
A Box-Constrained Approach for Hard Permutation Problems

Cong Han Lim CONGHAN@CS.WISC.EDU
Stephen J. Wright SWRIGHT@CS.WISC.EDU

Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

We describe the use of sorting networks to form
relaxations of problems involving permutations
of n objects. This approach is an alternative to re-
laxations based on the Birkhoff polytope (the set
of n × n doubly stochastic matrices), providing
a more compact formulation in which the only
constraints are box constraints. Using this ap-
proach, we form a variant of the relaxation of the
quadratic assignment problem recently studied in
Vogelstein et al. (2015), and show that the contin-
uation method applied to this formulation can be
quite effective. We develop a coordinate descent
algorithm that achieves a per-cycle complexity
of O(n2 log2 n). We compare this method with
Fast Approximate QAP (FAQ) algorithm intro-
duced in Vogelstein et al. (2015), which uses a
conditional-gradient method whose per-iteration
complexity is O(n3). We demonstrate that for
most problems in QAPLIB and for a class of syn-
thetic QAP problems, the sorting-network for-
mulation returns solutions that are competitive
with the FAQ algorithm, often in significantly
less computing time.

1. Introduction
A permutation problem has the form

min
π∈Pn

f̄(π) (1)

where Pn is the set of all permutations of n objects. Lin-
ear and quadratic assignment problems (LAP and QAP, re-
spectively) can be formulated as permutation problems, as
can seriation problems (Fogel et al., 2013). Many NP-hard
problems are special cases of QAP. It is useful to formu-
late these problems equivalently in terms of permutation

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

matrices Π ∈ PMn (PMn is the set of n × n permuta-
tion matrices). For example, the graph matching problem
can be expressed as minΠ∈PMn ‖A−ΠBΠ>‖2F where A
and B are the adjacency matrices of graphs on n vertices.
The Birkhoff polytope Bn — the convex hull of the set of
permutation matrices — is frequently used to formulate a
continuous (but not necessarily convex) relaxation of such
problems, which takes the following form:

min
P∈Bn

f(P). (2)

The conventional way to implement such formulations is
to represent the set Bn explicitly via n2 variables (the com-
ponents of P), 2n linear constraints, and n2 nonnegativity
bounds, as follows:

Bn = {P ∈ Rn×n |P1 = 1, P>1 = 1, P ≥ 0}, (3)

where 1 = (1, 1, . . . , 1)> ∈ Rn. Some algorithms based
on this representation rely on a projection step to remain
within the feasible region; the expense of this step can
be ameliorated by the use of an approximate projection
technique such as Sinkhorn-Knopp balancing (Sinkhorn &
Knopp, 1967). The constraints can also be incorporated
directly within a general optimization framework, such as
an active-set or interior-point method. A conditional gradi-
ent (Frank-Wolfe) framework can also be used (Vogelstein
et al., 2015; Zaslavskiy et al., 2009), at a cost of O(n3) op-
erations per iteration. It has been noted that maintaining
feasibility of the iterates with respect to these constraints is
typically the bottleneck in these methods.

In this paper, we follow Lim & Wright (2014) in using a
sorting network to replace the permutation matrix. A sort-
ing network is a mechanism for sorting n objects by means
of a composition of pairwise comparators, where each
comparator sorts a single pair of inputs. Sorting networks
for n numbers can in principle be composed of O(n log n)
comparators; practical networks contain O(n log2 n) com-
parators. Each comparator can be parametrized by a single
scalar x, which takes on the value 1 if it is necessary to
switch the two inputs to put them in the correct order, and
0 otherwise. By relaxing the feasible set for each parame-
ter x from the binary set {0, 1} to the interval [0, 1], we can

Box-Constrained Approach for Hard Permutation Problems

parametrize a practical sorting network in terms of m vari-
ables (where m = O(n log2 n)) over the box [0, 1]m. We
can design a sorting network to effect any permutation of n
objects by making appropriate choices of the parameters x
from the binary set {0, 1}m. We note too that any choice of
parameters from the box [0, 1]m yields a matrix in Bn. In
fact, the set of matrices traced out by choosing the sorting
network parameters from the box [0, 1]m is a manifold ly-
ing within Bn that contains all permutation matrices. Thus,
the sorting network yields a relaxation of Problem (1).

A regularization term ‖x−(1/2)1‖22 can be included in the
sorting-network relaxation, whose function is to nudge so-
lutions toward vertices of the feasible box [0, 1]m, and thus
closer to a permutation. By scaling this term with a regular-
ization parameter µ, and gradually altering this parameter
from a positive value to a negative one, the problem can
be transformed from a convex problem to a coordinatewise
strongly concave problem whose global minimizer coin-
cides with the minimum of the original problem. Estimates
of Lipschitz constants for the objective provide informa-
tion about appropriate choices for the parameter. A con-
tinuation method can track the solution as this parameter is
decreased. (We note that negative values of regularization
parameters are slightly atypical, but the use of the terminol-
ogy “regularization” is still appropriate as this term serves
to force the solution toward a more useful value — a value
at or near a vertex of the feasible box.)

The sorting-network relaxation is nonconvex in general.
However, when the objective f is nonconvex, (as in the
graph matching problem, for example), the Birkhoff poly-
tope relaxation is nonconvex also, even though the feasible
set Bn is polyhedral. We note too that any solution of a re-
laxed problem must be converted via heuristics into an esti-
mate of the solution of the original problem (1). This addi-
tional consideration makes it difficult to predict the relative
performance of different relaxation methods. The compact,
nonlinear relaxations based on sorting-networks may thus
be viable alternatives to the simpler but higher-dimensional
relaxation resulting from the Birkhoff polytope.

