
Recovery guarantee of weighted low-rank approximation via alternating minimization

A. Preliminaries about subspace distance
Before delving into the proofs, we will prove a few simple preliminaries about subspace angles/distances.

Definition (Distance, Principle angle). Denote the principle angle of Y, V ∈ Rn×k as θ(Y,V). Then for orthogonal
matrix Y (i.e., Y>Y = I),

tan θ(Y,V) = ‖Y>⊥V(Y>V)−1‖2.

For orthogonal matrices Y, V,

cos θ(Y,V) = σmin(Y>V),

sin θ(Y,V) = ‖(I−YY>)V‖2 = ‖Y⊥Y>⊥V‖2 = ‖Y>⊥V‖2,
distc(Y,V) = min

Q∈Ok×k
‖YQ−V‖2

where Ok×k is the set of k × k orthogonal matrices.

Lemma 4 (Equivalence of distance). Let Y, V ∈ Rn×k be two orthogonal matrices, then we have:

sin θ(Y,V) ≤ distc(Y,V) ≤ sin θ(Y,V) +
1− cos θ(Y,V)

cos θ(Y,V)
≤ 2tan θ(Y,V).

Proof of Lemma 4. Suppose
Q∗ = argminQ∈Ok×k‖YQ−V‖2.

Let’s write V = YQ∗ + R, then distc(Y,V) = ‖R‖2. We have

sin θ(Y,V) = ‖(I−YY>)V‖2 = ‖Y⊥Y>⊥R‖2 ≤ ‖R‖2

On the other hand, suppose ADB> = SVD(Y>V), we know that σmin(D) = σmin(Y>V) = cos θ(Y,V). Therefore,
by A = Y>VBD−1, AB> ∈ Ok×k we have:

distc(Y,V) ≤ ‖YAB> −V‖2 = ‖YY>VBD−1B> −V‖2
≤ ‖YY>VBD−1B> −YY>V‖2 + ‖YY>V −V‖2
≤ ‖BD−1B> − I‖2 + sin θ(Y,V) = ‖D−1 − I‖2 + sin θ(Y,V)

= sin θ(Y,V) +
1− cos θ(Y,V)

cos θ(Y,V)
.

Finally, sin θ(Y,V) ≤ tan θ(Y,V) and 1−cos θ(Y,V)
cos θ(Y,V) ≤ tan θ(Y,V) can be verified by definition, so the last inequality

follows.

For convenience in our proofs we will also use the following generalization of incoherence:

Definition (Generalized incoherence). For a matrix A ∈ Rn×k, the generalized incoherence ρ(A) is defined as:

ρ(A) = max
i∈[n]

{n
k
‖Ai‖22

}
We call it generalized incoherence for obvious reasons: when A is an orthogonal matrix, then ρ(A) = µ(A).

B. Proofs for alternating minimization with clipping
We will show in this section the results for our algorithm based on alternating minimization with a clipping step. The
organization is as follows. In Section B.1 we will present the necessary lemmas for the initialization, in Section B.3 we
show the decrease of the potential function after one update step, and in Section B.4 we will put everything together, and
prove our main theorem.
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Before starting with the proofs, we will make a remark which will simplify the exposition.

Without loss of generality, we may assume that

δ = ‖W �N‖2 ≤
λσmin(M∗)

200k
(B.1)

Otherwise, we can output the 0 matrix, and the guarantee of all our theorems would be satisfied vacuously.

B.1. SVD-based initialization

We want to show that after initialization, the matrices X,Y are close to the ground truth matrix U,V. Observe that
[X,Σ,Y] = SVD(W �M) = SVD(W � (M∗ + N)) = SVD(W �M∗ + W �N). By our assumptions we know
that ||W �N||2 ≤ δ which we are thinking of as small, so the idea is to show that W �M∗ is close to M∗ in spectral
norm, then by Wedin’s theorem (Wedin, 1972) we will have X,Y are close to U,V. We show that W �M∗ is close to
M∗ by the spectral gap property of W and the incoherence property of U,V.

Lemma 5 (Spectral lemma). Let W be an (entry wise non-negative) matrix in Rn×n with a spectral gap, i.e. W =
E + γnJΣWK>, where J,K are n× n (column) orthogonal matrices, with ||ΣW||2 = 1, γ < 1. Furthermore, for every
matrix H ∈ Rn×n such that H = AΣB> (A,B not necessarily orthogonal, Σ ∈ Rk×k is diagonal) we have

‖(W −E)�H‖2 ≤ γkσmax(Σ)
√
ρ(A)ρ(B)

where E is the all one matrix.

