Lv,Y 0L
�1

Y 0 LY 0,v

o

for replacing v 2 Y by

u /2 Y (and Y 0
= Y \{v}). We illustrate this application in

greater detail in Section 5.1.

DPPs are also useful for (repulsive) priors in Bayesian mod-
els (Rocková & George, 2015; Kwok & Adams, 2012). In-
ference for such latent variable models uses Gibbs sam-
pling, which again involves BIFs.

Submodular optimization, Sensing. Algorithms for max-
imizing submodular functions can equally benefit from ef-
ficient BIF bounds. Given a positive definite matrix K 2
RN⇥N , the set function F (S) = log det(K

S

) is submod-
ular: for all S ✓ T ✓ [N ] and i 2 [N ] \ T , it holds that
F (S [ {i})� F (S) � F (T [ {i})� F (T ).

Finding the set S⇤ ✓ [N ] that maximizes F (S) is a key
task for MAP inference with DPPs (Gillenwater et al.,
2012), matrix approximations by column selection (Bout-
sidis et al., 2009; Sviridenko et al., 2015) and sensing
Krause et al. (2008). For the latter, we model spatial phe-
nomena (temperature, pollution) via Gaussian Processes
and select locations to maximize the joint entropy F

1

(S) =
H(X

S

) = log det(K
S

) + const of the observed variables,
or the mutual information F

2

(S) = I(X
S

;X
[N ]\S) be-

tween observed and unobserved variables.

Greedy algorithms for maximizing monotone (Nemhauser
et al., 1978) or non-monotone (Buchbinder et al., 2012)
submodular functions rely on marginal gains of the form

F
1

(S [ {i})� F
1

(S) = log(K
i

�K
iS

K�1

S

K
Si

);

F
1

(T \ {i})� F
1

(T ) = � log(K
i

�K
iU

K�1

U

K
Ui

);

F
2

(S [ {i})� F
2

(S) = log

Ki�KiSK

�1

S KSi

Ki�Ki ¯SK

�1

¯S
K

¯Si

for U = T\{i} and ¯S = [N ]\S. The algorithms com-
pare those gains to a random threshold, or find an item with
the largest gain. In both cases, efficient BIF bounds offer
speedups. They can be combined with lazy (Minoux, 1978)
and stochastic greedy algorithms (Mirzasoleiman et al.,
2015).

Network Analysis, Centrality. When analyzing relation-
ships and information flows between connected entities in
a network, such as people, organizations, computers, smart
hardwares, etc. (Scott, 2012; Leskovec et al., 2008; Atzori
et al., 2010; Fenu et al., 2013; Estrada & Higham, 2010;
Benzi & Klymko, 2013), an important question is to mea-
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sure popularity, centrality, or importance of a node.

Several existing popularity measures can be expressed as
the solution to a large-scale linear system. For example,
PageRank (Page et al., 1999) is the solution to (I � (1 �
↵)A>

)x = ↵1/N , and Bonacich centrality (Bonacich,
1987) is the solution to (I � ↵A)x = 1, where A is the
adjacency matrix. When computing local estimates, i.e.,
only a few entries of x, we obtain exactly the task of com-
puting BIFs (Wasow, 1952; Lee et al., 2014). Moreover,
we may only need local estimates to an accuracy sufficient
for determining which entry is larger, a setting where our
quadrature based bounds on BIFs will be useful.

Scientific Computing. In computational physics BIFs are
used for estimating selected entries of the inverse of a large
sparse matrix. More generally, BIFs can help in estimating
the trace of the inverse, a computational substep in lattice
Quantum Chromodynamics (Dong & Liu, 1994; Frommer
et al., 2012), some signal processing tasks (Golub et al.,
2008), and in Gaussian Process (GP) Regression (Ras-
mussen & Williams, 2006), e.g., for estimating variances.
In numerical linear algebra, BIFs are used in rational ap-
proximations (Sidje & Saad, 2011), evaluation of Green’s
function (Freericks, 2006), and selective inversion of sparse
matrices (Lin et al., 2011a;b; Lee et al., 2014). A notable
use is the design of preconditioners (Benzi & Golub, 1999)
and uncertainty quantification (Bekas et al., 2009).

