
Box-Constrained Approach for Hard Permutation Problems

A. Omitted Proofs
Lemma 2.1. ‖φ(x)− φ(y)‖F ≤ 2‖x− y‖1.

Proof. It suffices to prove that for doubly-stochastic matri-
ces U and V , we have ‖Mk(xk)U−Mk(yk)V ‖F ≤ ‖U−
V ‖F +2|xk−yk|. The result follows when we set U and V
toMk−1(xk−1) . . .M1(x1) andMk−1(yk−1) . . .M1(y1),
respectively.

‖Mk(xk)U −Mk(yk)V ‖F
=‖Mk(xk)U −Mk(xk)V +Mk(xk)V −Mk(yk)V)‖F
≤‖Mk(xk)(U − V)‖F + ‖(Mk(xk)−Mk(yk))V ‖F
≤‖U − V ‖F + ‖(Mk(xk)V −Mk(yk))V ‖F . (19)

The first inequality uses the triangle inequality and the sec-
ond inequality follows from the fact that Mk is a contrac-
tion. By using Vs,: and Vt,: to denote the skth and tkth rows
of V , we obtain

‖(Mk(xk)V −Mk(yk))V ‖2F
= 2‖(xk − yk)Vs,: − (xk − yk)Vt,:‖2F
= 2(xk − yk)2‖Vs,: − Vt,:‖2F
≤ 2(xk − yk)2(‖Vs,:‖2F + ‖Vt,:‖2F)

≤ 4(xk − yk)2, (20)

where the final equality uses the fact that the `2-norm of
each row of a doubly-stochastic matrix is at most 1. The
claim follows from combining (19) and (20).

Proposition 2.2. Suppose the objective g(x;µ) in Problem
(6) is coordinatewise strongly concave. Then any point x̂
that is coordinatewise minimal leads to a permutation ma-
trix φ(x̂). Any φ(x∗) corresponding to a global minimum
x∗ is a solution to the original Problem (1).

Proof. Any x that is not binary is not coordinatewise min-
imal, so all coordinatewise minimal points must be binary
and correspond to a permutation matrix. Also, the regular-
ization term penalizes every permutation equally and hence
a global minimal x∗ gives an optimal permutation φ(x∗)
for Problem (1).

Proposition 3.1. Suppose g(·;µ) is coordinatewise
strongly concave. Then cyclic coordinate descent with ex-
act minimization reaches a binary x in finitely many steps.

Proof. The minimizer along each coordinate is always ei-
ther 0 or 1 so within a single cycle of coordinate descent,
x is binary. After that, x remains binary and at each
step corresponds to an unvisited permutation since f(x) is
monotonically decreasing. Hence, the algorithm terminates
within n! +m coordinate iterations.

B. Gradient and Hessian Computation.
In describing the computation of the full gradient, we focus
on the term (13), which is one of the terms in the partial
derivative with respect to xk. We can rearrange this term to
obtain〈

AMm . . .Mk+1vk, φ(x)BM1 . . .Mk−1vk
〉
. (21)

We can maintain matrices Uk := AMmMm−1 . . .Mk+1

and V k := φ(x)BM1M2 . . .Mk−1, so that (21) can
be written as 〈Ukvk, V kvk〉. The derivative with re-
spect to the next component xk+1 can be written as
〈Uk+1vk+1, V k+1vk+1〉, where the new W and Z matri-
ces are obtained from the O(n) update formulas Uk+1 =
Uk(Mk+1)−1 and V k+1 = V kMk.

If xk = 0.5, we have Mk(xk) is not invertible. As for
cyclic coordinate descent, we can store the two columns
that were affected by Mk(xk) and restore them when
needed.

Algorithm 3 details the process for incrementally comput-
ing term (13) for all xk. (The process for computing (14)
is similar.) Computation of the full gradient is thus also
an O(nm) operation. Using this technique, we can ap-
ply full-gradient first-order methods efficiently, including
gradient projection and Frank-Wolfe. With an appropri-
ate line-search method, gradient projection is guaranteed
to converge to a stationary point.

Algorithm 3 Computing the gradient term (13) for all xk
Input: comparison coefficients x and matrices A,B ∈
Rn×n
U ← A
for i = m to 1 do
U ← UM i

end for
V ← compute φ(x)B
for i = 1 to m do
U ← U(M i)−1

gi ←
〈
Uvi, V vi

〉
V ← VM i

end for

Theorem B.1. The gradient with respect to a sorting-
network coordinate for the objective in (12) can be com-
puted in O(nm) time. The amount of additional memory
used is O(n2 + nd), where d = |{i | xi = 0.5}|.