Proof of Lemma 5. We know that for any unit vectors x, y ∈ Rn,

x> ((W −E)�H) y =

k∑
r=1

σrx
T
(
(W −E)�ArB

>
r

)
y

= γn

k∑
r=1

σr(Ar � x)>JΣWK>(Br � y)

≤ γn

k∑
r=1

σr||Ar � x||2||JΣWK>||2||Br � y||2

≤ γn

k∑
r=1

σr||Ar � x||2||Br � y||2

≤ γnσmax(Σ)

√√√√ k∑
r=1

||Ar � x||22

√√√√ k∑
r=1

||Br � y||22

≤ γnσmax(Σ)

√√√√ n∑
i=1

x2
i ||Ai||22

√√√√ n∑
i=1

y2
i ||Bi||22

≤ γnσmax(Σ)

√√√√k

n
ρ(A)

(
n∑
i=1

x2
i

)√√√√k

n
ρ(B)

(
n∑
i=1

y2
i

)
≤ γσmax(Σ)k

√
ρ(A)ρ(B).

The lemma follows from the definition of the operator norm.

The spectral lemma can be used to prove the initialization condition, when combined with Wedin’s theorem.

Lemma 6 (Wedin’s Theorem (Wedin, 1972)). Let M∗, M̃ be two matrices whose singular values are σ1, ..., σn and
σ̃1, ..., σ̃n, let U,V and X,Y be the first k singular vectors (left and right) of M∗, M̃ respectively. If ∃α > 0 such that
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maxnr=k+1 σ̃r ≤ minki=1 σi − α, then

max {sin θ(U,X), sin θ(V,Y)} ≤ ||M̃−M∗||2
α

.

Lemma 7. Suppose M∗,W satisfy all the assumptions, then for (X,Σ,Y) = rank-k SVD(W �M), we have

max{tan θ(X,U), tan θ(Y,V)} ≤ 4(γµk + δ)

σmin(M∗)

Proof of Lemma 7. We know that

‖W �M−M∗‖2 ≤ ||W �M∗ −M∗||2 + ||W �N||2 ≤ γµkσmax(M∗) + δ.

Therefore, by Weyl’s theorem,

max{σr(W �M) : k + 1 ≤ r ≤ n} ≤ γµk + δ ≤ 1

2
σmin(M∗).

where the last inequality holds because of B.1 and the assumption on γ in the theorem statement.

Now, by Wedin’s theorem with α = 1
2σmin(M∗), for (X,Σ,Y) = rank-k SVD(W �M),

max {sin θ(U,X), sin θ(V,Y)} ≤ 2(γµk + δ)

σmin(M∗)

Since γ and δ are small enough, so sinθ ≤ 1/2. In this case, we have tanθ ≤ 2sinθ, then the lemma follows.

Finally, this gives us the following guarantee on the initialization:

Lemma 8 (SVD initialization). Suppose M∗,W satisfy all the assumptions.

distc(V,Y1) ≤ 8k∆1, ρ(Y1) ≤ 2µ

1− k∆1

where ∆1 = 8(γµk+δ)
σmin(M∗) .

Proof of Lemma 8. First, consider Ỹ1. By Lemma 7 and 4, we get that

distc(Ỹ1,V) ≤ ∆1

which means that ∃Q ∈ Ok×k, s.t.
‖Ỹ1Q−V‖2 ≤ ∆1

hence
‖Ỹ1Q−V‖F ≤ k∆1 ≤

1

4

where the last inequality follows since γ and δ are small enough.

Next, consider Y1. In the clipping step, if ‖Ỹi
1‖ ≥ ξ = 2µk

n , then ‖Ỹi
1 −Vi‖ ≥ µk

n , and ‖Yi

1 −Vi‖ = ‖Vi‖ = µk
n .

Otherwise, Y
i

= Ỹi. So

‖Y1Q−V‖F ≤ ‖Ỹ1Q−V‖F ≤
1

4
.

Finally, we can argue that Y1 is close to V. Let’s assume that Y1 = Y1R
−1, for an upper-triangular R.

sin θ(V,Y1) = ‖V>⊥Y1‖2 = ‖V>⊥(Y1 −VQ−1)R−1‖2 ≤ ‖Y1Q−V‖2‖R−1‖2 ≤
1

σmin(Y1)
‖Y1Q−V‖F
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where the second inequality follows because the singular values of R and Y1 are the same. Note that

σmin(Y1) ≥ σmin(V)− ‖Y1 −V‖F ≥ σmin(V)− k∆1 = 1− k∆1 ≥
1

2

So
sin θ(V,Y1) ≤ 2‖Y1Q−V‖F ≤

1

2
.