Benefiting from fast iterative bounds. Many of the above
examples use BIFs to rank values, to identify the largest
value or compare them to a scalar or to each other. In such
cases, we first compute fast, crude lower and upper bounds
on a BIF, refining iteratively, just as far as needed to deter-
mine the comparison. Figure 1 in Section 4.4 illustrates the
evolution of these bounds, and Section 5 explains details.

3. Background on Gauss Quadrature
For convenience, we begin by recalling key aspects of
Gauss quadrature,1 as applied to computing u>f(A)v, for
an N ⇥ N symmetric positive definite matrix A that has
simple eigenvalues, arbitrary vectors u, v, and a matrix
function f . For a more detailed account of the relevant
background on Gauss-type quadratures please refer to Ap-
pendix A, or (Golub & Meurant, 2009).

It suffices to consider u>f(A)u thanks to the identity

u>f(A)v =

1

4

(u+v)>f(A)(u+v)� 1

4

(u�v)>f(A)(u�v).

Let A = Q>
⇤Q be the eigendecomposition of A where Q

1The summary in this section is derived from various
sources: (Gautschi, 1981; Bai et al., 1996; Golub & Meurant,
2009). Experts can skim this section for collecting our notation
before moving onto Section 4, which contains our new results.

is orthonormal. Letting ũ = Qu, we then have

u>f(A)u = ũ>f(⇤)ũ =

X

N

i=1

f(�
i

)ũ2

i

.

Toward computing uT f(A)u, a key conceptual step is to
write the above sum as the Riemann-Stieltjes integral

I[f ] := u>f(A)u =

Z

�

max

�

min

f(�)d↵(�), (3.1)

where �
min

2 (0,�
1

), �
max

> �
N

, and ↵(�) is piecewise
constant measure defined by

↵(�) :=

8

>

<

>

:

0, � < �
1

,
P

k

j=1

ũ2

j

, �
k

 � < �
k+1

, k < N,
P

N

j=1

ũ2

j

, �
N

 �.

Our task now reduces to approximating the integral (3.1),
for which we invoke the powerful idea of Gauss-type
quadratures (Gauss, 1815; Radau, 1880; Lobatto, 1852;
Gautschi, 1981). We rewrite the integral (3.1) as

I[f ] := Q
n

+R
n

=

X

n

i=1

!
i

f(✓
i

)+

X

m

i=1

⌫
i

f(⌧
i

)+R
n

[f ],

(3.2)
where Q

n

denotes the nth degree approximation and R
n

denotes the remainder term. In representation (3.2) the
weights {!

i

}n
i=1

, {⌫
i

}m
i=1

, and quadrature nodes {✓
i

}n
i=1

are unknown, while the values {⌧
i

}m
i=1

are prescribed and
lie outside the interval of integration (�

min

,�
max

).

Different choices of these parameters yield different
quadrature rules: m = 0 gives Gauss quadrature (Gauss,
1815); m = 1 with ⌧

1

= �
min

(⌧
1

= �
max

) gives
left (right) Gauss-Radau quadrature (Radau, 1880); m = 2

with ⌧
1

= �
min

and ⌧
2

= �
max

yields Gauss-Lobatto
quadrature (Lobatto, 1852); while for general m we obtain
Gauss-Christoffel quadrature (Gautschi, 1981).

The weights {!
i

}n
i=1

, {⌫
i

}m
i=1

and nodes {✓
i

}n
i=1

are cho-
sen such that if f is a polynomial of degree less than
2n + m � 1, then the interpolation I[f ] = Q

n

is exact.
For Gauss quadrature, we can recursively build the Jacobi
matrix

J
n

=

2

6

6

6

6

6

4

↵
1

�
1

�
1

↵
2

�
2

�
2

. . .
. . .