For the Hessian computation, the second partial derivative
with respect to xk and xj is

2 ·
〈
(vj)>M j+1 . . .MmAMm . . .Mk+1vk,

(vk)>Mk−1 . . .M1BM1 . . .M j−1vj
〉
.

(22)

Box-Constrained Approach for Hard Permutation Problems

Using matrices Uk := AMmMm−1 . . .Mk+1 and W k :=
Mk−1Mk−1 . . .M1B, so that (22) can be written as
〈(vj)>M j+1 . . .MmUkvk, (vk)>W kM1 . . .M j−1vj〉,
we can compute Uk and W k from Uk−1 and W k−1

respectively in O(n) operations.

We can compute the kth row of the Hessian in O(m) op-
erations, given Uk and W k. We first compute uk,0 :=
M1M2 . . .MmUkvk and wk,0 := (vk)>W k, and recur-
sively define the terms uk,j := (M j)−1uk,j−1 and wk,j =
wk,j−1M j . The (k, j) entry of the Hessian is now given by

2((vj)>uk,j)(wk,jvj).

Computing each entry of the Hessian takes just O(1) op-
erations, due to the sparsity of the v vectors. As with the
cyclic coordinate descent algorithm and gradient computa-
tion, when xk = 0.5, we need to store the corresponding
columns or elements to reverse Mk(xk).

Algorithm 4 describes this process in detail.

Algorithm 4 Computing the Hessian
Input: comparison coefficients x and matrices A,B ∈
Rn×n
U ← A
for i = m to 1 do
U ← UM i

end for // U = Aφ(x) at the end of the loop
W ← B
for i = 1 to m do
U ← U(M i)−1

u← Uvi

w> ← (vi)>W
for j = m to 1 do
u←M ju

end for
for j = 1 to m do
u← (M j)−1u
Hkj ← ((vj)>x) · (w>vj)
w> ← w>M j

end for
W ←M iW

end for

Theorem B.2. The Hessian can be computed in O(m2)
time and uses O(n2 +nd) additional memory (if we do not
need to store the Hessian), where d = |{i | xi = 0.5}|.

C. Additional Experiment Details
C.1. QAPLIB Experiments: Details

We now assess the effects of the various features and
heuristics in our coordinate descent framework. In this sec-
tion, we use CD to refer to the variant of coordinate de-

scent with no continuation and a fixed regularization term
of µ = 0. The timings in this section are relative to the
average performance of CD.

We use Table 2 to study the effect of the type of sorting net-
work in the sorting network heuristic for local optimality,
and Table 3 to study the effects of continuation and of the
greedy pairwise swap heuristic.

From Table 2, we see that in general, using theO(n log2 n)
sized sorting network (RS) gives a significant improvement
over having no sorting network, with the exception of els
(this is likely due to the randomness inherent to the exper-
iments). The full sorting network (FS) gives a slight im-
provement over RS in a majority of instances, especially in
terms of the median objective. The running time of RS and
FS are similar, and they are slightly higher than the running
time for having no sorting network.

From the first part of Table 3, in terms of the objective value
we see that applying just continuation (CD+C) is generally
better than having just running CD, while applying con-
tinuation in the presence of a sorting network has mixed
effects. We get mixed results when we compare the timing
incurred by using just continuation (CD+C) with the timing
from just using the sorting network heuristic (CD+FS).

The results from applying the greedy swap heuristic (sec-
ond part of Table 3) show that applying the greedy swap
heuristic can generally improve performance, at a much
larger cost in terms of timing compared to the sorting net-
work heuristic. Applying the greedy heuristic on the meth-
ods with the sorting network heuristic (i.e. CD+FS+G
and CD+C+FS+G) can actually lead to a method that is
faster that the methods without (i.e. CD+G and CD+C+G)
on some problem families like tho and sko. This is in
line with the fact that the sorting network heuristic can be
viewed a continuous variant of the greedy swap heuristic
and as such replaces some of the work the greedy swap
heuristic can do. In general, greedy swaps can signifi-
cantly improve the objective value obtained by the meth-
ods. Note that this results in a much smaller performance
gap between CD+G and CD+C+FS+G than between plain
CD and CD+C+FS. The difference between CD+C+FS and
CD+C+FS+G is generally small.