In this case, we have tan θ(V,Y1) ≤ 2sin θ(V,Y1) and thus

distc(V,Y1) ≤ 2tan θ(V,Y1) ≤ 4sin θ(V,Y1) ≤ 8‖Y1Q−V‖2 ≤ 8‖Y1Q−V‖F ≤ 8k∆1.

For ρ(Y1), observe that Yi
1 = Y

i
R−1, so

‖Yi
1‖ ≤ ‖Y

i

1‖‖R−1‖2 ≤
ξ

σmin(Y1)
≤ ξ

1− k∆1

which leads to the bound.

B.2. Random initialization

With respect to the random initialization, the lemma we will need is the following one:
Lemma 9 (Random initialization). Let Y be a random matrix in Rn×k generated as Yi,j = bi,j

1√
n

, where bi,j are

independent, uniform {−1, 1} variables. Furthermore, let ‖W‖∞ ≤ λn
k2µ log2 n

. Then, with probability at least 1− 1
n2 over

the draw of Y,

∀i, σmin

(
Y>DiY

)
≥ 1

4

λ

kµ
.

Proof of Lemma 9. Notice that Y>DiY =
∑
j(Y

j)>(Di)jY
j , and each of the terms (Yj)>(Di)jY

j is indepen-
dent. Furthermore, it’s easy to see that E[(Yj)>(Di)j(Y

j)] = 1
n (Di)j , ∀j. By linearity of expectation it follows that

E[
∑
j(Y

j)>(Di)jY
j ] = 1

n

∑
j(Di)j .

Now, we claim
∑
j(Di)j ≥ λn

kµ . Indeed, by Assumption (A3) we have for any vector a ∈ Rn

a>V>DiVa =
∑
j

(Di)j〈Vj , a〉2 ≥ λ.

On the other hand, however, by incoherence of V,
∑
j(Di)j〈Vj , a〉2 ≤

∑
j(Di)j

µk
n . Hence,

∑
j(Di)j ≥ λ n

kµ . Putting
things together, we get

E[
∑
j

(Yj)>(Di)jY
j ] ≥ λ

kµ

Denote
B := ‖(Yj)>(Di)jY

j‖2 ≤
k

n
(Di)j ≤

λ

kµ log2 n

where the first inequality follows from our sampling procedure, and the last inequality by the assumption that ‖W‖∞ ≤
λn

k2µ log2 n
.

Since all the random variables (Yj)>(Di)jY
j are independent, applying Matrix Chernoff we get that

Pr

∑
j

(Yj)>(Di)j(Y
j) ≤ (1− δ) λ

kµ

 ≤ n( e−δ

(1− δ)(1−δ)

) λ
kµB

≤ n
(

e−δ

(1− δ)(1−δ)

)log2 n

Picking δ = 3
4 , and union bounding over all i, with probability at least 1− 1

n2 , for all i,

σmin

(
Y>DiY

)
≥ 1

4

λ

kµ

as needed.



Recovery guarantee of weighted low-rank approximation via alternating minimization

B.3. Update

We now prove the two key technical lemmas (Lemma 10 and Lemma 11) and then use them to prove that the updates make
progress towards the ground truth. We prove them for Yt and use them to show Xt improves, while completely analogous
arguments also hold when switching the role of the two iterates. Note that we measure the distance between Yt and V by
distc(Yt,V) = minQ∈Ok×k ‖YtQ−V‖ where Ok×k is the set of k× k orthogonal matrices. For simplicity of notations,
in these two lemmas, we let Yo = YtQ

∗ where Q∗ = argminQ∈Ok×k‖YtQ−V‖.

We first show that there can only be a few i’s such that the spectral property of Y>o DiYo can be bad, when Yo is close to
V. Let (Di)j be the j-th diagonal entry in Di, that is, (Di)j = Wi,j .

Lemma 10. Let Yo be a (column) orthogonal matrix in Rn×k, and ε ∈ (0, 1). If ‖Yo − V‖2F ≤
ε3λ2n

128µkD1
for D1 =

maxi∈[n]

∑
j(Di)j , then

∣∣{i ∈ [n]
∣∣σmin(Y>o DiYo) ≤ (1− ε)λ

}∣∣ ≤ 1024µ2k2γ2D1

ε4λ3 ‖V −Yo‖2F .

Proof of Lemma 10. For a value g > 0 which we will specify shortly, we call j ∈ [n] “good” if ‖Yj
o−Vj‖2 ≤ g2. Denote

the set of “good” j’s as Sg .