. . . ↵n�1

�n�1

�n�1

↵n

3

7

7

7

7

7

5

, (3.3)

and obtain from its spectrum the desired weights and nodes.
Theorem 1 makes this more precise.
Theorem 1. (Wilf, 1962; Golub & Welsch, 1969) The
eigenvalues of J

n

form the nodes {✓
i

}n
i=1

of Gauss quadra-
ture; the weights {!

i

}n
i=1

are given by the squares of the
first components of the eigenvectors of J

n

.
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Algorithm 1 Gauss Quadrature Lanczos (GQL)
Input: Matrix A, vector u; lower and upper bounds �

min

and
�
max

on the spectrum of A
Output: (gi, grr

i , g
lr
i , g

lo
i ): Gauss, right Gauss-Radau, left Gauss-

Radau, and Gauss-Lobatto quadrature estimates for each i
Initialize: u

0

= u/kuk, g
1

= kuk/u>
0

Au
0

, i = 2
for i = 1 to N do

Update Ji using a Lanczos iteration
Solve for the modified Jacobi matrices J lr

i , J rr
i and J lo

i .
Compute gi, grr

i , glr
i and glo

i with Sherman-Morrison formula.
end for

If J
n

has the eigendecomposition P>
n

�P
n

, then for
Gauss quadrature Theorem 1 yields

Q
n

=

X

n

i=1

!
i

f(✓
i

) = e>
1

P>
n

f(�)P
n

e
1

= e>
1

f(J
n

)e
1

.

(3.4)
Given A and u, our task is to compute Q

n

and the Ja-
cobi matrix J

n

. For BIFs, we have that f(J
n

) = J�1

n

,
so (3.4) becomes Q

n

= eT
1

J�1

n

e
1

, which can be com-
puted recursively using the Lanczos algorithm (Lanczos,
1950). For Gauss-Radau and Gauss-Lobatto quadrature we
can compute modified versions of Jacobi matrices J lr

n

(for
left Gauss-Radau), J rr

n

(for right Gauss-Radau) and J lo
n

(for
Gauss-Lobatto) based on J

n

. The corresponding nodes and
weights, and thus the approximation of Gauss-Radau and
Gauss-Lobatto quadratures, are then obtained from these
modified Jacobi matrices, similar to Gauss quadrature. Ag-
gregating all these computations yields an algorithm that
iteratively obtains bounds on uTA�1u. The combined pro-
cedure, Gauss Quadrature Lanczos (GQL) (Golub & Meu-
rant, 1997), is summarily presented as Algorithm 1. The
complete algorithm may be found in Appendix A.

Theorem 2. (Meurant, 1997) Let g
i

, glr
i

, grr
i

, and glo
i

be
the i-th iterates of Gauss, left Gauss-Radau, right Gauss-
Radau, and Gauss-Lobatto quadrature, respectively, as
computed by Alg. 1. Then, g

i

and grr
i

provide lower bounds
on u>A�1u, while glr

i

and glo
i

provide upper bounds.

It turns out that the bounds given by Gauss quadrature have
a close relation to the approximation error of conjugate gra-
dient (CG) applied to a suitable problem. Since we know
the convergence rate of CG, we can obtain from it the fol-
lowing estimate on the relative error of Gauss quadrature.

Theorem 3 (Relative error Gauss quadrature). The i-th it-
erate of Gauss quadrature satisfies the relative error bound

g
N

� g
i

g
N

 2

⇣

p
� 1p
+ 1

⌘

i

, (3.5)

where  := �
1

(A)/�
N

(A) is the condition number of A.

In other words, Theorem 3 shows that the iterates of Gauss
quadrature have a linear (geometric) convergence rate.

4. Main Theoretical Results
In this section we summarize our main theoretical results.
As before, detailed proofs may be found in Appendix B.
The key questions that we answer are: (i) do the bounds
on u>A�1u generated by GQL improve monotonically
with each iteration; (ii) how tight are these bounds; and
(iii) how fast do Gauss-Radau and Gauss-Lobatto iterations
converge? Our answers not only fill gaps in the literature
on quadrature, but provide a theoretical base for speeding
up algorithms for some applications (see Sections 2 and 5).

4.1. Lower Bounds

Our first result shows that both Gauss and right Gauss-
Radau quadratures give iteratively better lower bounds on
u>A�1u. Moreover, with the same number of iterations,
right Gauss-Radau yields tighter bounds.