Finally, we include the table of results for all the FAQ vari-
ants (Table 4) to better understand the effect of applying the
greedy pairwise swap heuristic to FAQ. For problems like
bur, chr, els, and scr, we see that the greedy heuristic
is the primary factor behind the final objective values ob-
tained, while for most other instances it helps to narrow the
gap between FAQ10 and FAQ30.

Box-Constrained Approach for Hard Permutation Problems

Type Num n CD+C CD+C+RS CD+C+FS CD+C CD+C+RS CD+C+FS CD+C CD+C+RS CD+C+FS
BUR 8 26 .06 .12 .03 .78 .78 .79 1.03 1.01 .97
CHR 14 12--25 11.92 6.84 7.34 44.50 39.92 38.48 1.92 2.57 2.20
ELS 1 19 .90 4.21 .00 20.59 27.60 27.60 1.93 2.73 2.55
ESC 20 16--128 .73 .08 .15 3.93 2.02 1.87 3.75 4.67 4.69
HAD 5 12--20 .00 .00 .00 .59 .39 .30 2.37 3.44 3.27
KRA 3 30--32 2.23 1.75 1.72 1.67 1.23 1.12 1.57 2.17 2.36
LIPA A 8 20--90 1.06 .95 .89 1.51 1.50 1.50 5.34 5.37 5.63
LIPA B 8 20--90 12.47 7.92 7.52 19.52 19.03 18.86 4.66 4.69 4.79
NUG 15 12--30 .77 .43 .39 4.29 3.46 3.39 1.82 2.49 2.16
ROU 3 12--20 1.01 .22 .31 5.33 4.67 4.67 3.06 3.15 2.81
SCR 3 12--20 1.24 .00 .00 7.60 7.04 6.62 2.31 2.70 2.43
SKO 13 42--100 1.30 1.03 .86 2.47 2.18 2.02 1.39 1.84 2.15
STE 3 36 4.63 3.63 4.69 16.93 14.77 13.85 1.42 1.87 1.99
TAI 28 10--256 1.51 1.30 1.31 6.09 5.50 5.42 2.37 2.91 2.90
THO 3 30--150 1.74 1.54 1.20 4.03 3.62 3.36 1.33 1.87 1.95
WIL 2 50,100 .45 .48 .39 1.35 1.20 1.13 1.35 1.83 2.11

Median of 100 RunsBest of 100 Runs
Average Timing RatioAverage Percent Optimality Gap

(compared to CD)

Table 2. Performance of CD+C, CD+C+RS, and CD+C+FS on QAPLIB instances, aggregated by family of instances. These variants
are compared to highlight the differences with modifying the choice of the sorting network for the local optimality heuristic.

C.2. Comparison To Other Methods for QAPLIB

For completeness, we include a discussion about the other
methods to which FAQ has been compared in Vogelstein
et al. (2015). These methods include

• PATH (Zaslavskiy et al., 2009), a convex-concave
method for undirected graph matching that works by
first solving the convex relaxation of the graph match-
ing problem, then solving linear interpolations of con-
vex and concave formulations of the graph matching
problem to move towards a permutation matrix.

• EPATH (Liu et al., 2012), a directed-graph version of
PATH.

• QPB (quadratic programming bound) (Anstreicher &
Brixius, 2001; Schellewald et al., 2001), which solves
a convex quadratic relaxation of the QAP and then for-
mulates a linear assignment problem to find a permu-
tation matrix.

• GRAD (graduated assignment algorithm) by Gold &
Rangarajan (1996), an annealing-type approach.

• U (Umeyama, 1988)), which formulates the graph
matching problem as a linear assignment problem us-
ing spectral information.

For QAPLIB, the majority of results reported for these al-
gorithms has been on either a subset of 16 symmetric or
16 asymmetric instances. The median results of CD over
100 instances outperforms the results of the other meth-
ods from Zaslavskiy et al. (2009) (namely, PATH, QPB,
GRAD, and U). Relative to the top quartile of results for

FAQ10 and FAQ30 outperforms PATH for 13 and all 16
of the problems respectively. The asymmetric instances
include 8 lipa a and 8 lipa b instances, and results
for QPB, GRAD, EPATH, and U are reported in Liu et al.
(2012). The top quartile for the FAQ methods outperform
or tie with the other algorithms on all 16 instances. CD out-
performs these algorithms on the lipa a instances, but
for lipa b, GRAD and EPATH perform as well as the
FAQ methods and significantly better than CD, which in
turn significantly outperform QPB and U.

C.3. Synthetic QAP Experiments: Details

QAP generator and parameters. The class of problems
come from Section 3.5 of Taillard (1995).