Then for every unit vector a ∈ Rk,

a>Y>o DiYoa =
∑
j∈[n]

(Di)j〈a,Yj
o〉2

≥
∑
j∈Sg

(Di)j〈a,Yj
o〉2

=
∑
j∈Sg

(Di)j
(
〈a,Vj〉+ 〈a,Yj

o −Vj〉
)2

≥ (1− ε

4
)
∑
j∈Sg

(Di)j〈a,Vj〉2 − 4− ε
ε

∑
j∈Sg

(Di)j〈a,Yj
o −Vj〉2

(Using the fact ∀x, y ∈ R : (x+ y)2 ≥ (1− ε0)x2 − 1− ε0
ε0

y2)

≥ (1− ε

4
)
∑
j∈Sg

(Di)j〈a,Vj〉2 − 4− ε
ε

g2
∑
j∈[n]

(Di)j

≥ (1− ε

4
)
∑
j∈[n]

(Di)j〈a,Vj〉2 − µk

n

∑
j∈[n]−Sg

(Di)j −
4− ε
ε

g2
∑
j∈[n]

(Di)j

By Assumption (A3), we know that∑
j∈[n]

(Di)j〈a,Vj〉2 = aTV>DiVa ≥ σmin(V>DiV) ≥ λ

Moreover, recall D1 = maxi∈[n]

∑
j(Di)j , so when g2 ≤ ε2λ

16D1
,

4− ε
ε

g2
∑
j∈[n]

(Di)j ≤
ελ

4

Let us consider now
∑
j∈[n]−Sg (Di)j . Define:

S =

i ∈ [n]

∣∣∣∣∣∣µkn
∑

j∈[n]−Sg

(Di)j ≥
ελ

4


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Then it is sufficient to bound |S|.

For Sg , observe that

∑
j

‖Vj −Yj
o‖22 = ‖V −Yo‖2F

Which implies that

|[n]− Sg| = size ([n]− Sg) ≤
‖V −Yo‖2F

g2

Let uS be the indicator vector of S, and ug be the indicator vector of [n]− Sg , we know that

u>SWug =
∑
i∈S

∑
j∈[n]−Sg

(Di)j

≥ ελn

4µk
|S|

On the other hand,

u>SWug = u>SEug + u>S (W −E)ug

≤ |S||[n]− Sg|+ γn
√
|S||[n]− Sg|

Putting these two inequalities together, we have

|[n]− Sg|+ γn

√
|[n]− Sg|
|S|

≥ ελn

4µk

Which implies when |[n]− Sg| ≤ ελn
8µk , we have:

|S| ≤ 64µ2k2γ2|[n]− Sg|
ε2λ2 ≤ 64µ2k2γ2‖V −Yo‖2F

ε2λ2g2

Then, setting g2 = ε2λ
16D1

, we have:

∣∣{i ∈ [n]
∣∣σmin(Y>o DiYo) ≤ (1− ε)λ

}∣∣ ≤ |S| ≤ 1024µ2k2γ2D1

ε4λ3 ‖V −Yo‖2F

which is what we need.

Lemma 11. Let Yo be a (column) orthogonal matrix in Rn×k. Then we have∑
i∈[n]

‖V>Y⊥Y>⊥DiYo‖22 ≤ γ2ρ(Yo)nk
3‖Yo −V‖22

Proof of Lemma 11. We want to bound the spectral norm of V>Y⊥Y>⊥DiYo, for a fixed j ∈ [k], let Yj be the j-th
column of Yo and Ṽj be the j-th column of Y⊥Y>⊥V.

For fixed j, j′ ∈ [k], consider a new vector xj,j
′ ∈ Rn such that xj,j

′

i = (Ṽj)i(Yj′)i.

Note that 〈Ṽj ,Yj′〉 = 0, which implies that
∑
i x

j,j′

i = 0.
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Let us consider V>j Y⊥Y>⊥DiYj′ , we know that

V>j Y⊥Y>⊥DiYj′ =
∑
s∈[n]

(Di)s(Ṽj)s(Yj′)s

=
∑
s∈[n]

(Di)sx
j,j′

s

Which implies that

∑
i∈[n]

∑
s∈[n]

(Di)sx
j,j′

s

2

= ‖Wxj,j
′
‖22

= ‖(W −E)xj,j
′
‖22 (since Exj,j

′
= 0)

≤ γ2n2‖xj,j
′
‖22

Observe that

‖xj,j
′
‖22 =

∑
i∈[n]

(xj,j
′

i )2

=
∑
i∈[n]

(Ṽj)
2
i (Yj′)

2
i

≤ ρ(Yo)k

n

∑
i∈[n]

(Ṽj)
2
i

=
ρ(Yo)k

n
‖Ṽj‖22

≤ ρ(Yo)k

n
‖Y⊥Y>⊥V‖22

=
ρ(Yo)k

n
‖Y⊥Y>⊥(Yo −V)‖22

≤ ρ(Yo)k

n
‖Yo −V‖22.