We demonstrate an application of the sorting-network re-
laxation is to the classic quadratic assignment problem
(QAP). Our point of comparison is with the nonconvex re-
laxed quadratic assignment problem formulation from Vo-
gelstein et al. (2015), which uses the Birkhoff polytope and
uses conditional gradient approach to solve the resulting
indefinite quadratic program. We demonstrate an efficient
technique for computing components of the gradient with
respect to the sorting-network parameters, with the purpose
of using these partial gradients in a cyclic coordinate de-
scent framework. These techniques allow us to perform a
full cycle of coordinate descent in complexity O(nm) (that
is, O(n2 log2 n) for practical sorting networks).

We demonstrate empirically that using this continuation-
based method with the fast cyclic coordinate subroutine can
converge to a local minimum significantly faster than the
Frank-Wolfe method-based Fast Approximate QAP (FAQ)
from (Vogelstein et al., 2015). In particular, we demon-
strate on synthetic QAP instances that even with multiple
heuristics, the run time of cyclic coordinate descent can
be many times faster than FAQ. For quadratic assignment
problems from QAPLIB (Burkard et al., 1997) and some
other synthetic QAP problems, the cyclic coordinate de-
scent method frequently returns an objective value close to
FAQ, with the exception of two problem classes.

It is not our main goal to devise another metaheuristic
for QAP, of which there are already a wide variety (see
Burkard et al. (2012); Loiola et al. (2007) for recent sur-
veys). Rather, we wish to use this important problem class
to demonstrate the effectiveness of sorting-network relax-
ations for solving certain hard permutation problems.

Outline. We introduce sorting networks in Section 2, de-
scribe the mapping φ that is the basis of the relaxation,
and show how the derivatives of φ can be computed effi-
ciently. Section 3 describes the continuation strategy for
tracking the solution as a function of the regularization pa-
rameter. Section 4 describes the QAP and the approach
used to solve it in Vogelstein et al. (2015). We also give
details of the cyclic coordinate descent algorithm for solv-
ing the sorting-network relaxation. Further implementation
details are given in Section 5 and computational results are
described in Section 6. The supplementary material con-
tains omitted proofs and details on the experiments.

Related Work. The use of sorting networks in optimiza-
tion problems involving continuous objectives and permu-
tations as the variables draws on the compact extended
formulation of the permutahedron (Goemans, 2015). The
extended formulation relies on a “mixing” constraint at
each comparator, with parameters to describe the amount
of mixing that occurs. Sorting-network relaxations were
employed in the seriation problem (which has a convex ob-
jective) in Lim & Wright (2014), but the technique of that
paper applies only to permutations of vectors. The current
paper answers in the affirmative a question raised in Lim &
Wright (2014), about whether sorting-network relaxations
can be devised for more general problems involving opti-
mization over permutations.

The use of continuation methods for nonconvex problems
is popular within the computer vision and machine learning
communities, and it has recently been applied to the QAP.
The approaches for QAP use the Birkhoff polytope and
the fact that the minimum of a concave objective function
over any polytope is attained at extreme points. Zaslavskiy
et al. (2009) derive convex and concave relaxations over the

Box-Constrained Approach for Hard Permutation Problems

Birkhoff polytope for the graph matching problem, which
can be used as a proxy for the QAP. They then solve a
series of problems over a convex combination of the two
problems. Xia (2010) solves a sequence of `2-regularized
problems over the Birkhoff polytope where regularization
terms −µ‖P‖2F are added to the objective (2), for different
positive values of µ.

2. A Box-Constrained Framework based on
Sorting Networks

A sorting network on n elements is a se-
quence of m pairwise comparators C =
{(α1, β1), (α2, β2), . . . , (αm, βm)} that defines the
following sorting algorithm for a sequence of n elements:
At the kth round, compare the αkth and βkth item in
the sequence (where αk and βk are both integers in
the range 1, 2, . . . , n, with αk < βk) and switch the
position of the elements if and only if the βkth element
is smaller. The AKS sorting network (Ajtai et al., 1983)
has size m = O(n log n), and is the most compact
option for extremely large n. Practical sorting networks
with simple recursive constructions such as the bitonic
sorter or odd-even mergesort (Batcher, 1968) have size
m = O(n log2 n). Sorting networks are frequently
depicted as a series of wires and comparators; Figure 1
illustrates a small bitonic network.

Figure 1. A bitonic sorting network on 4 vari-
ables composed of the sequence of comparators
{(1, 2), (3, 4), (1, 4), (2, 3), (1, 2), (3, 4)}. The numbers
on the wires illustrate the sorting process for the input sequence
(4, 3, 1, 2).

With each comparator (αk, βk) in the sorting network we
can associate a variable xk ∈ [0, 1] that defines how the
outputs from the comparator are defined as a mixture of the
inputs. Using this notation, we can represent this compara-
tor as an elementary matrix Mk(xk), whose (i, j) element
is defined as follows:

Mk
ij(xk) :=

1 i = j, i 6= αk, βk,

xk i = j, i, j ∈ {αk, βk},
(1− xk) i 6= j, i, j ∈ {αk, βk},
0 otherwise.