Theorem 4. Let i < N . Then, grr
i

yields better bounds
than g

i

but worse bounds than g
i+1

; more precisely,

g
i

 grr
i

 g
i+1

, i < N.

Combining Theorem 4 with the convergence rate of relative
error for Gauss quadrature (Thm. 3) we obtain the follow-
ing convergence rate estimate for right Gauss-Radau.

Theorem 5 (Relative error right Gauss-Radau). For each
iteration i, the right Gauss-Radau iterate grr

i

satisfies

g
N

� grr
i

g
N

 2

⇣

p
� 1p
+ 1

⌘

i

.

4.2. Upper Bounds

Our second result compares Gauss-Lobatto with left
Gauss-Radau quadrature.

Theorem 6. Let i < N . Then, glr
i

gives better upper
bounds than glo

i

but worse than glo
i+1

; more precisely,

glo
i+1

 glr
i

 glo
i

, i < N.

This shows that bounds given by both Gauss-Lobatto and
left Gauss-Radau become tighter with each iteration. For
the same number of iterations, left Gauss-Radau provides a
tighter bound than Gauss-Lobatto.

Combining the above two theorems, we obtain the follow-
ing corollary for all four Gauss-type quadratures.

Corollary 7 (Monotonicity). With increasing i, g
i

and grr
i

give increasingly better lower bounds and glr
i

and glo
i

give
increasingly better upper bounds, that is,

g
i

 g
i+1

; grr
i

 grr
i+1

;

glr
i

� glr
i+1

; glo
i

� glo
i+1

.
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4.3. Convergence rates

Our next two results state linear convergence rates for left
Gauss-Radau quadrature and Gauss-Lobatto quadrature ap-
plied to computing the BIF uTA�1u.
Theorem 8 (Relative error left Gauss-Radau). For each i,
the left Gauss-Radau iterate glr

i

satisfies

glr
i

� g
N

g
N

 2+

⇣

p
� 1p
+ 1

⌘

i

,

where +

:= �
N

/�
min

, i < N .

Theorem 8 shows that the error again decreases linearly,
and it also depends on teh accuracy of �

min

, our estimate
of the smallest eigenvalue that determines the range of inte-
gration. Using the relations between left Gauss-Radau and
Gauss-Lobatto, we readily obtain the following corollary.
Corollary 9 (Relative error Gauss-Lobatto). For each i,
the Gauss-Lobatto iterate glo

i

satisfies

glo
i

� g
N

g
N

 2+

⇣

p
� 1p
+ 1

⌘

i�1

,

where +

:= �
N

/�
min

and i < N .

Remarks All aforementioned results assumed that A is
strictly positive definite with simple eigenvalues. In Ap-
pendix C, we show similar results for the more general case
that A is only required to be symmetric, and u lies in the
space spanned by eigenvectors of A corresponding to dis-
tinct positive eigenvalues.

4.4. Empirical Evidence

Next, we empirically verify our the theoretical results
shown above. We generate a random symmetric matrix
A 2 R100⇥100 with density 10%, where each entry is ei-
ther zero or standard normal, and shift its diagonal entries
to make its smallest eigenvalue �

1

= 10

�2, thus making
A positive definite. We set �

min

= ��
1

= (�
1

� 10

�5

)

and �
max

= �+

N

= (�
N

+ 10

�5

). We randomly sample
u 2 R100 from a standard normal distribution. Figure 1 il-
lustrates how the lower and upper bounds given by the four
quadrature rules evolve with the number of iterations.

Figure 1 (b) and (c) show the sensitivity of the rules (except
Gauss quadrature) to estimating the extremal eigenvalues.
Specifically, we use �

min

= 0.1��
1

and �
max

= 10�+

N

.

The plots in Figure 1 agree with the theoretical results.
First, all quadrature rules are seen to yield iteratively tighter
bounds. The bounds obtained by the Gauss-Radau quadra-
ture are superior to those given by Gauss and Gauss-
Lobatto quadrature (also numerically verified). Notably,
the bounds given by all quadrature rules converge very fast
– within 25 iterations they yield reasonably tight bounds.