Which implies ∑
i∈[n]

∑
s∈[n]

(Di)sx
j,j′

s

2

≤ γ2ρ(Yo)nk‖Yo −V‖22

Now we are ready to bound V>Y⊥Y>⊥DiYo. Note that

‖V>Y⊥Y>⊥DiYo‖22 ≤ ‖V>Y⊥Y>⊥DiYo‖2F
≤

∑
j,j′∈[k]

(
V>j Y⊥Y>⊥DiYj′

)2

=
∑

j,j′∈[k]

∑
s∈[n]

(Di)sx
j,j′

s

2

.

This implies that

∑
i∈[n]

‖V>Y⊥Y>⊥DiYo‖22 ≤
∑
i∈[n]

∑
j,j′∈[k]

∑
s∈[n]

(Di)sx
j,j′

s

2

≤ γ2ρ(Yo)nk
3‖Yo −V‖22.
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as needed.

We now use the two technical lemmas to prove the guarantees for the iterate after one update step.

Lemma 12 (Update, main). Let Y be a (column) orthogonal matrix in Rn×k, and dist2c(Y,V) ≤ min{ 1
2 ,

λ2n
384µk2D1

} for
D1 = maxi∈[n]

∑
j(Di)j .

Define X̃← argminX∈Rn×k
∥∥M−XY>

∥∥
W

. Let X a n× k matrix such that for each row:

X
i

=

{
X̃i if ‖X̃i‖22 ≤ ξ = 2µk

n
0 otherwise.

Suppose X has QR decomposition X = XR. Then
(1) ‖X−UΣV>Y‖2F ≤ ∆2

u :=
(

108ξµ2k3γ2D1

λ2 + 160γ2µρ(Y)k4

λ2

)
distc(Y,V)2 + 160k

λ2 ‖W �N‖22.
(2) If ∆u ≤ 1

8σmin(M∗), then

distc(U,X) ≤ 8

σmin(M∗)− 2∆u
∆u and ρ(X) ≤ 4µ

σmin(M∗)− 2∆u
.

Proof of Lemma 12. (1) By KKT condition, we know that for orthogonal Y, the optimal X̃ satisfies(
W �

[
M− X̃Y>

])
Y = 0

which implies that the i-th row X̃i of X̃ is given by

X̃i = MiDiY
(
Y>DiY

)−1
= (M∗)iDiY

(
Y>DiY

)−1
+ NiDiY

(
Y>DiY

)−1
.

Let us consider the first term, by M∗ = UΣV>, we know that

(M∗)iDiY
(
Y>DiY

)−1
= UiΣV>DiY

(
Y>DiY

)−1

= UiΣV>(YY> + Y⊥Y>⊥)DiY
(
Y>DiY

)−1

= UiΣV>Y + UiΣV>Y⊥Y>⊥DiY
(
Y>DiY

)−1

which implies that

X̃i −UiΣV>Y = UiΣV>Y⊥Y>⊥DiY
(
Y>DiY

)−1
+ NiDiY

(
Y>DiY

)−1

Let us consider set

S1 =

{
i ∈ [n]

∣∣∣∣σmin(Y>DiY) ≤ λ

4

}
Now we have:∑

i/∈S1

∥∥∥X̃i −UiΣV>Y
∥∥∥2

2
≤ 16

λ2

∑
i/∈S1

(
2‖UiΣV>Y⊥Y>⊥DiY‖22 + 2‖NiDiY‖22

)
≤ 32µk‖Σ‖22

nλ2

∑
i/∈S1

‖V>Y⊥Y>⊥DiY‖22 +
32

λ2

∑
i∈[n]

‖NiDiY‖22

≤ 32µk‖Σ‖22
nλ2

∑
i∈[n]

‖V>Y⊥Y>⊥DiY‖22 +
32

λ2 ‖(W �N)Y‖2F

≤ ∆g :=
32γ2µρ(Y)k4

λ2 distc(Y,V)2 +
32k

λ2 ‖(W �N)‖22.



Recovery guarantee of weighted low-rank approximation via alternating minimization

where the last inequality is due to Lemma 11. Note that since ξ = 2µk
n ≥ 2‖UiΣV>Y‖22, this implies∣∣∣{i ∈ [n]− S1

∣∣∣‖X̃i‖22 ≥ ξ
}∣∣∣ ≤ ∣∣∣∣{i ∈ [n]− S1

∣∣∣∣‖X̃i −UiΣV>Y‖22 ≥
ξ

2

}∣∣∣∣ ≤ 2∆g

ξ
.