(4)

Here, we have Mk(1) = I (corresponding to “no swap” of
the αk and βk elements) whereas Mk(0) is the permuta-
tion matrix that “swaps” elements αk and βk. The matrix
Mk(xk) is invertible if and only if xk 6= 0.5. Given any
n × n matrix Y , it takes only O(n) operations to update
Y to (Mk(xk))−1Y (if xk 6= 0.5) or Mk(xk)Y , since we
only have to update two rows in each case.

The derivative ofMk with respect to its argument is a rank-
one matrix vk(vk)>, where

vki =

1 i = αk,

−1 i = βk,

0 otherwise.
(5)

The following function φ : Rm → Rn×n defines the com-
position of the transformations Mk(xk) across the full net-
work:

φ(x) := Mm(xm)Mm−1(xm−1) . . .M1(x1),

The image {φ(x) | x ∈ [0, 1]m} includes all permutation
matrices, since the sorting network allows us to pick a bi-
nary x to represent any permutation. The image is in gen-
eral a strict subset of the Birkhoff polytope: It is easy to ver-
ify that φ(x)1 = 1 and φ(x)>1 = 1 for any x ∈ [0, 1]m,
and it is also clear that φ(x) ≥ 0.

The following property of the mapping φ will be useful.
Lemma 2.1. ‖φ(x)− φ(y)‖F ≤ 2‖x− y‖1.

We can use the mapping φ to replace the argument P in
the formulation (2). After adding a regularization term
µ ∈ R, we obtain the following sorting-network-based for-
mulation:

min
x∈[0,1]m

g(x;µ) = f(φ(x)) + µ‖x− (1/2)1‖22. (6)

The regularization term µ allows us to develop a continua-
tion-based approach in later sections, which works by grad-
ually decreasing µ to transform (6) from convex to concave.

If f has gradients with Lipschitz constant Lf , we can de-
rive Lipschitz constants for the gradient of the composed
function f(φ) by applying Lemma 2.1.

|∇f(φ(x))−∇f(φ(y))| ≤Lf‖φ(x)− φ(y)‖F
≤2Lf‖x− y‖1 (7)

≤2
√
mLf‖x− y‖2. (8)

Inequality (8) ensures that if µ >
√
mLf or µ < −

√
mLf ,

then Problem (6) is strongly convex or strongly concave re-
spectively. Inequality (7) shows that |µ| > Lf suffices for
coordinatewise convexity or concavity, that is, the function
restricted to a single coordinate for any coordinate is con-
vex or concave. Coordinatewise concavity guarantees that
the global solutions for Problems (1) and (6) coincide.

Box-Constrained Approach for Hard Permutation Problems

Proposition 2.2. Suppose the objective g(x;µ) in Problem
(6) is coordinatewise strongly concave. Then any point x̂
that is coordinatewise minimal leads to a permutation ma-
trix φ(x̂). Any φ(x∗) corresponding to a global minimum
x∗ is a solution to the original Problem (1).

3. A Continuation-Based Algorithm for
Obtaining a Permutation.

The continuation method, sometimes also known as grad-
uated nonconvexity or the homotopy method, is a well-
known technique used to solve difficult problems. Instead
of tackling the target problem directly, the method solves
a series of subproblems, using the approximate solution of
each subproblem to initialize the next one. In our case,
the continuation method begins from a convex problem and
gradually transforms it to a problem equivalent to the orig-
inal hard nonconvex problem, the intuition being that the
sequence of solutions gradually follows a path to a good
solution for the original problem.

To define a continuation-based algorithm, we need to de-
termine the sequence of subproblems and the method for
solving each subproblem. In this paper, we use cyclic coor-
dinate descent with exact minimization to solve each sub-
problem. We terminate the cyclic coordinate descent when
the objective value fails to meet a sufficient decrease cri-
teria. The subproblems in our formulation depend on the
regularization term µ. We know from Proposition 2.2 that
once µ < −Lf , the problem is coordinatewise strongly
concave, so that cyclic coordinate descent finds a binary
vector x. If we choose to further decrease µ once we have
found a binary x, the new solution would not move.

Proposition 3.1. Suppose g(·;µ) is coordinatewise
strongly concave. Then cyclic coordinate descent with ex-
act minimization reaches a binary x in finitely many steps.

Proposition 3.2. Suppose binary vector x is coordinate-
wise minimal for g(x;µ0). For any µ < µ0, x is still a
coordinatewise minimum for g(x;µ).

The proof of Proposition 3.2 follows directly from symme-
try of the regularization term around 0.5. Note that any co-
ordinatewise minimal point is also a stationary point, hence
no first-order method will find a new point.

By considering both Propositions 3.1 and 3.2, we know that
we should not decrease µ beyond −Lf more than once.
This gives us a lower bound for µ. Proposition 3.2 also
provides an early termination criteria for the algorithm.

Remaining issues are to determine the starting value of µ,
and how to update µ between subproblems. For continu-
ation methods, it is typical to set the initial µ to make the
problem easy (that is, convex or strongly convex), but em-
pirically we have observed that it good computational re-

sults can be obtained by using 0 as the initial value of µ,
and decreasing it by a constant value between each sub-
problem. The approach is specified in Algorithm 1.