We first generate n points on the plane. We repeat the fol-
lowing process until there are no points left to place:

• Pick a cluster size s uniformly between 1 and 20.

• Pick a radius uniformly between 0 and 1000 and an
angle uniformly at random. The corresponding point
gives us the center of the cluster.

• Place s points around the center of the cluster by pick-
ing a radius uniformly between 0 and 10 and an angle
uniformly at random for each point.

We let the A matrix be the Euclidean distance matrix cor-
responding to these n points. For the B matrix, we first
generate a uniform random [0, 1] real n× n matrix X . We
then set the (i, j) component of B to be b10(6Xij−4)c. Un-
der this scheme, roughly two-thirds of the entries of B are
zero.

Box-Constrained Approach for Hard Permutation Problems

Type Num n CD CD+C CD+FS CD+C+FS CD CD+C CD+FS CD+C+FS CD+C CD+FS CD+C+FS
BUR 8 26 .08 .06 .01 .03 .79 .78 .51 .79 1.03 2.02 .97
CHR 14 12--25 12.47 11.92 8.12 7.34 51.20 44.50 40.20 38.48 1.92 1.62 2.20
ELS 1 19 1.25 .90 1.31 .00 27.44 20.59 28.08 27.60 1.93 2.19 2.55
ESC 20 16--128 1.04 .73 .18 .15 5.96 3.93 4.16 1.87 3.75 2.00 4.69
HAD 5 12--20 .03 .00 .02 .00 1.37 .59 .46 .30 2.37 2.70 3.27
KRA 3 30--32 2.61 2.23 1.85 1.72 2.25 1.67 1.23 1.12 1.57 2.16 2.36
LIPA A 8 20--90 1.63 1.06 1.07 .89 2.38 1.51 1.92 1.50 5.34 2.75 5.63
LIPA B 8 20--90 11.69 12.47 2.60 7.52 20.01 19.52 18.90 18.86 4.66 2.99 4.79
NUG 15 12--30 .73 .77 .23 .39 5.12 4.29 3.41 3.39 1.82 1.87 2.16
ROU 3 12--20 .35 1.01 .05 .31 6.90 5.33 4.78 4.67 3.06 1.74 2.81
SCR 3 12--20 3.22 1.24 .01 .00 10.53 7.60 7.36 6.62 2.31 1.70 2.43
SKO 13 42--100 1.35 1.30 .90 .86 2.67 2.47 1.96 2.02 1.39 2.02 2.15
STE 3 36 3.60 4.63 2.91 4.69 18.32 16.93 13.16 13.85 1.42 1.78 1.99
TAI 28 10--256 1.67 1.51 1.17 1.31 6.87 6.09 4.95 5.42 2.37 2.03 2.90
THO 3 30--150 2.01 1.74 1.13 1.20 4.38 4.03 3.37 3.36 1.33 1.98 1.95
WIL 2 50,100 .66 .45 .44 .39 1.52 1.35 1.15 1.13 1.35 2.02 2.11

Average Timing Ratio
(compared to CD)

Average Percent Optimality Gap
Best of 100 Runs Median of 100 Runs

Type CD+G CD+C+G CD+FS+G CD+C+FS+G CD+G CD+C+G CD+FS+G CD+C+FS+G CD+G CD+C+G CD+FS+G CD+C+FS+G
BUR .02 .02 .01 .01 .49 .52 .47 .50 3.26 3.37 2.91 3.25
CHR 9.99 8.51 7.57 7.34 39.16 38.12 37.38 38.26 1.84 2.57 2.15 2.53
ELS .99 .90 1.13 .00 19.15 19.38 28.07 27.60 2.39 2.94 2.89 2.92
ESC .65 .73 .15 .00 3.96 2.83 3.97 1.71 1.64 4.32 2.55 5.19
HAD .00 .00 .01 .00 .35 .41 .14 .30 2.30 2.94 3.51 3.69
KRA 1.91 1.34 1.76 1.64 1.25 1.44 1.03 1.12 2.51 2.56 2.88 2.86
LIPA A .96 .82 .81 .67 1.69 1.31 1.44 1.31 3.53 7.83 5.24 7.67
LIPA B 10.03 10.05 2.59 7.52 19.01 18.94 18.67 18.79 4.10 11.86 5.85 9.96
NUG .52 .48 .22 .39 3.66 3.76 3.27 3.38 2.09 2.58 2.39 2.56
ROU .06 .21 .05 .31 4.84 4.59 4.24 4.58 1.77 3.70 2.21 3.19
SCR .01 .01 .00 .00 6.90 6.33 6.85 6.59 1.68 2.87 2.13 2.78
SKO .93 1.03 .84 .83 2.20 2.08 1.91 2.01 9.50 9.55 4.45 3.06
STE 3.34 3.21 2.52 4.53 13.56 13.88 12.79 13.85 3.49 3.10 2.53 2.43
TAI 1.19 1.15 1.13 1.22 5.31 5.24 4.79 5.04 3.97 5.23 3.63 4.11
THO 1.31 1.12 1.02 1.19 3.64 3.49 3.30 3.36 5.31 5.51 4.84 3.10
WIL .38 .34 .44 .39 1.26 1.17 1.11 1.13 9.21 8.64 4.88 3.05