Let S2 =
{
i ∈ [n]− S1

∣∣∣‖X̃i‖22 ≥ ξ
}

, we have:

∥∥X−UΣV>Y
∥∥2

F
=

n∑
i=1

∥∥∥Xi −UiΣV>Y
∥∥∥2

2
(because ‖Xi‖22 ≤ ξ and ‖UiΣV>Y‖22 ≤ ξ)

≤
∑

i∈S1∪S2

2ξ +
∑

i 6∈S1∪S2

∥∥∥X̃i −UiΣV>Y
∥∥∥2

2

≤ 2ξ(|S1|+ |S2|) +
∑

i 6∈S1∪S2

∥∥∥X̃i −UiΣV>Y
∥∥∥2

2

≤ 2ξ|S1|+ 4∆g + ∆g.

By Lemma 10, we know that |S1| ≤ 54µ2k3γ2D1

λ2 ‖V −Y‖22. Further plugging in ∆g , we have

∥∥X−UΣV>Y
∥∥2

F

≤ 2ξ
54µ2k3γ2D1

λ2 ‖V −Y‖22 +
160γ2µρ(Y)k4

λ2 ‖Y −V‖22 +
160k

λ2 ‖(W �N)‖22

=

(
108ξµ2k3γ2D1

λ2 +
160γ2µρ(Y)k4

λ2

)
‖Y −V‖22 +

160k

λ2 ‖(W �N)‖22.

(2) Denote B = ΣV>Y. Then,

sin θ(U,X) = ‖U>⊥X‖2 = ‖U>⊥(X−UB)R−1‖2 ≤ ‖X−UB‖2‖R−1‖2 =
1

σmin(X)
‖X−UB‖2

Since ‖X−UB‖2 ≤ ∆u, we have

σmin(X) ≥ σmin(UB)−∆u = σmin(ΣV>Y)−∆u ≥ σmin(M∗)cos θ(Y,V)−∆u.

By the assumption cos θ(Y,V) ≥ 1/2, so

sin θ(U,X) ≤ 2

σmin(M∗)− 2∆u
∆u.

When ∆u ≤ 1
8σmin(M∗), the right hand side is smaller than 1/3, so cos θ(U,X) ≥ 1/2, and thus tan θ(U,X) ≤

2sin θ(U,X). Then the statement on distc(U,X) follows from distc(U,X) ≤ 2tan θ(U,X) ≤ 4sin θ(U,X).

Finally, observe that Xi = X
i
R−1, so

‖Xi‖2 ≤ ‖X
i‖2‖R−1‖2 ≤

ξ

σmin(X)

which leads to the bound.

B.4. Putting everything together: proofs of the main theorems

Finally, in this section we put things together and prove the main theorems.

We first proceed to the SVD-initialization based algorithm:
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Theorem 1. If M∗,W satisfy assumptions (A1)-(A3), and

γ = O

(
min

{√
n

D1

λ

τµ3/2k2
,

λ

τ3/2µk2

})
,

then after O(log(1/ε)) rounds Algorithm 1 with initialization from Algorithm 3 outputs a matrix M̃ that satisfies

||M̃−M∗||2 ≤ O
(
kτ

λ

)
||W �N||2 + ε.

The running time is polynomial in n and log(1/ε).

Proof of Theorem 1. We first show by induction distc(Xt,U) ≤ 1
2t + 70 k

λσmin(M∗)δ for t > 1, and distc(Yt,U) ≤
1
2t + 70 k

λσmin(M∗)δ for t ≥ 1.

First, by Lemma 8, Y1 satisfies

distc(V,Y1) ≤ 8k∆1 =
64k(γµk + δ)

σmin(M∗)
.

Since γ = O
(

1
τk2µ

)
, the base case follows. Now proceed to the inductive step and prove the statement for t+ 1 assuming

it is true for t. Now we can apply Lemma 12. By taking the constants within the O(·) notation for γ sufficiently small and
by the inductive hypothesis, we have(

108ξµ2k3γ2D1

λ2 +
160γ2µρ(Y1)k4

λ2

)
≤ 1

100
σ2

min(M∗)

and
∆u ≤

1

8
σmin(M∗).