Algorithm 1 Continuation Algorithm for (12)
Input: g : [0, 1]m → R, x ∈ Rm, µ, c, µmin < −Lf−c,
εdec, εbin
repeat

repeat
x′ ← x
x← one cycle of coordinate descent on x′

until g(x′;µ)− g(x;µ) < εdec
if µ > µmin then
µ← µ− c

else
break

end if
until ‖x− round(x)‖2 < εbin
return round(x)

4. A Box-Constrained Relaxation of the QAP
and Fast Cyclic Coordinate Descent

The classic quadratic assignment problem (QAP), as for-
mulated by Koopmans and Beckmann, can be written as
follows:

min
Π∈Pn

n∑
i=1

n∑
j=1

aijbπiπj
=
〈
A,ΠBΠ>

〉
. (9)

This problem is NP-hard and can be used to model prob-
lems such as facility location, graph partitioning, the trav-
eling salesman problem, and many other combinatorial op-
timization problems. There is a wealth of research on this
topic, and we refer the reader to some of the comprehensive
surveys available (Loiola et al., 2007; Pardalos & Wolkow-
icz, 1994).

In this paper, we focus on a particular continuous relaxation
to the problem studied by Vogelstein et al. (2015), who de-
fine the following relaxation over the Birkhoff polytope:

min
P∈Bn

〈
A,PBP>

〉
= 〈AP,PB〉 . (10)

This formulation is referred to in Vogelstein et al. (2015)
as the indefinite relaxed QAP formulation. Its nonconvex
quadratic objective makes finding the global minimum an
intractable task, in general. Vogelstein et al. (2015) intro-
duce a Frank-Wolfe-based fast approximate QAP (FAQ) al-
gorithm for finding local minima, in which each iteration
requires solution of a linear assignment problem, an O(n3)
operation. The Hessian of the objective is given by the sum
of Kronecker produts B ⊗A+A> ⊗B>, so the Lipschitz

Box-Constrained Approach for Hard Permutation Problems

constant associated with the gradients is given by

LrQAP = max
{
{|λmin

A |, |λmax
A |} · {|λmin

B |, |λmax
B |}

}
(11)

where · denotes the elementwise product of the sets and
λmin
U and λmax

U are the smallest and largest eigenvalues of
U respectively.

The sorting-network formulation corresponding to (10) is

min
x∈[0,1]m

〈Aφ(x), φ(x)B〉+ µ‖x− (1/2)1‖22. (12)

This formulation has a multiquadratic objective function:
The exponent for each variable in each term is at most 2. To
our knowledge, box-constrained multiquadratic program-
ming has not been studied in the literature. From equations
(7) and (11) we know that setting |µ| > LrQAP makes this
formulation coordinatewise strongly convex or concave.

Evaluating the objective function takes O(nm) time for
this problem, because each of themmultiplications by ma-
trices Mk(xk), k = 1, 2, . . . ,m required to form Aφ(x)
and φ(x)B takes O(n) operations, while the inner product
in (12) requires O(n2). Computing the derivative with re-
spect to an arbitrary coordinate can take up toO(nm) oper-
ations. However, as we describe below, the form of the ob-
jective function can be exploited to compute one complete
cycle of the cyclic coordinate descent method in O(nm)
time. (In the supplementary material, we show how this
structure also allows us to evaluate a full gradient inO(nm)
operations, and the Hessian matrix in O(m2) operations.)

A fast implementation of the cyclic coordinate descent
method for (12). The cyclic coordinate descent method
(sometimes known as the Gauss-Seidel method) performs
the following update to the kth coordinate on the ith cycle:

xi+1
k ← argmin

ξ∈[0,1]

g(xi+1
1 , . . . , xi+1

k−1, ξ, x
i
k+1, . . . , x

i
m;µ).

There are a few reasons to adopt a cyclic coordinate de-
scent approach for our problem over other first-order meth-
ods. First, the multiquadratic form of the objective (12)
means that the function is simply a quadratic along each
coordinate. Once we obtain the coefficients that define the
quadratic, we can efficiently find the exact minimizer. Sec-
ond, the form of the function φ allows us to determine the
coefficients of the quadratic incrementally and efficiently.

Recalling the definition (4), we can express the objective of
(6) (when µ = 0) as follows:〈

AMm(xm) . . .M1(x1),Mm(xm) . . .M1(x1)B
〉

(For notational convenience, we omit the argument from
the Mk(xk) terms when xk can be inferred.) We will com-
pute the coefficients of the quadratic form along each co-
ordinate from the first and second derivatives. Using (5),

we write the gradient with respect to xk as the sum of the
following two terms:〈
AMm . . .Mk+1vk(vk)>Mk−1 . . .M1, φ(x)B

〉
, (13)〈

Aφ(x),Mm . . .Mk+1vk(vk)>Mk−1 . . .M1B
〉
, (14)

while the second derivative with respect to xk is

2 ·
〈
(vk)>Mk+1 . . .MmAMm . . .Mk+1vk,

(vk)>Mk−1 . . .M1BM1 . . .Mk−1vk
〉
.