Iter
5 10 15 20 25
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l
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150
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λ1
- , λN

+

(a)

Iter
5 10 15 20 25
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l
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0.1λ1
- , λN

+

(b)
Iter

5 10 15 20 25
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l
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145

150

155

λ1
- , 10λN

+

Exact
Gauss
Gauss-Lobato
L-Gauss-Radau
R-Gauss-Radau

(c)

Figure 1: Lower and upper bounds computed by Gauss-
type quadrature in each iteration on u>A�1u with A 2
R100⇥100.

It is valuable to see how the bounds are affected if we do
not have good approximations to the extremal eigenvalues
�
1

and �
N

. Since Gauss quadrature does not depend on the
approximations �

min

< �
1

and �
max

> �
N

, its bounds re-
main the same in (a),(b),(c). Left Gauss-Radau depends on
the quality of �

min

, and, with a poor approximation takes
more iterations to converge (Figure 1(b)). Right Gauss-
Radau depends on the quality of �

max

; thus, if we use
�
max

= 10�+

N

as our approximation, its bounds become
worse (Figure 1(c)). However, its bounds are never worse
than those obtained by Gauss quadrature. Finally, Gauss-
Lobatto depends on both �

min

and �
max

, so its bounds be-
come worse whenever we lack good approximations to �

1

or �
N

. Nevertheless, its quality is lower-bounded by left
Gauss-Radau as stated in Theorem 6.

5. Algorithmic Results and Applications
Our theoretical results show that Gauss-Radau quadrature
provides good lower and upper bounds to BIFs. More im-
portantly, these bounds get iteratively tighter at a linear
rate, finally becoming exact (see Appendix B). However,
in many applications motivating our work (see Section 2),
we do not need exact values of BIFs; bounds that are tight
enough suffice for the algorithms to proceed. As a result, all
these applications benefit from our theoretical results that
provide iteratively tighter bounds. This idea translates into
a retrospective framework for accelerating methods whose
progress relies on knowing an interval containing the BIF.
Whenever the algorithm takes a step (transition) that de-
pends on a BIF (e.g., as in the next section, a state transi-
tion in a sampler if the BIF exceeds a certain threshold), we
compute rough bounds on its value. If the bounds suffice
to take the critical decision (e.g., decide the comparison),
then we stop the quadrature. If they do not suffice, we take
one or more additional iterations of quadrature to tighten
the bound. Algorithm 2 makes this idea explicit.

We illustrate our framework by accelerating: (i) Markov
chain sampling for (k-)DPPs; and (ii) maximization of a
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Algorithm 2 Efficient Retrospective Framework
Input: Algorithm with transitions that depend on BIFs
while algorithm not yet done do

while no transition request for values of a BIF do
proceed with the original algorithm

end while
if exist transition request for values of a BIF then

while bounds on the BIF not tight enough to make the tran-
sition do
Retrospectively run one more iteration of left and(or)

right Gauss-Radau to obtain tighter bounds.
end while
Make the correct transition with bounds

end if
end while

(specific) nonmonotone submodular function.

5.1. Retrospective Markov Chain (k-)DPP

First, we use our framework to accelerate iterative samplers
for Determinantal Point Processes. Specifically, we discuss
MH sampling (Kang, 2013); the variant for Gibbs sampling
follows analogously.

The key insight is that all state transitions of the Markov
chain rely on a comparison between a scalar p and a quan-
tity involving the bilinear inverse form. Given the cur-
rent set Y , assume we propose to add element y to Y .
The probability of transitioning to state Y [ {y} is q =

min{1, L
y,y

� L
y,Y

L�1

Y

L
Y,y

}. To decide whether to ac-
cept this transition, we sample p ⇠ Uniform(0, 1); if p < q
then we accept the transition, otherwise we remain at Y .
Hence, we need to compute q just accurately enough to de-
cide whether p < q. To do so, we can use the aforemen-
tioned lower and upper bounds on L

y,Y

L�1

Y

L
Y,y

.