By Lemma 12, we get

distc(U,Xt+1) ≤ 2

σmin(M∗)− 2∆u
∆u ≤

8

3σmin(M∗)
∆u

=
8

3σmin(M∗)

√(
108ξµ2k3γ2D1

λ2 +
160γ2µρ(Y1)k4

λ2

)
dist2c(U,Xt) +

160k

λ2 δ2

≤ 8

3σmin(M∗)

(√(
108ξµ2k3γ2D1

λ2 +
160γ2µρ(Y1)k4

λ2

)
dist2c(Yt,V) +

√
160k

λ2 δ2

)
(using

√
a+ b ≤

√
a+
√
b)

≤ 1

2
distc(Yt,V) +

35
√
k

λσmin(M∗)
δ

so the statement also holds for t+ 1. This completes the proof for bounding distc(Xt,U) and distc(Yt,V).

Given the bounds on distc(Xt,U) and distc(Yt,V), we are now ready to prove the theorem statement. For simplicity, let
X denote XT+1 and Y denote YT , so the algorithm outputs M̃ = XY.

By Lemma 12,

‖X−UΣV>Y‖2F ≤ ∆2
u :=

(
108ξµ2k3γ2D1

λ2 +
160γ2µρ(Y)k4

λ2

)
distc(Y,V)2 +

160k

λ2 ‖W �N‖22.

Plugging the choice of γ and noting ξ = 2µk
n and ρ(Y) = O(µ/σmin(M∗)), we have

‖X−UΣV>Y‖2F ≤ ∆2
u = O

(
distc(Y,V)2

)
+

160k

λ2 ‖W �N‖22
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which leads to

‖X−UΣV>Y‖F ≤ ∆u ≤ O (distc(Y,V)) +
16
√
k

λ
‖W �N‖2.

Now consider ‖M∗ − M̃‖2 = ‖M∗ − XY>‖2. By definition, we know that there exists Q such that Y = VQ + ∆y

where ‖∆y‖2 = O(distc(Y,V)). Also, let R = X−UΣV>Y.

M̃−M∗ =
[
UΣV>(VQ + ∆y) + R

]
(VQ + ∆y)> −UΣV>

= UΣQ∆>y + UΣV>∆y(VQ + ∆y)> + R(VQ + ∆y)>

= UΣQ∆>y + UΣV>∆yY
> + RY>.

Therefore,

‖M̃−M∗‖2 ≤ ‖UΣ‖2‖Q‖2‖∆y‖2 + ‖UΣV>‖2‖∆y‖2‖Y‖2 + ‖R‖2‖Y‖2
≤ 2‖∆y‖2 + ‖R‖2

≤ O (distc(Y,V)) +
16
√
k

λ
‖W �N‖2.

Combining this with the bound on distc(YT ,V), the theorem then follows.

Next, we show the main theorem for random initialization:

Theorem 3 (Main, random initialization). Suppose M∗,W satisfy assumptions (A1)-(A3) with

γ = O

(
min

{√
n

D1

λ

τµ2k5/2
,

λ

τ3/2µ3/2k5/2

})
,

‖W‖∞ = O

(
λn

k2µ log2 n

)
,

where D1 = maxi∈[n] ‖Wi‖1. Then after O(log(1/ε)) rounds Algorithm 1 using initialization from Algorithm 4 outputs
a matrix M̃ that with probability at least 1− 1/n2 satisfies

‖M̃−M∗‖2 ≤ O
(
kτ

λ

)
‖W �N‖2 + ε.

The running time is polynomial in n and log(1/ε).

Proof of Theorem 3. Let Y be initialized using the random initialization algorithm 4. Consider applying the proof in
Lemma 12, with S1 being modified to be

S1 =

{
i ∈ [n]

∣∣∣∣σmin(Y>DiY) ≤ λ

4µk

}
But with this modification, S1 = ∅, with high probability. Then the same calculation from Lemma 12 (which now doesn’t
need to use Lemma 10 at all since S1 = ∅) gives∥∥X−UΣV>Y

∥∥2

F
≤ ∆gµk

But following part (2) of the same Lemma, we get that if ∆gµk <
1
8σmin(M∗),

distc(U,X) ≤ 2

σmin(M∗)− 2∆gµk
∆gµk
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So, in order to argue by induction in 1 exactly as before, we only need to check that after the update step for X, distc(U,X)
is small enough to apply Lemma 12 for later steps. Indeed, we have:

distc(U,X) ≤ 2

σmin(M∗)− 2∆gµk
∆gµk ≤

√
min

{
1

2
,

λ2n

384µk2D1

}

Noticing that ∆g has a quadratic dependency on γ, we see that if

γ = O

(
min

{√
n

D1

λσmin(M∗)

µ2k5/2
,
λσ

3/2
min(M∗)

µ3/2k5/2

})
,

the inequality is indeed satisfied.