(15)

We now demonstrate how to compute the coordinatewise
first and second derivatives incrementally, coordinate by
coordinate. Consider (13) (the analysis for (14) is similar).
After rearranging, and using such properties of the inner
product as 〈AB,C〉 = 〈A,CB>〉, this term equals〈

Mk+1 . . .MmAMm . . .Mk+1vk,

Mk(xk)Mk−1 . . .M1BM1 . . .Mk−1vk
〉
,

(16)

which by defining

Sk := Mk+1Mk+2 . . .MmAMm . . .Mk+2Mk+1

T k := Mk−1Mk−2 . . .M1BM1 . . .Mk−2Mk−1,

can be written as

〈Skvk,Mk(xk)T kvk〉. (17)

After updating xk to x′k and using Mk := Mk(x′k) in the
definition of T k+1, we can write the analogue of (17) for
the next coordinate k + 1 as follows:〈

Sk+1vk+1,Mk+1(xk+1)T k+1vk+1
〉

(18)

Suppose xk+1 6= 0.5. To compute (18) af-
ter computing (16), we need to compute Sk+1 =
(Mk+1)−1Sk(Mk+1)−1 and T k+1 = MkT kMk (both
O(n) operations), perform several other O(n) matrix-
vector operations, and finally form an inner prod-
uct (also O(n)). Note that the initial value S0 =
M1M2 . . .MmAMm . . .M2M1 requires O(nm) opera-
tions to compute, a similar cost to the subsequent sweep
through the coordinates.

If xk+1 = 0.5, we can no longer apply the above pro-
cedure since the matrix Mk+1 is not invertible. We can
circumvent this issue by storing explicitly the columns of
AMm . . .Mk+1 that differ from AMm . . .Mk. In prac-
tice, we would also store the columns instead of computing
the inverse when xk+1 is very close to 0.5 to avoid numer-
ical issues. Similar procedures to those just described can
be used to compute the second term (14) and the Hessian
(15). We summarize the approach in Algorithm 2, and the
iteration complexity is described in the following result.

Box-Constrained Approach for Hard Permutation Problems

Algorithm 2 A cycle of cyclic coordinate descent for (12)
Input: comparison coefficients x, matrices A,B ∈
Rn×n and regularization coefficient µ
S ← A
for i = m to 1 do
S ←M iSM i

end for // S = φ(x)>Aφ(x) at the end of the loop
T ← B
for i = 1 to m do
S ← (M i)−1S(M i)−1

a← 2 ·
〈
(vi)>Svi, (vi)>Tvi

〉
b←

〈
Svi,M iTvi

〉
+
〈
(vi)>S, (vi)>TM i

〉
a← a+ µ, b← b+ µ(x− 0.5)
xi ← arg miny

{
1
2ay

2 + (b− axi)y
∣∣ y ∈ [0, 1]

}
M i ←M i(xi)
T ←M iTM i

end for

Theorem 4.1. Each cycle of the cyclic coordinate descent
method can be performed in O(nm) time. The amount
of additional memory used is O(n2 + nd), where d =
|{i | xi = 0.5}|.

In general there is no convergence guarantee for cyclic co-
ordinate descent with exact minimization for nonconvex
problems — Powell (1973) provides a well-known example
in R3 where all the limit points of the iterates of cyclic co-
ordinate descent are not stationary points. Nonetheless, we
chose to use this over variants with guarantees like random
coordinate descent (Patrascu & Necoara, 2014), or cyclic
coordinate descent with a proximal term (Grippo & Scian-
drone, 2000) due to the better empirical performance.

5. Additional Implementation Details
We supplement the basic approach of Algorithm 2 with var-
ious other features and heuristics.

Choice of sorting network. As with Lim & Wright
(2014), we find that using bitonic sorting networks
(Batcher, 1968) in our experiments gives us good empir-
ical performance. These sorting networks have a size of
O(n log2 n) and can be constructed using a simple recur-
sive algorithm in O(n log2 n) time.

In addition, having additional comparators in a sorting net-
work may allow us to make additional swaps that improve
the objective value. We have found in our experiments
that randomly adding comparators can significantly im-
prove performance. We choose index pairs (αk, βk), k =
1, 2, . . . ,m′ at random from {1, 2, . . . , n} × {1, 2, . . . , n}
and append these pairs to the list of comparators defined
by the bitonic network. There is a trade-off in performance
improvement and running time when adding comparators.

We found that setting the number m′ of new comparators
to m works well in practice.

Multiple restarts. The nonconvexity of formulations (9)
and (12) means that both methods often terminate at sta-
tionary points which could be far from the global optimum.
To improve the quality of the local solutions that are iden-
tified, we restart the methods multiple times with different
starting points. (Vogelstein et al. (2015) employ this tech-
nique, with good results.) We can also permute the rows
and columns of A differently for each restart of the algo-
rithm, since the behavior of the function φ(x) is not invari-
ant to such rearrangements.

Finding a permutation that is locally optimal (up to a
single swap) using coordinate descent. The following
method ensures that the permutation φ(x) computed by our
method is at least as good as all permutations that differ
from φ(x) by at most one swap. After obtaining a per-
mutation, instead of directly terminating the continuation
algorithm, we rearrange the rows and columns of A and B
according to this permutation. We then define a sorting net-
work in which the list of comparators consists of every pair
of elements from {1, 2, . . . , n}, and set x = 1. We then
resume the continuation algorithm using this new sorting
network. If the cyclic coordinate descent algorithm results
in no change to the initial value x = 1, we know that no
single swap could have improved the objective, so we can
terminate safely. Otherwise, we repeat this process.

Using this ‘full’ sorting network of size O(n2) may be
slow, and we can cap the number of iterations with this net-
work to ease the computational burden. Alternatively, we
can generate a smaller random sorting network by choos-
ing m′ index pairs at random (m′ controls the trade-off be-
tween local optimality and runtime) and forming a compo-
sition of the comparators defined by these pairs. (The re-
sulting list of comparators is not strictly speaking a sorting
network, since it is not guaranteed to sort all inputs.)