Average Percent Optimality Gap
Best of 100 Runs Median of 100 Runs

Average Timing Ratio
(compared to CD)

Table 3. Performance of CD, CD+C, CD+FS, CD+C+FS, and the variants of these with the greedy pairwise swap heuristic on QAPLIB
instances, aggregated by family of instances. These variants are compared to highlight the effects of (1) continuation, and (2) the greedy
swap heuristic.

Type FAQ10 FAQ10+G FAQ30 FAQ30+G FAQ10 FAQ10+G FAQ30 FAQ30+G FAQ10 FAQ10+G FAQ30 FAQ30+G
BUR .08 .04 .06 .04 .27 .09 .19 .08 739.89 742.16 1940.95 1942.74
CHR 18.72 5.69 9.32 5.90 77.50 36.01 57.76 33.91 2.17 3.57 4.81 5.80
ELS 25.89 4.21 22.96 4.56 77.60 14.49 67.39 19.15 1078.06 1081.29 2612.64 2615.23
ESC .73 .15 .05 .00 9.82 2.64 5.34 2.36 1.42 2.09 4.28 4.85
HAD .39 .00 .15 .05 3.77 .77 .77 .37 3.45 5.65 10.35 11.32
KRA 2.46 1.67 .06 .00 4.10 1.50 1.59 1.19 5.79 7.30 19.57 14.11
LIPA A 1.79 1.21 1.02 .66 2.23 1.55 1.76 1.35 3.01 5.54 7.69 10.07
LIPA B .00 .00 .00 .00 15.07 12.16 4.93 4.90 3.81 6.15 9.59 13.36
NUG .62 .19 .03 .03 5.04 2.67 2.35 1.85 3.04 4.18 8.79 9.40
ROU 1.58 .77 .49 .48 8.45 4.47 4.68 3.74 2.33 3.19 6.98 7.56
SCR 3.94 .29 2.66 .24 19.36 7.66 15.24 8.16 2.34 3.26 6.63 7.41
SKO .94 .61 .34 .28 2.18 1.64 1.23 1.15 3.67 11.66 9.68 12.00
STE 2.75 1.99 1.10 .53 13.37 8.87 8.78 7.80 4.20 6.17 11.44 12.41
TAI 2.90 1.78 1.53 1.08 9.23 5.89 6.01 4.71 51.47 54.17 193.50 195.77
THO 1.37 .96 .38 .35 3.39 2.58 2.04 1.88 4.51 8.85 12.80 15.06
WIL .54 .31 .13 .09 1.39 .82 .61 .51 4.36 12.52 11.89 15.36

Average Percent Optimality Gap Average Timing Ratio
Best of 100 Runs Median of 100 Runs (compared to CD)

Table 4. Performance of FAQ10, FAQ10+G, FAQ30, and FAQ30+G on QAPLIB instances, aggregated by family of instances.

Box-Constrained Approach for Hard Permutation Problems

Additional results on CD. In Figure 3 we compare
CD+C+RS, CD, and CD+C+FS in terms of the average
run time and the gap between the average objective value
obtained and the best objective value out of all runs of
FAQ30+G. We also tested CD+C, but omitted the results
since the run time was close to CD+C+RS and the objec-
tive values were slightly worse. CD and CD+C+RS scale
similarly at larger values of n, while CD+C+FS starts in-
creasing at a significantly faster rate. CD+C+FS can ob-
tain an average objective that is sometimes as good as (or
slightly better) than what FAQ30+G achieves, and the gaps
for CD+C+FS and CD+C+RS are off by almost a constant.

Figure 3. Comparison of CD+C+RS, CD, and CD+C+FS for syn-
thetic QAP instances.