Let s
i

and t
i

be lower and upper bounds for this BIF in the
i-th iteration of Gauss quadrature. If p  L

y,y

� t
i

, then
we can safely accept the transition, if p � L

y,y

� s
i

, then
we can safely reject the transition. Only if L

y,y

� t
i

<
p < L

y,y

� s
i

, we cannot make a decision yet, and there-
fore retrospectively perform one more iteration of Gauss
quadrature to obtain tighter upper and lower bounds s

i+1

and t
i+1

. We continue until the bounds are sharp enough to
safely decide whether to make the transition. Note that in
each iteration we make the same decision as we would with
the exact value of the BIF, and hence the resulting algo-
rithm (Algorithm 3) is an exact Markov chain for the DPP.
In each iteration, it calls Algorithm 4, which uses step-wise
lazy Gauss quadrature for deciding the comparison, while
stopping as early as possible.

If we condition the DPP on observing a set of a fixed cardi-
nality k, we obtain a k-DPP. The MH sampler for this pro-
cess is similar, but a state transition corresponds to swap-
ping two elements (adding y and removing v at the same

Algorithm 3 Gauss-DPP (L)

Input: DPP kernel L; ground set Y
Output: Y sampled from exact DPP (L)
Randomly Initialize Y ✓ Y
while chain not mixed do

Pick y 2 Y , p 2 (0, 1) uniformly randomly
if y 2 Y then

Y 0 = Y \{y}
Compute bounds �

min

, �
max

on the spectrum of LY 0

if DPPJUDGE(Lyy�p, LY 0,y , LY 0 , �
min

, �
max

) then
Y = Y 0

end if
else

Y 0 = Y [ {y}
Compute bounds �

min

, �
max

on the spectrum of LY

if not DPPJUDGE(Lyy�p, LY,y , LY , �
min

, �
max

) then
Y = Y 0

end if
end if

end while

Algorithm 4 DPPJUDGE(t, u, A,�
min

,�
max

)
Input: target value t; vector u, matrix A; lower and upper bounds

�
min

and �
max

on the spectrum of A
Output: Return true if t < u>A�1u, false otherwise
while true do

Run one Gauss-Radau iteration to get grr and glr for u>A�1u.
if t < grr then

return true
else if t � glr then

return false
end if
i = i+ 1

end while

time). Assume the current set is Y = Y 0 [ {v}. If we pro-
pose to delete v and add y to Y 0, then the corresponding
transition probability is

q = min

n

1,
L
y,y

� L
y,Y

0L�1

Y

0 L
Y

0
,y

L
v,v

� L
v,Y

0L�1

Y

0 L
Y

0
,v

o

. (5.1)

Again, we sample p ⇠ Uniform(0, 1), but now we must
compute two quantities, and hence two sets of lower and
upper bounds: sy

i

, ty
i

for L
y,Y

0L�1

Y

0 L
Y

0
,y

in the i-th Gauss
quadrature iteration, and sv

j

, tv
j

for L
v,Y

0L�1

Y

0 L
Y

0
,v

in the
j-th Gauss quadrature iteration. Then if we have p 
Ly,y�t

y
i

Lv,v�s

v
j

, we can safely accept the transition; and if p �
Ly,y�s

y
i

Lv,v�t

v
j

we can safely reject the transition; otherwise, we
tighten the bounds via additional Gauss-Radau iterations.

Refinements. We could perform one iteration for both y
and v, but it may be that one set of bounds is already suf-
ficiently tight, while the other is loose. A straightforward
idea would be to judge the tightness of the lower and upper
bounds by their difference (gap) t

i

�s
i

, and decide accord-
ingly which quadrature to iterate further.
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But the bounds for y and v are not symmetric and
contribute differently to the transition decision. In
essence, we need to judge the relation between p and
Ly,y�Ly,Y 0L

�1

Y 0 LY 0,y

Lv,v�Lv,Y 0L
�1

Y 0 LY 0,v
, or, equivalently, the relation between

pL
v,v

� L
y,y

and pL
v,Y

0L�1

Y

0 L
Y

0
,v

� L
y,Y

0L�1

Y

0 L
Y

0
,y

.
Since the left hand side is “easy”, the essential part is the
right hand side. Assuming that in practice the impact is
larger when the gap is larger, we tighten the bounds for
L
v,Y

L�1

Y

L
Y,v

if p(tv
j

� sv
j

) > (ty
i

� sy
i

), and otherwise
tighen the bounds for L

y,Y

L�1

Y

L
Y,y

. Details of the final
algorithm with this refinement are shown in Appendix D.