6. Numerical Results
Vogelstein et al. (2015) demonstrate that FAQ outperforms
other approximate QAP methods, so we focus on compar-
ing our continuation-based approach against the FAQ al-
gorithm on quadratic assignment problems from the liter-
ature. We report on both the objective values attained and
the running time.

Setup. The experiments were run in MAT-
LAB 8.4, limited to a single thread. For the
FAQ algorithm, we used the MATLAB imple-
mentation provided by Vogelstein et al. (2015) at
github.com/jovo/FastApproximateQAP, and

Box-Constrained Approach for Hard Permutation Problems

used the default stopping criteria provided there. Since
the runtime for FAQ algorithm is sometimes long, and it
often does not make much progress after a certain point,
we capped the number of Frank-Wolfe iterations at 10 or
30. (We denote these two variants by FAQ10 and FAQ30,
respectively.) The FAQ codes did not converge within their
limits of 10 and 30 iterations, but the objective did not
improve significantly beyond 30 iterations.

Heuristics or other local search methods that were devel-
oped for QAP can improve the performance of these algo-
rithms, but a detailed analysis of how to compose heuris-
tics is beyond the scope of this paper. In this paper we
only consider a simple greedy pairwise swap heuristic.
In this approach, we iterate through all possible pairwise
swaps until we find a swap that improves the objective,
then perform that swap. In the main paper we consider
FAQ10+G/FAQ30+G, which applies the following greedy
pairwise swap heuristic up to 30 times after FAQ10/FAQ30
terminates.

We implemented the continuation method with the
fast cyclic coordinate descent algorithm in MATLAB.
(A straightforward translation of the code into MAT-
LAB/MEX gives us a significant speed-up, but we keep the
code in pure MATLAB for a fairer timing comparison with
the MATLAB implementation of FAQ.)

We consider multiple variants of coordinate descent with
different features/heuristics applied, and collectively refer
to them as CD. We set εdec = 0.1% and εbin = 0.1

√
n in

Algorithm 1. The features we consider are continuation
(C), sorting network heuristic for local optimality (RS and
FS, for random and full sorting network, respectively), and
the greedy swap heuristic from above (G). For simplicity,
we focus primarily in the main paper on CD+C+RS: Co-
ordinate descent with continuation and random sorting net-
works of size O(n log2 n). We decrease µ by LrQAP/10
between subproblems (see (11) for the definition of LrQAP),
and terminate after solving the problem for two successive
values of µ less than −LrQAP. In each run, we let the al-
gorithm apply the new sorting network heuristic up to 3
times. The use of random sorting networks instead of full-
sized sorting networks (with O(n2) comparators) provides
an objective value that is very slightly worse, with signifi-
cantly better scaling with n.

QAPLIB Problems. We compare the objective values
and timings achieved by FAQ and CD on problems from
QAPLIB (Burkard et al., 1997), the canonical library of
QAP problems, which has 137 problems with sizes vary-
ing from n = 10 to n = 256. Each method was run 100
times, and we compare the objective values corresponding
to the best result and the median. We take the best or me-
dian solution obtained out of 100 runs for each method and

compare them to the global optimal or best known solution
in the literature. We compute the optimality gap, the dif-
ference between the objective value obtained and the best
known solution normalized by the best known solution. We
also compare the difference in average running time.

In the main paper, we focus on comparing CD+C+RS with
FAQ10, FAQ30, and FAQ30+G, as summarized in Table 1.
We also briefly discuss FAQ10+G and other variants of CD.

We focus first on the objective values obtained. Overall, for
a majority of the instances the objective values obtained
by CD and the FAQ methods are within a few percent of
each other. CD+C+RS is better than FAQ10 for 12 fami-
lies, FAQ30 for 6 families, and FAQ30+G for one family.
The performance of FAQ improves significantly when the
maximum number of iterations is increased from 10 to 30,
and again when the greedy swap heuristic is applied. In par-
ticular, while CD+C+RS significantly outperforms FAQ10
and FAQ30 on chr, els, the greedy swap heuristic al-
lows FAQ30+G to attain a performance close to or bet-
ter than CD+C+RS. We note that CD+C+RS outperforms
FAQ10+G for 5 families. Except for lipa b and ste,
CD+C+RS always provides a gap that is close to or better
than the other methods.

For the running time, CD+C+RS generally does much bet-
ter. Besides beating FAQ10 on a majority of instances
and FAQ30/FAQ30+G for all instances, CD+C+RS is never
worse by more than a few times, whereas FAQ10 and
FAQ30 can be more than 100 times slower (see the bur and
els problems). FAQ10 is approximately three times faster
than FAQ30, and the time difference between FAQ10 and
FAQ10+G is roughly the same as the difference between
FAQ30 and FAQ30+G.

We briefly describe a few observations of the other CD vari-
ants. Using the full sorting network compared to a random
O(n log2 n) network in the heuristic leads to a slightly bet-
ter objective value in terms of objective value without sig-
nificantly affecting overall running times. (At small n the
choice of new sorting networks has little or negligible ef-
fect on running time.) Applying the greedy swap heuristic
to CD makes a much smaller difference if the new sort-
ing network heuristic is used. Applying the greedy swap
heuristic is often much more time-consuming than apply-
ing the new sorting network heuristic for these instances.