With that, the theorem statement follows.

B.5. Estimating σmax(M∗)

Finally, we show that we can estimate σmax(M∗) up to a very good accuracy, so that we can apply our main theorems to
matrices with arbitrary σmax(M∗). This is quite easy: the estimate of it is just ‖W �M‖2. Then, the following lemma
holds:

Lemma 13. It γ = o( 1
kµ ) and δ = ‖W �N‖2 = o(σmax(M∗)) then ‖W �M‖2 = (1± o(1))(σmax(M∗))

Proof. We proceed separately for the upper and lower bound.

For the upper bound, we have

‖W �M‖2 = ‖W �M∗ + W �N‖2 ≤ ‖W �M∗‖2 + ‖W �N‖2
≤ ‖(W −E)�M∗‖2 + ‖E�M∗‖2 + ‖W �N‖2
≤ γkµσmax(M∗) + σmax(M∗) + δ ≤ (1 + o(1))σmax(M∗). (by Lemma 5)

For the lower bound, completely analogously we have

‖W �M‖2 = ‖W �M∗ + W �N‖2 ≥ ‖W �M∗‖2 − ‖W �N‖2
≥ ‖E�M∗‖2 − ‖(W −E)�M∗‖2 − ‖W �N‖2
≥ σmax(M∗)− γkµσmax(M∗)− δ ≥ (1− o(1))σmax(M∗) (by Lemma 5)

which finishes the proof.

Given this, the reduction to the case σmax(M∗) ≤ 1 is obvious: first, we scale the matrix M down by our estimate of
σmax(M∗) and run our algorithm with, say, four times as many rounds. After this, we rescale the resulting matrix M̃ by
our estimate of σmax(M∗), after which the claim of Theorems 1 and 3 follows.

C. Empirical verification of the spectral gap property
Experiments on the performance of the alternating minimization can be found in related work (e.g., (Lu et al., 1997; Srebro
& Jaakkola, 2003)). Therefore, we focus on verifying the key assumption, i.e., the spectral gap property of the weight
matrix (Assumption (A2)).

Here we consider the application of computing word embeddings by factorizing the co-occurrence matrix between the
words, which is one of the state-of-the-art techniques for mapping words to low-dimensional vectors (about 300 dimension)
in natural language processing. There are many variants (e.g., (Levy & Goldberg, 2014; Pennington et al., 2014; Arora
et al., 2016)); we consider the following simple approach. Let X be the co-occurrence matrix, where Xi,j is the number
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of times that word i and word j appear together within a window of small size (we use size 10 here) in the given corpus.
Then the word embedding by weighted low rank problem is

min
V

∑
i,j

f(Xi,j)

(
log

(
Xi,j

X

)
− 〈Vi,Vj〉

)2

where X =
∑
i,j Xi,j , Vi’s are the vectors for the words, and f(x) = max{Xi,j , 100} for a large corpus and f(x) =

max{Xi,j , 10} for a small corpus.

We focus on the weight matrix Wi,j = f(Xi,j). It has been observed that using Xi,j as weights is roughly the maximum
likelihood estimator under certain probabilistic model and is better than using uniform weights. It has also been verified
that using the truncated weight f(Xi,j) is better than using Xi,j . Our experiments suggest that f(Xi,j) is better partially
due to the requirement that the weight matrix should have the spectral gap property for the algorithm to succeed.

We consider two large corpus (Wikipedia corpus (Wikimedia, 2012), about 3G tokens; a subset of Commoncrawl cor-
pus (Buck et al., 2014), about 20G tokens). For each corpus, we pick the top n words (n = 500, 1000, . . . , 5000) and
compute the spectral gap ‖W − E‖2 where W is the weight matrix corresponding to the words, and E is the all-one
matrix. Note that a scaling of W does not affect the problem, so we enumerate different scaling of W (from 2−20 to 210)
and plot the best spectral gap. We compare the two variants: with threshold (Wi,j = f(Xi,j)), and without threshold
(Wi,j = Xi,j).
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Figure 1. Spectral gap of the weight matrix for word embeddings on Wikipedia corpus. x-axis: number of words (size of the matrix);
y-axis: the spectral gap ‖W −E‖2 where E is the all-one matrix.

The results are shown in Figure 1. Without threshold, there is almost no spectral gap. With threshold, there is a decent gap,
though with the increase of the matrix size, the gap become smaller because larger vocabulary includes more uneven co-
occurrence entries and thus more noise. This suggests that thresholding can make the weight matrix nicer for the algorithm,
and thus leads to better performance.