5.2. Retrospective Double Greedy Algorithm

As indicated in Section 2, a number of applications, in-
cluding sensing and information maximization with Gaus-
sian Processes, rely on maximizing a submodular function
given as F (S) = log det(L

S

). In general, this function
may be non-monotone. In this case, an algorithm of choice
is the double greedy algorithm of Buchbinder et al. (2012).

The double greedy algorithm starts with two sets X
0

= ;
and Y

0

= Y and serially iterates through all elements to
construct a near-optimal subset. At iteration i, it includes
element i into X

i�1

with probability q
i

, and with probabil-
ity 1 � q

i

it excludes i from Y
i�1

. The decisive value q
i

is
determined by the marginal gains �

�
i

= F (Y
i�1

\{i}) �
F (Y

i�1

) and �

+

i

= F (X
i�1

[ {i})� F (X
i�1

):

q
i

= [�

+

i

]

+

/[�+

i

]

+

+ [�

�
i

]

+

.

For the log-det function, we obtain

�

+

i

= � log(L
i,i

� L
i,Y

0
i�1

L�1

Y

0
i�1

L
Y

0
i�1

,i

)

�

�
i

= log(L
i,i

� L
i,Xi�1

L�1

Xi�1

L
Xi�1

,i

),

where Y 0
i�1

= Y
i�1

\{i}. In other words, at iteration i the
algorithm uniformly samples p 2 (0, 1), and then checks if

p[��
i

]

+

 (1� p)[�+

i

]

+

,

and if true, adds i to X
i�1

, otherwise removes it from Y
i�1

.

This essential decision, whether to retain or discard an ele-
ment, again involves bounding BIFs, for which we can take
advantage of our framework, and profit from the typical
sparsity of the data. Concretely, we retrospectively com-
pute the lower and upper bounds on these BIFs, i.e., lower
and upper bounds l+

i

and u+

i

on �

+

i

, and l�
i

and u�
i

on
�

�
i

. If p[u�
i

]

+

 (1 � p)[l+
i

]

+

we safely add i to X
i�1

;
if p[l�

i

]

+

> (1 � p)[u+

i

]

+

we safely remove i from Y
i�1

;
otherwise we compute a set of tighter bounds by further
iterating the quadrature.

As before, the bounds for ��
i

and �

+

i

may not contribute
equally to the transition decision. We can again apply the

refinement mentioned in Section 5.1: if p([u�
i

]

+

�[l�
i

]

+

) 
(1 � p)([u+

i

]

+

� [l+
i

]

+

) we tighten bounds for �+

i

, other-
wise we tighten bounds for ��

i

. The resulting algorithm is
shown in Appendix E.
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Figure 2: Running times (top) and corresponding speedup
(bottom) on synthetic data. (k-)DPP is initialized with ran-
dom subsets of size N/3 and corresponding running times
are averaged over 1,000 iterations of the chain. All results
are averaged over 3 runs.

Data Dimension nnz Density(%)

Abalone 4,177 144,553 0.83
Wine 4,898 2,659,910 11.09

GR 5,242 34,209 0.12
HEP 9,877 61,821 0.0634

Epinions 75,879 518,231 0.009
Slashdot 82,168 959,454 0.014

Table 1: Data. For all datasets we add an 1E-3 times iden-
tity matrix to ensure positive definiteness.

5.3. Empirical Evidence

We perform experiments on both synthetic and real-world
datasets to test the impact of our retrospective quadrature
framework in applications. We focus on (k-)DPP sampling
and the double greedy algorithm for the log-det objective.

5.3.1. SYNTHETIC DATASETS

We generate small sparse matrices using methods similar to
Section 4.4. For (k-)DPP we generate 5000⇥5000 matrices
while for double greedy we use 2000⇥ 2000. We vary the
density of the matrices from 10

�3 to 10

�1. The running
time and speedup are shown in Figure 2.