Synthetic QAP Problems. To understand better how the
running times and objective values scale with problem size,
we turn to the QAP generators described in Taillard (1995).
These problems have A matrices are Euclidean distance
matrices andB matrices are randomly generated with many
zero elements. (Further details appear in the supplementary
material.) For n = 300, 400, . . . , 1000, we generated one
instance each of size n and ran each algorithm 10 times

Box-Constrained Approach for Hard Permutation Problems

Type Num n CD+C+RS FAQ10 FAQ30 FAQ30+G CD+C+RS FAQ10 FAQ30 FAQ30+G FAQ10 FAQ30 FAQ30+G
BUR 8 26 .12 .08 .06 .04 .78 .27 .19 .08 724.04 1895.26 1897.04
CHR 14 12--25 6.84 18.72 9.32 5.90 39.92 77.50 57.76 33.91 .91 1.99 2.38
ELS 1 19 4.21 25.89 22.96 4.56 27.60 77.60 67.39 19.15 394.71 956.55 957.50
ESC 20 16--128 .08 .73 .05 .00 2.02 9.82 5.34 2.36 .37 1.06 1.24
HAD 5 12--20 .00 .39 .15 .05 .39 3.77 .77 .37 1.02 3.09 3.39
KRA 3 30--32 1.75 2.46 .06 .00 5.13 7.28 5.20 4.62 2.67 9.03 9.42
LIPA A 8 20--90 .95 1.79 1.02 .66 1.50 2.23 1.76 1.35 .28 1.80 2.50
LIPA B 8 20--90 7.92 .00 .00 .00 19.03 15.07 4.93 4.90 2.23 1.60 1.98
NUG 15 12--30 .43 .62 .03 .03 3.46 5.04 2.35 1.85 1.29 3.72 3.98
ROU 3 12--20 .22 1.58 .49 .48 4.67 8.45 4.68 3.74 .74 2.19 2.39
SCR 3 12--20 .00 3.94 2.66 .24 7.04 19.36 15.24 8.16 .88 2.46 2.75
SKO 13 42--100 1.03 .94 .34 .28 2.18 2.18 1.23 1.15 2.01 5.29 6.57
STE 3 36 3.63 2.75 1.10 .53 14.77 13.37 8.78 7.80 2.25 6.13 6.65
TAI 28 10--256 1.30 2.90 1.53 1.08 5.50 9.23 6.01 4.71 17.94 66.33 67.48
THO 3 30--150 1.54 1.37 .38 .35 3.62 3.39 2.04 1.88 2.47 6.95 8.23
WIL 2 50,100 .48 .54 .13 .09 1.20 1.39 .61 .51 2.38 6.47 8.35

Average Percent Optimality Gap Average Timing Ratio
Best of 100 Runs Median of 100 Runs (compared with CD+C+FS)

Table 1. Performance of CD+C+RS, FAQ10, FAQ30 and FAQ+G on QAPLIB instances, aggregated by family of instances. For each
family, we take the average optimality gap and the average ratio of the timing of each method to CD+C+RS. The highlighted cells
indicates cases where CD+C+RS outperforms that entry.

on each instance. In Figure 2 we compare CD+C+RS,
FAQ10+G, and FAQ30+G in terms of the average run time
and the gap between the average objective value obtained
and the best objective value out of all runs of FAQ30+G.

Figure 2. Comparison of CD+C+RS, FAQ10+G, and FAQ30+G
for synthetic QAP instances.

For the objective values, FAQ10+G performs worst, fol-
lowed by CD+C+RS, with FAQ30+G best. The CD+C+RS

algorithm is much faster, by a factor of about 20 over
FAQ10+G and about 60 over FAQ30+G. Using a full sort-
ing network heuristic has worse scaling effects in terms of
the run time. CD+C+FS and CD+FS scale at a rate that is
approximatelyO(n3), which is the complexity of one cycle
of coordinate descent on a O(n2) sorting network, while
the other methods scale similarly at a rate that is closer to
O(n2).

7. Conclusion
We have introduced a novel, compact relaxation for hard
permutation problems that reduces the constraints to sim-
ple box constraints. These constraints are significantly eas-
ier to enforce than those encountered in the Birkhoff poly-
tope relaxation. By incorporating a regularization term, we
can gradually alter the problem to a coordinatewise con-
cave problem, where the global minimizer coincides with
the original problem.

Using the QAP as an example, we show that the structure
of the resulting parametrization can be leveraged to derive
fast cyclic coordinate descent algorithms. Our algorithm
takes only O(n) time per coordinate or O(n2 log2 n) per
cycle, which has better per-iteration complexity than ex-
isting methods over the Birkhoff polytope. We develop a
continuation-based method for finding a permutation using
the new parametrization. Empirical results show that for
many problems from QAPLIB, this algorithm can find so-
lutions of quality comparable with the approach of Vogel-
stein et al. (2015), and significantly faster. A natural goal
would be extend this relaxation to other hard permutation
problems of interest.

Box-Constrained Approach for Hard Permutation Problems

8. Acknowledgements
We thank the anonymous referees for feedback that im-
proved the paper and its presentation. This project was sup-
ported by NSF Awards DMS-1216318 and IIS-1447449,
Award EM02076 from Exxon Mobil Corp., ONR Award
N00014-13-1-0129, AFOSR Award FA9550-13-1-0138,
and Subcontract 3F-30222 from Argonne National Labo-
ratory.

References
Ajtai, M., Komlós, J., and Szemerédi, E. An O(n log n)

sorting network. In Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing (STOC ’83),
pp. 1–9, New York, New York, USA, December 1983.
ACM Press. ISBN 0897910990. doi: 10.1145/800061.
808726.

Anstreicher, Kurt M. and Brixius, Nathan W. A new bound
for the quadratic assignment problem based on convex
quadratic programming. Mathematical Programming,
89(3):341–357, February 2001. ISSN 0025-5610. doi:
10.1007/PL00011402.

Batcher, K. E. Sorting networks and their applications. In
AFIPS ’68 (Spring): Proceedings of the Spring Joint
Computer Conference, pp. 307–314, New York, New
York, USA, April 1968. ACM Press. doi: 10.1145/
1468075.1468121.

Burkard, R., Dell’Amico, M., and Martello, S. Assignment
Problems. Society for Industrial and Applied Mathemat-
ics, 2012. doi: 10.1137/1.9781611972238.

Burkard, Rainer E., Karisch, Stefan E., and Rendl,
Franz. QAPLIB A Quadratic Assignment Problem
Library. Journal of Global Optimization, 10(4):391–
403, June 1997. ISSN 0925-5001. doi: 10.1023/A:
1008293323270.

Fogel, Fajwel, Jenatton, Rodolphe, Bach, Francis, and
D’Aspremont, Alexandre. Convex Relaxations for Per-
mutation Problems. In Advances in Neural Information
Processing Systems, pp. 1016–1024, 2013.

Goemans, Michel. Smallest compact formulation for the
permutahedron. Mathematical Programming, Series B,
153(1):5–11, 2015.

Gold, S. and Rangarajan, A. A graduated assignment al-
gorithm for graph matching. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 18(4):377–388,
April 1996. ISSN 01628828. doi: 10.1109/34.491619.

Grippo, L. and Sciandrone, M. On the convergence of
the block nonlinear Gauss-Seidel method under con-
vex constraints. Operations Research Letters, 26(3):

127–136, April 2000. ISSN 01676377. doi: 10.1016/
S0167-6377(99)00074-7.

Lim, Cong Han and Wright, Stephen. Beyond the Birkhoff
Polytope: Convex Relaxations for Vector Permutation
Problems. In Advances in Neural Information Process-
ing Systems, pp. 2168–2176, 2014.

Liu, Zhi-Yong, Qiao, Hong, and Xu, Lei. An Extended
Path Following Algorithm for Graph Matching Problem.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 34(7):1451–1456, January 2012. ISSN 1939-
3539. doi: 10.1109/TPAMI.2012.45.

Loiola, Eliane Maria, de Abreu, Nair Maria Maia,
Boaventura-Netto, Paulo Oswaldo, Hahn, Peter, and
Querido, Tania. A survey for the quadratic assign-
ment problem. European Journal of Operational Re-
search, 176(2):657 – 690, 2007. ISSN 0377-2217. doi:
http://dx.doi.org/10.1016/j.ejor.2005.09.032.

Pardalos, P.M. and Wolkowicz, H. Quadratic Assignment
and Related Problems: DIMACS Workshop, May 20-
21, 1993. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical
Society, 1994. ISBN 9780821870624.

Patrascu, Andrei and Necoara, Ion. Efficient random coor-
dinate descent algorithms for large-scale structured non-
convex optimization. Journal of Global Optimization,
61(1):19–46, February 2014. ISSN 0925-5001. doi:
10.1007/s10898-014-0151-9.

Powell, M. J. D. On search directions for minimization
algorithms. Mathematical Programming, 4(1):193–201,
dec 1973. ISSN 0025-5610. doi: 10.1007/BF01584660.

Schellewald, Christian, Roth, Stefan, and Schnrr,
Christoph. Evaluation of convex optimization techniques
for the weighted graph-matching problem in computer
vision. In Radig, Bernd and Florczyk, Stefan (eds.),
Pattern Recognition, volume 2191 of Lecture Notes in
Computer Science, pp. 361–368. Springer Berlin Hei-
delberg, 2001. ISBN 978-3-540-42596-0. doi: 10.1007/
3-540-45404-7 48.

Sinkhorn, Richard and Knopp, Paul. Concerning nonneg-
ative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343–348, 1967.

Taillard, Éric D. Comparison of iterative searches for the
quadratic assignment problem. Location Science, 3(2):
87–105, August 1995. ISSN 09668349. doi: 10.1016/
0966-8349(95)00008-6.

Umeyama, S. An eigendecomposition approach to
weighted graph matching problems. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 10(5):
695–703, 1988. ISSN 01628828. doi: 10.1109/34.6778.

Box-Constrained Approach for Hard Permutation Problems

Vogelstein, Joshua T., Conroy, John M., Lyzinski, Vince,
Podrazik, Louis J., Kratzer, Steven G., Harley, Eric T.,
Fishkind, Donniell E., Vogelstein, R. Jacob, and Priebe,
Carey E. Fast approximate quadratic programming for
graph matching. PloS one, 10(4), January 2015. ISSN
1932-6203. doi: 10.1371/journal.pone.0121002.

Xia, Yong. An efficient continuation method for quadratic
assignment problems. Computers & Operations Re-
search, 37(6):1027–1032, jun 2010. ISSN 03050548.
doi: 10.1016/j.cor.2009.09.002.

Zaslavskiy, Mikhail, Bach, Francis, and Vert, Jean-
Philippe. A path following algorithm for the graph
matching problem. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 31(12):2227–42, Decem-
ber 2009. ISSN 1939-3539. doi: 10.1109/TPAMI.2008.
245.