The results suggest that our framework greatly accelerates
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Abalone Wine GR HEP Epinions Slashdot

DPP
9.6E-3 1x 8.5E-2 1x 9.3E-3 1x 6.5E-2 1x 1.46 1x 5.85 1x
5.4E-4 17.8x 5.9E-3 14.4x 4.3E-4 21.6x 5.9E-4 110.2x 3.7E-3 394.6x 7.1E-3 823.9x

k-DPP
1.4E-2 1x 0.15 1x 1.7E-2 1x 0.13 1x 2.40 1x 11.83 1x
7.3E-4 19.2x 1.1E-2 13.6x 7.3E-4 23.3x 9.2E-4 141.3x 4.9E-3 489.8x 1E-2 1183x

DG
1025.6 1x 1951.3 1x 965.8 1x 6269.4 1x ⇤ ⇤ ⇤ ⇤

17.3 59.3x 423.2 4.6x 10 9.7x 25.3 247.8x 418 ⇤ 712.9 ⇤

Table 2: Running time and speedup for (k-)DPP and double greedy. For results on each dataset (occupying two columns),
the first column shows the running time (in seconds) and the second column shows the speedup. For each algorithm
(occupying two rows), the first row shows results from the original algorithm and the second row shows results from
algorithms using our framework. For Epinions and Slashdot, entries of “⇤” indicate that the experiments did not finish
within 24 hours.

both DPP sampling and submodular maximization. The
speedups are particularly pronounced for sparse matrices.
As the matrices become very sparse, the original algorithms
profit from sparsity too, and the difference shrinks a little.
Overall, we see that our framework has the potential to lead
to substantial speedups for algorithms involving bilinear in-
verse forms.

5.3.2. REAL DATASETS

We further test our framework on real-world datasets of
varying sizes. We selected 6 datasets, four of them
are of small/medium size and two are large. The four
small/medium-sized datasets are used in (Gittens & Ma-
honey, 2013). The first two of small/medium-sized
datasets, Abalone and Wine2, are popular datasets for re-
gression, and we construct sparse kernel matrices with an
RBF kernel. We set the bandwidth parameter for Abalone
as � = 0.15 and that for Wine as � = 1 and the cut-off
parameter as 3� for both datasets, as in (Gittens & Ma-
honey, 2013). The other two small/medium-sized datasets
are GR (arXiv High Energy Physics collaboration graph)
and HEP (arXiv General Relativity collaboration graph),
where the kernel matrices are Laplacian matrices. The fi-
nal two large datasets datasets are Epinions (Who-trusts-
whom network of Epinions) and Slashdot (Slashdot social
network from Feb. 2009) 3 with large Laplacian matrices.
Dataset statistics are shown in Table 1.

The running times in Table 2 suggest that the iterative
bounds from quadrature significantly accelerate (k-)DPP
sampling and double greedy on real data. Our algorithms
lead to speedups of up to a thousand times.

On the large sparse matrices, the “standard” double greedy
algorithm did not finish within 24 hours, due to the expen-
sive matrix operations involved. With our framework, the

2Available at http://archive.ics.uci.edu/ml/.
3Available at https://snap.stanford.edu/data/.

algorithm needs only 15 minutes. To our knowledge, these
results are the first time to run DPP and double greedy for
information gain on such large datasets.

6. Conclusion
In this paper we present a general and powerful compu-
tational framework for algorithms that rely on computa-
tions of bilinear inverse forms. The framework uses Gauss
quadrature methods to lazily and iteratively tighten bounds,
and is supported by our new theoretical results. We analyze
properties of the various types of Gauss quadratures for ap-
proximating the bilinear inverse forms and show that all
bounds are monotonically becoming tighter with the num-
ber of iterations; those given by Gauss-Radau are superior
to those obtained from other Gauss-type quadratures; and
both lower and upper bounds enjoy a linear convergence
rate. We empirically verify the efficiency of our framework
and are able to obtain speedups of up to a thousand times
for two popular examples: maximizing information gain
and sampling from determinantal point processes.
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